
International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

DOI: 10.5121/ijaia.2016.7301 1

GENETIC ALGORITHM FOR FUNCTION

APPROXIMATION: AN EXPERIMENTAL

INVESTIGATION

Abdulrahman Baqais
1

1
Department of Information and Computer Science, KFUPM, Dhahran, Saudi Arabia

ABSTRACT

Function Approximation is a popular engineering problems used in system identification or Equation

optimization. Due to the complex search space it requires, AI techniques has been used extensively to spot

the best curves that match the real behavior of the system. Genetic algorithm is known for their fast

convergence and their ability to find an optimal structure of the solution. We propose using a genetic

algorithm as a function approximator. Our attempt will focus on using the polynomial form of the

approximation. After implementing the algorithm, we are going to report our results and compare it with

the real function output.

KEYWORDS

Genetic Algorithm, Function Approximation, Experimentation

1. INTRODUCTION

Function approximation is used in science and engineering field in order to find the relationship

between two or more variables: the independent variable (x) and the dependent variable (y) [1-3].

In such situation, input-output pairs of any engineering or scientific problems are collected using

a suitable experiment or instrument. However, a direct relation in the form of equation can’t be

inferred between these pairs due to the absence of strong correlations.

To address this issue, Artificial Intelligence (AI) algorithms have been utilized to produce an

equation between input-output pairs with higher accuracy. Genetic algorithms have been

implemented in various articles with promising results as in [4-6].

2. LITERATURE REVIEW

Genetic algorithm is a metaheuristic algorithm that is designed by Holland in 1975 [7]. The

algorithm starts by providing a random population of points of the search space. At each

iteration, the algorithm applies some operators such as: crossover and mutation on the current

population and evaluate them using an objective (fitness) function. In Function approximation,

the objective function of each problem is to come up with an equation with higher accuracy

between input-output pairs. That is, the objective function is to reduce the errors of the equation.

Different error measurement can be used such as: Least Absolute Error (LAE), Mean Squared

Error (MSE) or residual sum of squares (RSS).

There are many studies that use different AI algorithms including GA to finding the function

approximation as in [4, 6].

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

2

In [8], a variant of neural network named Wavelet Neural Network was used to approximate the

function of pollution at Texas in USA. In [9, 10], the authors were able to provide an equation of

higher accuracy with few coefficients of real-world data problem concerning the seawater

density. The equation was generated using GA. Fuzzy Systems were used in [11] to approximate

nonlinear relations.

3. RESEARCH METHODOLOGY

In this paper, we are proposing using genetic algorithms for approximation of polynomial

functions. Genetic algorithms are known for their fast search for solution in a large complex

space. Basically, Genetic algorithms can effectively find an optimal approximated curve to any

mathematical equations with high accuracy. It should be noted that genetic algorithms requires a

deep understanding of the problem and a crafted design of the chromosome. The fitness function

must be chosen carefully to reflect the most contributable feature to the final solution. By

maximization of the fitness function in each generation, genetic algorithm will exhibit a schema

that converges to an optimal robust solution.

 In the next section, we are going to explain the details of our program and experiment. The

rationale behind each decision in our experiment is explained in details with sound justifications.

Each step in setting up our experimental framework is written clearly with supporting figures. It

must be understood that the objective of this project is to design a specific genetic algorithm for

approximating polynomial function. Since this is an Artificial Intelligence course, our aim is to

give a deep analysis of the behavior of genetic algorithm and its parameters.

We used Matlab Toolbox to give us a quick access to various parameters of the genetic algorithm

such as selection, number of generation and for plotting purposes. However, the design of the

chromosome and the fitness function is coded to be adjusted to our problem.

In function approximation, the most feature of the solution is to have a high accuracy of the

obtained curve to the original equation. This implies very low errors in approximating each

point in relative to the actual point. So our fitness function will be minimization rather than

maximization. To ensure, that our fitness function is coded correctly, the errors must be

decreasing through the generations until a convergence or an optimal solution is found. Mean

squared error (MSE) was used as a fitness function and it’s defined:

MSE =

The population of our solutions is represented as binary bits. This gives us the flexibility we

need to manipulate the chromosome in a variety of ways as we are going to explain shortly.

Each chromosome (or individual) contains many terms where each term is composed of two

parts:

� Coefficient

� Power of the variable.

Each term is composed 15 bits, where 10 bits is allocated to coefficient and the remaining bits

are allocated to represent the power.

Now, for simplicity we will assume that all terms are polynomial functions since polynomial

functions are known to be a universal function approximator.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

3

Another contribution of this paper lies in the range the power of each terms may have. In normal

regression approximation, the researcher is constrained to use only integer values in the power

part. However, using a resolution concept, we are allowing both the coefficient and the power to

have real values. The range of values that the coefficient and the power may take is depicted in

the Table 1.

Table 1: Range of Coefficient and Power Variables

Variable Resolution

Coefficient (Coefficient /10) – 50.4

Power (Power *0.25) - 4

le. Another aspect that needs to be considered is the probability of crossover and mutation and

the range of bits they are applied to. Crossover and mutation can be implemented in various

ways: either on the term boundary, on the part unit boundary or within the individual bits. Each

method has its merits and drawbacks based on the targeted problem. In this specific chromosome

design, we opt to play with the crossover and mutation within the bits themselves. This is done

for twofold: one all of our terms are in polynomial shape and hence targeting with the term

boundary will not help much in converging the solution. If our chromosome design exhibits other

function types such as trigonometric function, then targeting terms boundary may have better

results. The second reason is that manipulating individual bits increase the chances of finding

better solution. Even though, It may increases the complexity of the problem and the search

space to explore in general large problems, the simplicity of our problem that allocates only 15

bits to the term mitigate these issues and the extra time added will be negligible or of little

significance as we are going to show in the experiment sections.

We opt to represent our population of individuals as binary strings. That gives us the flexibility

to specify the range of the values of the coefficient and the powers. The following figure shows

the basic design of the chromosome:

The Fitness Function: where y refers to the real output and is the

approximated output.

The Final form of the polynomial equation will be on the form of:

A(x) = coefficent * X1
power + coefficient * X2

power … + coefficent * Xn
power

4. EXPERIMENTAL SETUP:

In the literature review, we explored different functions proposed by many authors as the target

equation. Some choose normal polynomial; others opt for Rastrigin functions due to its

suitability since it poses many local minimum points and some may prefer to run their

experiments approximating real equations from engineering domains. In this paper, we opt to

target polynomial functions of the form:

F(x) = x
2

Where x ranges between 0.1 - 10.00 with an increasing step of 0.1.

Choosing the number of samples is very critical to be able to approximate any function. If the

number of samples is too small, then approximated function may miss some critical points and

thus the curve may not be correctly approximated. If the number is too large, then we will have

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

4

the issue of the over fitting, not to mention the added penalty in time and performance. So, in

regarding to that, we might apply some sampling theorem that is applied extensively in statistics.

Instead, we prefer to include only 100 of points. It’s important to understand the features of the

problem to be able to provide an efficient solution. Since we know from basic mathematics that a

squared function usually takes a shape of a parabola, then it will be enough to take all the points

on one side of the parabola and be able to approximate it, since the parabola is symmetric around

their axis. Arbitrarily, we decided to take all the points in the positive side of the parabola,

which has no more advantage or any increasing in contribution than the negative side. It’s just a

matter of an arbitrary decision.

A sharp observer may notice that the starting point of our samples is 0.1 not 0 and he or she

might wonder what is the rationale behind this decision. Selecting 0 as a sample point will do

more harm than good. Multiplying 0*0 in the actual calculation and then trying to approximate it

will result in a returning value of INF in Matlab. Matlab toolbox is set to tolerate a predefined

value of approximation to any actual number. By attempting to approximate (0^
2
), the

approximator will be largely deviated and the error values between actual and approximated is

reaching a very large value that consequently leads to the returning value of infinity by Matlab.

5. RESULTS

After presenting to the reader the design of our solution and all the rationale behind our

experiments setup, we are ready now to run our experiment and record all the values.

To provide a good framework on how our experiment is designed to improve the solution, we

must decide on what parameters affect the obtained results. Next, we can validate our solution

accuracy by varying these parameters. In this problem, we have three parameters they may affect

the accuracy which are:

• Number of terms in the chromosome.

• The population of individuals.

• The number of generations.

Since our objective in this paper is to come up with an approximated curve of high accuracy, the

number of terms is not of much significance. If our problem is targeting reducing the number of

terms, then that parameter should be incorporated in the experiment. Hence, we fix the number

of terms in any chromosome to be 135 bits. That is, any chromosome will have 9 terms. The

population and the number of generations however will change and the obtained fitness function

will be recorded in each run. Table 2 gives the variation of our experiments.

Table 2: Experiments parameters

Experiment Case No No of terms Population Size No of Generation

1 9 1000 1000

2 9 1000 300

3 9 1000 50

4 9 200 1000

5 9 50 1000

Case 1: (Best Case)

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

5

 Population Size: 1000

 Generations : 1000

 Fitness : 0.252990008807331

In this run instance, we set the population size and generation size to 1000, As you can see from

the figure (1) , we reached the best value of all of our running experiments by obtaining a fitness

value of 0.25299. Since the fitness Value represents the error, it implies that the approximated

function returned by this instance of genetic algorithm will have an error as low as 0.25299. To

have a clearer picture of the behavior of our fitness function, figure (2) shows the same figure but

at log scale. Here, we can see that our fitness function is minimized from one generation to

another until it reaches convergence by not evolving in hundreds of generations.

It is clear that Log Figure shows the minimization from one generation to another better than the

linear figure. Thus, in the following experiments, we will show the Log figures only.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
x 10

4

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 0.25299 Mean: 2121.1762

Best fitness

Mean fitness

Figure 1: Case 1 Fitness value Linear Scale

0 100 200 300 400 500 600 700 800 900 1000
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 0.25299 Mean: 2121.1762

Best fitness

Mean fitness

Figure 2: Case 1 Fitness Value Log Scale

Case 2:

 Population Size: 1000

 Generations : 300

 Fitness : 0.57708

In this experiment, we reduced the number of generations to be maximum 300. Hence, the

fitness value is still small relatively, but is not as optimal as the previous case. It assists in

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

6

implying that the number of generation’s parameter has a small impact on the final result. The

following figure (3) using Log scale shows the behavior of fitness function in finding the

schema.

0 50 100 150 200 250 300
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 0.57708 Mean: 450.024

Best fitness

Mean fitness

Figure 3: Case 2 Fitness Value Log Scale

Case 3:

 Population Size: 1000

 Generations : 50

 Fitness : 0.84211

This experiment supports our claim about the small effect generation’s parameter has on the final

result. By reducing the number of generations to a very small number such as 50, the fitness

value is higher than all of the previous two cases. It’s clear from this figure, that if we extend the

number of generation a little bit more, then a finer fitness value will be obtained.

0 5 10 15 20 25 30 35 40 45 50
10

-2

10
0

10
2

10
4

10
6

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 0.84211 Mean: 2831.0001

Best fitness

Mean fitness

Figure 4: Case 3 Fitness Value Log Scale

Case 4:

 Population Size: 200

 Generations : 1000

 Fitness : 2.0594

Case 4 & 5 targets the impact of the population size parameter on the solution. By having the

population size reduced from 1000 to 200, the error reaches a higher value and a convergence

point reaches quickly. This case and the following case prove the significant impact of

Population size on the final result.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

7

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 2.0594 Mean: 282.6528

Best fitness

Mean fitness

Figure 5: Case 4 Fitness Value Log Scale

Case 5:

 Population Size: 50

 Generations : 1000

 Fitness : 4.5354

The population size is reduced significantly to only 50 random individuals. Even though the

number of generations is high (1000), the algorithm reaches convergence very early at 800. That

implies it has no improvement for 500 consecutive generations and as such it was stopped

abruptly by the toolbox. The error is the highest than all of the previous cases. It’s evident from

the graph, that genetic algorithms can’t gain much improvement when the population size is very

small. Since the population size is very small, genetic algorithm is very restricted in finding an

optimal solution and no matter how many generations are set or how other parameters behaves;

the base population size contributes little to the final result.

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 4.5354 Mean: 3266.1098

Best fitness

Mean fitness

Figure 6: Case 5 Fitness Value Log Scale

Validation of the result can be done by comparing the results of the approximated function to the

actual function. This type of validation is error prone and time consuming. Instead, the figures

above show that the fitness function is decreasing across all the generation and this pattern is

consistent in all experiments. Thus, in all the experiments above, our fitness function is trying to

reach the global minimum before it reaches convergence. Hence, we can conclude that our

program is running correctly and our results are valid and optimized given the parameters

supplied. A summary of the result of the best case is given below where the initial population is

given in Appendix A. An interesting researcher who would like to replicate the experiment

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

8

would definitely obtain the same results provided that he or she supplemented the exact same

parameters values that we set.

Table 3: Results Summary

Number of Terms 9

Population Size 1000

No of Generations 1000

Fitness Values 0.2599

Individual populations : Appendix A

Output Population

(Binary):

1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0,

0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0,

0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,

0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,

1,0,0,1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0,1,1,1,1,1,0,0,1,0,

1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,0,1

Output approximated

function:

3.8 X 3.25 - 5.4 X 0.5 - 39.9 X-3.25 + 25.2 X 2.25 +

45.4X -0.5 - 3.3 X -0.5 + 13.2 X -0.75 -44.2 X -1.25 + 13.5

X
-2.75

6. CONCLUSION AND FUTURE WORK

Our attempt here of providing a robust yet fast method of finding an approximating function

works correctly. Genetic algorithm and its stochastic search of optimal solution in a large

complex space can save the effort and time to predict the approximated curve of any unknown

engineering system by supplying the input -output pairs only.

The design of chromosome and building parts plays a significant factor in reaching an optimal

solution quickly. The number of bits allocated to each building part and the decision of range

values must be crafted carefully to direct the genetic algorithm to the right region where optimal

solution may lay. Genetic algorithms even perceived as a successful implementation of random

search, a guided direction at the initial stage of the algorithm will ensure a better results and

that’s can be proven in our results above. We tested our algorithm on one function only which is

a squared function. Even though this might be considered as a drawback, it’s very important to

notice that our objective of this project not to design a universal function approximator using

genetic algorithm. Instead, our main objective is to show how genetic algorithm can play a vital

role in finding an optimal solution quickly and how adjusting the parameters is contributing to

the results significantly. Testing the algorithm on many different polynomial and non-polynomial

functions is set to be a future work plan and requires a deep understanding of mathematics to

craft an excellent chromosome that absorbs all the contributable features of all mathematical

equations.

7. THREATS TO VALIDITY

There are two main threats that may have impact on the results of this study. The first threat is

that we used the data of one system, however, we plan to use the data of more systems in future

studies.

Another threat is in data collection process. The process of collecting and analysing the data was

semi-automated. This may impact the results as human error may occur.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016

9

ACKNOWLEDGEMENTS

The authors would like to thank KFUPM for all support.

REFERENCES

[1] Pati, Y.C., R. Rezaiifar, and P.S. Krishnaprasad. Orthogonal matching pursuit: recursive function

approximation with applications to wavelet decomposition. in Signals, Systems and Computers,

1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on. 1993.

[2] Shiqian, W. and E. Meng Joo, Dynamic fuzzy neural networks-a novel approach to function

approximation. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

2000. 30(2): p. 358-364.

[3] Farrell, J., M. Sharma, and M. Polycarpou, Backstepping-Based Flight Control with Adaptive

Function Approximation. Journal of Guidance, Control, and Dynamics, 2005. 28(6): p. 1089-

1102.

[4] Deep, K. and K.N. Das, Quadratic approximation based hybrid genetic algorithm for function

optimization. Applied Mathematics and Computation, 2008. 203(1): p. 86-98.

[5] Torrecilla-Pinero, F., et al., Parametric Approximation of Functions Using Genetic Algorithms:

An Example with a Logistic Curve, in Numerical Methods and Applications: 7th International

Conference, NMA 2010, Borovets, Bulgaria, August 20-24, 2010. Revised Papers, I. Dimov, S.

Dimova, and N. Kolkovska, Editors. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p.

313-320.

[6] Hauser, J.W. and C.N. Purdy. Designing a Genetic Algorithm for Function Approximation for

Embedded and ASIC Applications. in Circuits and Systems, 2006. MWSCAS '06. 49th IEEE

International Midwest Symposium on. 2006.

[7] Holland, J.H., Adaptation in natural and artificial systems. 1992: MIT Press. 211.

[8] Zainuddin, Z. and O. Pauline, Modified wavelet neural network in function approximation and its

application in prediction of time-series pollution data. Applied Soft Computing, 2011. 11(8): p.

4866-4874.

[9] Baqais, A.A.B., M. Ahmed, and M.H. Sharqawy. Function Approximation of Seawater Density

Using Genetic Algorithm. in Proceedings of the World Congress on Engineering. 2013.

[10] Baqais, A., M. Ahmed, and M. Sharqawi. Applying Binary & Real Genetic Algorithms for

Seawater Desalination. in Draft. 2016.

[11] Cao, Y.-Y. and P.M. Frank, Analysis and synthesis of nonlinear time-delay systems via fuzzy

control approach. Fuzzy Systems, IEEE Transactions on, 2000. 8(2): p. 200-211.

Authors

Abdulrahman Baqais is a PhD candidate at Computer Science & Engineering

College, King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. He

has obtained his Bachelor (Hons) in Software Engineering from Multimedia

University, Malaysia in 2007 and his MSc from Staffordshire University, UK in

2010. His research interests including: software engineering, metaheuristics and

search-based techniques and has published several articles in referred journal and

conferences in these areas. He served as the session chair in IAENG conference in

UK, 2013.

