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ABSTRACT 

 
In this letter, we describe a convergence of batch gradient method with a penalty condition term for a 

narration feed forward neural network called pi-sigma neural network, which employ product cells as the 

output units to inexplicit amalgamate the capabilities of higher-order neural networks while using a 
minimal number of weights and processing units. As a rule, the penalty term  is condition  proportional to 

the norm of the weights. The monotonicity of the error function with the penalty condition term in the 

training iteration is firstly proved and the weight sequence is uniformly bounded. The algorithm is applied 

to carry out for 4-dimensional parity problem and Gabor function problem to support our theoretical 

findings. 
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1. INTRODUCTION 

 
Introduced another higher order feed forward polynomial neural network called the pi-sigma 

neural network (PSN)[2], which is known to provide naturally more strongly mapping abilities 

than traditional feed forward neural network. The neural networks consisting of the PSN modules 

has been used effectively in pattern classification and approximation problems [1,7,10,13]. There 

are two ways of training to updating weight: The first track, batch training, the weights are 

updating after each training pattern is presented to the network in [9]. Second track, online 

training, the weights updating immediately after each training sample is fed (see [3]). The penalty 

condition term is oftentimes inserted into the network training algorithms has been vastly used so 

as to amelioration the generalization performance, which refers to the capacity of a neural 

network to give correct outputs for untrained data and to control the magnitude of the weights of 

the network structure [5,6,12]. In the second track the online training weights updating become 

very large and over-fitting resort to occur, by joining the penalty term into the error function 

[4,8,11,14], which acts as a brute-force to drive dispensable weights to zero and to prevent the 

weights from taking too large in the training process. The objective of this letter to prove the 

strong and weak convergence main results which are based on network algorithm prove that the 

weight sequence generated is uniformly bounded. 

 

For related work we mention [15] where a sigma-pi-sigma network is considered. The pi-sigma 

network considered in this paper has different structure as sigma-pi-sigma network and leads to 
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different theoretical analysis. But some techniques of proofs in [15] are also used here in this 

paper. 

 

The rest of this paper is organized as follows. The neural network structure and the batch gradient 

method with penalty is described in the Section 2. In Section 3 the main convergence results are 

presented. Simulation results are provided in Section 4. In Section 5 the proofs of the main results 

are provided. Finally, some conclusions are drawn in Section 6. 

 

2. BATCH GRADIENT METHOD WITH A PENALTY TERM 

 
In this paper, we are concerned with a PSNs with the structure p-n-1, where p, n and 1 are the 

dimensions of the input, hidden and output layers, respectively. Let �� = ����, ��� … , ��	
� ∈ℝ��1 ≤ � ≤ ��  the weight vectors connecting the input and summing units, and write � =���� , ��� , … , ���� ∈ ℝ�	. Corresponding to the biases ��� , with fixed value-1.  The structure of 

PSN is shown in Fig.1. 

 
 

Figure 1. A pi-sigma network with p-n-1 structure 

 
Assume g: ℝ → ℝ is a given activation function. In specially, for an input �� ∈ ℝ� , the output of 

the pi-sigma network is  

 

� = g ����� ∙ ��
�
�!� "																																																																																							�1� 

 

The network keeping with a given set of training examples  $%� , ��&�!1' ⊂ ℝ	 × ℝ' , *  is the 

numbers of training examples. The error function with a penalty is given by: 

 

+��� = 12 - .�/� − g ����� ∙ ��
�
�!� "1�'

�!� + 3 -‖��‖��
�!�  

= - g� ����� ∙ ��
�
�!� "'

�!� + 3 -‖��‖��
�!� 																																																	�2� 

 

where 3 > 0  is a penalty coefficient and g6�t� = 1

2
8/� − g�9�:2 . The gradient of +���  with 

respect to �� is written as : 
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∇+���� = - g� ����� ∙ ��
�
�!� " ���� ∙ ��
�� +�

�!��<�
23��

'
�!� 																															�3� 

 
Then, the weights updating rule is  

 ��>?� = 	 ��> − ∆��>,									A = 0,1, ….																																																														�4� 																																		∆��> = −E∇+����>� 

= - g�′ �����> ∙ ��
�
�!� " ����> ∙ ��
�� +�

�!��<�
23��>

'
�!� 																												�5� 

 A denotes Ath update  and	E > 0 is the learning rate. In this paper, we suppose that Eis a fixed 

constant and ‖	∙	‖ denotes the Euclidean norm. 

 

3. MAIN RESULTS 

 
In this section we present some convergence theorems of the batch gradient method with penalty 

(4). These proofs are given in next section. Some sufficient conditions for the convergence are as 

follows: 

 

(A1) |g�9�|, Hg�′ �9�H	, Hg�′′�9�H ≤ I		∀9 ∈ ℝ, 1 ≤ K ≤ *. 

(A2) L��L ≤ C, H��� ∙ ��H ≤ I, ∀1 ≤ K ≤ *, 1 ≤ � ≤ �, N = 0,1, … 

(A3) E and 3 are chosen to satisfy the condition: 0 < E < �P?Q 

(A4) There exists a closed bounded region Ω  such R�>S ⊂ Ω, and the set  ΩT = R�|+U��� = 0S 
contains only finite points. 

 

Theorem 1 If Assumptions (A1) – (A3) are valid, let the error function is given by (2), and the 

weight sequence  R�>S be generated by the iteration algorithm (4) for an arbitrary initial value, 

then we have  

 

�N�+��>?�� ≤ +��>�,A = 0,1,2,…. 
�NN� There exists +∗ ≥ 0  such that     lim>→∞ +��>� = +∗. �NNN� lim>→∞‖+���>�‖ = 0,			, � = 1,2, . . , �. 
Furthermore, if Assumption (A4)  is also valid, then we  have the following  strong convergence    �N[� There exists a point  �∗ ∈ ΩT such that lim>→∞�> = �∗ 

 The monotonicity and limit of the error function sequence R+��>�S are shown in Statements �N� 

and �NN� , respectively. Statements �NN�  (ii) and �NNN�  indicate the convergence of  R+���>�S ,  

referred to as weak convergence. The strong convergence of R�>S  is described in Statement �N[�. 
 

4. SIMULATIONS RESULTS 

 
To expound the convergence of batch gradient method for training pi-sigma neural network, 

numerical example experiments are executed for 4-parity problem and regression problem.  
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4.1. Example 1: Parity Problem 

 

Parity problem is a difficult classification problem. The famous XOR problem is completely the 

two-parity problem. In this example, we use the four-parity problem to test the performance of 

PSNs. The network is of three layers with the structure 5-4-1, and the logistic activation function g�9� = 1/�1 + ]^_� is used for the hidden and output nodes. The initial weights are chosen in 

[−0.5, 0.5] and the learning rate with different value  E = 0.05, 0.07 and 0.09 and the penalty 

parameter 3 = 0.0001. The maximum number of epoch  3000. 

 

From  Figures 2(a), (b) and 3(c) we observe that the error function and gradient of norm decrease 

monotonically, respectively, and that both norm of the gradient error function approaches zero, as 

depicted by the convergence Theorem 1. and from Figures Figure 3(d), (e) and (f), we can see the 

that  the valid function approximation. 

 

4.2. Example 2: Function Regression Problem 

 
In this section we test the performance of batch gradient with penalty for a multi-dimensional 

Gabor function has the following form (see Figure. 5): 

 a��, �� = 1

2b�0.5�� ]�c d�2 + �2
2�0.5�2e f/g�2b�� + ��
. 

 

In this example,  256 input points are selected from an evenly 16 × 16 grid on −0.5 ≤ � ≤ 0.5 

and −0.5 ≤ � ≤ 0.5 and the 16 input points are randomly selected from the 256 points as training 

patterns. The number of neurons for input, summation and product layer are p=3, N=6 and 1, 

respectively.   The parameters in this example take the values E = 0.9,  and 3 = 0.0001. when the 

number of training iteration epochs reaches 30000. 
                                                (a)                                                                             (b) 

 
 

Figure 2. Example 1: (a) Error function with penalty   (b) Norm of gradient with penalty   
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(c)                                                         (d) 

 

       

Figure 3. Example 2: (c) Error function with penalty   (d) Gabor function 

 
(e)                                                                                                 (f) 

 
           

Figure 3. The approximation:  (e) training pattern results     (f) test pattern results 

 

5. PROOFS 
 

To proof Theorem 1, First we present a important lemma which contribute to the our analysis, 

which is basically the same as Theorem 14.1.5 in [16]. Their proof is thus omitted. 

 

Lemma 1 Suppose that ℎ:	ℝi → ℝ is continuous and differentiable on a compact set jk ⊂ ℝi 

and that Ω = $l ∈ jk|∇ℎ�l� = 0& has only finite number of point. If a sequence Rl>S>!�∞ ∈ jk 

satisfies then lim>→∞‖l>?� − l>‖ = 0 , lim>→∞‖∇ℎ�l>�‖ = 0.	 Then there exists a point l∗ ∈ Ω such that lim>→∞l> = 	 l∗. 
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Proof of Theorem 1   For sake of convenience, we show the notations 

 

m> = -‖∆��>‖��
�!� 																																																																																																																		�6� 

o�>,� = ∆�>��>?� − ∆�>��>																																																																																																				�7� 

 

Proof Applying Taylor’s formula to extend g��∏ ���>?� ∙ ����!� �
 at ∏ ���>?� ∙ ����!� �, we have  

g� �����>?� ∙ ���
�!� �" = g� �����> ∙ ���

�!� �" 

																																									+g�′ �����> ∙ ���
�!� �" - r����> ∙ ���

�!��<�
�s�

�!� ���t?� − ��>
�� 

																																									+ 12 g ′′�9�� �����>?� ∙ ���
�!� � − ����> ∙ ���

�!� �"�
 

+ 12 - uv � 9�
�

�!��<�w,�x yz ���wt?� − ��w>
���xt?� − ��x>
���
��
�w,�x!��w<�x

																�8� 

 

Where 	9� ∈ ℝ  is on the line segment between ∏ ���t?� ∙ ����!� �	 and  ∏ ���> ∙ ����!� �.  After 

dealing with (8) by accumulation g��∏ ���>?� ∙ ����!� �
 for 1 ≤ K ≤ *, we obtain from (2), (4) 

and Taylor’s formula, we have 

 

+��>?�� = - g� �����>?� ∙ ��
�
�!� "'

�!� + 3 -L��>?�L��
�!�  

= +��>� − 1E -‖∆��>‖��
�!� + 32 C� -‖∆��>‖��

�!� + ∆� + ∆�																																										�9� 

Where 

∆�= 12 - g6′ �����> ∙ %�
�
�!� "'

�!� - uv � 9�
�

�!��<�w,�x yz
�

�w,�x!��w<�x
�∆��wt
�∆��xt
���
�																		�10� 

∆�= 	 12 - g ′′�9��'
�!� �����>?� ∙ ���

�!� � − ����> ∙ ���
�!� �"� 																																															�11� 

∆|= 1E -�∆��>��
�!� ∙ -�o�A,K
�

�!� 																																																																																															�12� 

 

It follows from (A1), (A2), (5) and Taylor’s formula to first and second orders, we obtain 

																	|∆�| ≤ 12 I�?� - - L∆��w>L ∙ L∆��x>L�
�w,�x!��w<�x

'
�!�  
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																										≤ 12 I�?��� − 1�* -‖∆��>‖��
�!�  

≤ C| -‖∆��>‖��
�!� 																																																																																																										�13� 

 

Where C| = �� I�?��� − 1�*.  By Assumption (A2) , (A2) and Cauchy- Schwartz inequality, we 

have 

}����>?� ∙ ���
�!� � − ����> ∙ ���

�!� �} 
																																		≤ }����>?� ∙ ���

�!� �} H���>?� − ��>���H + }����>?� ∙ ��
�^�
�!� ���> ∙ ��
} 

																																		× H���^�>?� − ��^�> ���H + ⋯ + }����> ∙ ��
�
�!� } H���>?� − ��>���H 

																																		≤ I�^�L��L -‖∆��>‖�
�!�  

≤ I� -‖∆��>‖�
�!� 																																																																																																				�14� 

 

Where	I� = I��1 ≤ K ≤ *, 1 ≤ � ≤ �	, A = 0,1,2, … �. Similarly, we get  

 

�����> ∙ ���
�!��<�

� − ����> ∙ ���
�!��<�

�� ≤ I�� -‖∆��>‖�
�!� 																																																																								�15� 

 

When I�� = I�^�.  By Assumptions (A1), (14) and Cauchy Schwartz inequality, we obtain 

 

																									|∆�| ≤ 	 12 I ������>?� ∙ ���
�!� � − ����> ∙ ���

�!� �"�� 
≤ 12 CC�� -‖∆��>‖��

�!� 																																																																																												�16� 

 

By Assumption (A1), (A2), (7), (14) and (15) for	A = 0,1, ⋯, we have 

 

																									|∆|| ≤ }-�∆��>��
�!� ∙ -�o�A,K
�

�!� } 
																																		≤ �I�+1I� + I�+1 + 23� -‖∆��>‖��

�!�  

≤ C� -‖∆��>‖��
�!� 																																																																																																			�17� 
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Where C� = �I�+1I� + I�+1 + 23�. Transfer (13), (16) and (17) into (9), there holds 

 

+��>?�� − +��>� ≤ − �1E − 32 C� − C| − C� − 12 CC��� -‖∆��>‖��
�!�  

																																						≤ − �1E − C� -‖∆��>‖��
�!�  

≤ 0																																																																																																																								�18� 

 

This completes the proof to report �N�of the Theorem 1. 

 

Proof to ����of the Theorem 1 From the conclusion �N�, we know that the non-negative sequence R+��>�S is monotone. But it also bounded below. Hence, there must exist +∗ ≥ 0 such that lim�→∞ +��>� = +∗. The proof to �NN�is thus completed. 

 

Proof to �NNN�  of the Theorem 1 It the follows from Assumption (A3) that � > 0.   Taking � = �� − C and using (18), we get 

+��>?�� ≤ +��>� − ��> ≤ ⋯ ≤ +��T� − � - ��>
�!�  

Since +��>?�� > 0, then we have  

� - ��>
�!� ≤ +��T� < ∞. 

Setting A → ∞, we have  

- ��∞

�!� ≤ 1� +��>� < ∞. 
Thus  lim>→∞�> = 0 

 

It follows from (5) and Assumption (A1) 

 lim>→∞‖∆��>‖ = 0,							� = 1,2, … , �																																				�19� 

 

This completes the proof. 

 

Proof to ���� of the Theorem 1 Note that the error function +��>� defined in (2) is continuous 

and differentiable. According to (16), Assumption (A4) and Lemma 1, we can easily get the 

desired result, i.e ., there exists a point �∗ ∈ ΩT such that  

 lim>→∞��>� = �∗ 

 

This completes the proof to �N[�. 

 

6. CONCLUSION 

 
Convergence results are decided for the batch gradient method with penalty for training pi-

sigma neural network (PSN). The penalty term is a condition proportional to the magnitude 

of the weights. We prove under moderate conditions, if Assumptions (A1) - (A3) hold, then 
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that the weights of the networks are deterministically bounded in the learning process. With 

the help of this conclusion, to point strongly purpose, if Assumption (A4) is also valid, then 

we prove that the suggested algorithm converges with probability one to the set of zeroes of 

the gradient of the error function in (2). Resemblance, the existing similar convergence 

results require the boundedness of the weights as a precondition. 
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