
International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016 

 

DOI: 10.5121/ijaia.2016.7301                                                                                                                         1 

 

GENETIC ALGORITHM FOR FUNCTION 

APPROXIMATION: AN EXPERIMENTAL 

INVESTIGATION 

 

Abdulrahman Baqais
1
 
 

1
Department of Information and Computer Science, KFUPM, Dhahran, Saudi Arabia 

 

ABSTRACT 
 

Function Approximation is a popular engineering problems used in system identification or Equation 

optimization. Due to the complex search space it requires, AI techniques has been used extensively to spot 

the best curves that match the real behavior of the system. Genetic algorithm is known for their fast 

convergence and their ability to find an optimal structure of the solution. We propose using a genetic 

algorithm as a function approximator. Our attempt will focus on using the polynomial form of the 

approximation. After implementing the algorithm, we are going to report our results and compare it with 

the real function output. 
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1. INTRODUCTION 
 

Function approximation is used in science and engineering field in order to find the relationship 

between two or more variables: the independent variable (x) and the dependent variable (y) [1-3]. 

In such situation, input-output pairs of any engineering or scientific problems are collected using 

a suitable experiment or instrument. However, a direct relation in the form of equation can’t be 

inferred between these pairs due to the absence of strong correlations.  

 

To address this issue, Artificial Intelligence (AI) algorithms have been utilized to produce an 

equation between input-output pairs with higher accuracy. Genetic algorithms have been 

implemented in various articles with promising results as in [4-6]. 

 

2. LITERATURE REVIEW 
 

Genetic algorithm is a metaheuristic algorithm that is designed by Holland in 1975 [7].  The 

algorithm starts by providing a random population of points of the search space. At each 

iteration, the algorithm applies some operators such as: crossover and mutation on the current 

population and evaluate them using an objective (fitness) function.  In Function approximation, 

the objective function of each problem is to come up with an equation with higher accuracy 

between input-output pairs. That is, the objective function is to reduce the errors of the equation. 

Different error measurement can be used such as: Least Absolute Error (LAE), Mean Squared 

Error (MSE) or residual sum of squares (RSS). 

 

There are many studies that use different AI algorithms including GA to finding the function 

approximation as in [4, 6]. 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 3, May 2016 

 

2 

In [8], a variant of neural network named Wavelet Neural Network was used to approximate the 

function of pollution at Texas in USA. In [9, 10], the authors were able to provide an equation of 

higher accuracy with few coefficients of real-world data problem concerning the seawater 

density. The equation was generated using GA. Fuzzy Systems were used in [11] to approximate 

nonlinear relations. 

 

3. RESEARCH METHODOLOGY 
 

In this paper, we are proposing using genetic algorithms for approximation of polynomial 

functions.  Genetic algorithms are known for their fast search for solution in a large complex 

space. Basically, Genetic algorithms can effectively find an optimal approximated curve to any 

mathematical equations with high accuracy. It should be noted that genetic algorithms requires a 

deep understanding of the problem and a crafted design of the chromosome.  The fitness function 

must be chosen carefully to reflect the most contributable feature to the final solution. By 

maximization of the fitness function in each generation, genetic algorithm will exhibit a schema 

that converges to an optimal robust solution. 

 

 In the next section, we are going to explain the details of our program and experiment. The 

rationale behind each decision in our experiment is explained in details with sound justifications. 

Each step in setting up our experimental framework is written clearly with supporting figures. It 

must be understood that the objective of this project is to design a specific genetic algorithm for 

approximating polynomial function. Since this is an Artificial Intelligence course, our aim is to 

give a deep analysis of the behavior of genetic algorithm and its parameters. 

 

We used Matlab Toolbox to give us a quick access to various parameters of the genetic algorithm 

such as selection, number of generation and for plotting purposes.  However, the design of the 

chromosome and the fitness function is coded to be adjusted to our problem.  

 

In function approximation, the most feature of the solution is to have a high accuracy of the 

obtained curve to the original equation.  This implies very low errors in approximating each 

point in relative to the actual point.  So our fitness function will be minimization rather than 

maximization. To ensure, that our fitness function is coded correctly, the errors must be 

decreasing through the generations until a convergence or an optimal solution is found. Mean 

squared error (MSE) was used as a fitness function and it’s defined: 

 

MSE =  

 

The population of our solutions is represented as binary bits.  This gives us the flexibility we 

need to manipulate the chromosome in a variety of ways as we are going to explain shortly.  

Each chromosome (or individual) contains many terms where each term is composed of two 

parts: 

 

� Coefficient 

� Power of the variable. 

 

Each term is composed 15 bits, where 10 bits is allocated to coefficient and the remaining bits 

are allocated to represent the power.  

 

Now, for simplicity we will assume that all terms are polynomial functions since polynomial 

functions are known to be a universal function approximator.   
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Another contribution of this paper lies in the range the power of each terms may have. In normal 

regression approximation, the researcher is constrained to use only integer values in the power 

part. However, using a resolution concept, we are allowing both the coefficient and the power to 

have real values.  The range of values that the coefficient and the power may take is depicted in 

the Table 1. 

 

Table 1: Range of Coefficient and Power Variables 

 

Variable Resolution 

Coefficient (Coefficient /10) – 50.4 

Power (Power *0.25) - 4 

 

le. Another aspect that needs to be considered is the probability of crossover and mutation and 

the range of bits they are applied to. Crossover and mutation can be implemented in various 

ways: either on the term boundary, on the part unit boundary or within the individual bits. Each 

method has its merits and drawbacks based on the targeted problem. In this specific chromosome 

design, we opt to play with the crossover and mutation within the bits themselves. This is done 

for twofold: one all of our terms are in polynomial shape and hence targeting with the term 

boundary will not help much in converging the solution. If our chromosome design exhibits other 

function types such as trigonometric function, then targeting terms boundary may have better 

results.  The second reason is that manipulating individual bits increase the chances of finding 

better solution. Even though, It may increases the complexity of the problem and the search 

space to explore in general large problems, the simplicity of our problem that allocates only 15 

bits to the term mitigate these issues and the extra time added will be negligible or of little 

significance as we are going to show in the experiment sections. 

 

We opt to represent our population of individuals as binary strings. That gives us the flexibility 

to specify the range of the values of the coefficient and the powers. The following figure shows 

the basic design of the chromosome: 

 

The Fitness Function:    where y refers to the real output and   is the 

approximated output. 

 

The Final form of the polynomial equation will be on the form of: 

 

A(x) =  coefficent * X1
power  + coefficient * X2

power  … + coefficent * Xn
power  

 

4. EXPERIMENTAL SETUP: 
 

In the literature review, we explored different functions proposed by many authors as the target 

equation. Some choose normal polynomial; others opt for Rastrigin functions due to its 

suitability since it poses many local minimum points and some may prefer to run their 

experiments approximating real equations from engineering domains.  In this paper, we opt to 

target polynomial functions of the form: 

 

F(x) = x
2 

 

 
Where x ranges between 0.1 - 10.00   with an increasing step of 0.1. 

 

Choosing the number of samples is very critical to be able to approximate any function.  If the 

number of samples is too small, then approximated function may miss some critical points and 

thus the curve may not be correctly approximated. If the number is too large, then we will have 
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the issue of the over fitting, not to mention the added penalty in time and performance.  So, in 

regarding to that, we might apply some sampling theorem that is applied extensively in statistics. 

Instead, we prefer to include only 100 of points.  It’s important to understand the features of the 

problem to be able to provide an efficient solution. Since we know from basic mathematics that a 

squared function usually takes a shape of a parabola, then it will be enough to take all the points 

on one side of the parabola and be able to approximate it, since the parabola is symmetric around 

their axis.  Arbitrarily, we decided to take all the points in the positive side of the parabola, 

which has no more advantage or any increasing in contribution than the negative side. It’s just a 

matter of an arbitrary decision.  

 

A sharp observer may notice that the starting point of our samples is 0.1 not 0 and he or she 

might wonder what is the rationale behind this decision. Selecting 0 as a sample point will do 

more harm than good. Multiplying 0*0  in the actual calculation and then trying to approximate it 

will result in a returning value of INF in Matlab.  Matlab toolbox is set to tolerate a predefined 

value of approximation to any actual number.  By attempting to approximate (0^
2
), the 

approximator will be largely deviated and the error values between actual and approximated is 

reaching a very large value that consequently leads to the returning value of infinity by Matlab. 

 

5. RESULTS 
 

After presenting to the reader the design of our solution and all the rationale behind our 

experiments setup, we are ready now to run our experiment and record all the values.  

 

To provide a good framework on how our experiment is designed to improve the solution, we 

must decide on what parameters affect the obtained results. Next, we can validate our solution 

accuracy by varying these parameters. In this problem, we have three parameters they may affect 

the accuracy which are: 

 

• Number of terms in the chromosome. 

• The population of individuals. 

• The number of generations. 

 

Since our objective in this paper is to come up with an approximated curve of high accuracy, the 

number of terms is not of much significance. If our problem is targeting reducing the number of 

terms, then that parameter should be incorporated in the experiment. Hence, we fix the number 

of terms in any chromosome to be 135 bits. That is, any chromosome will have 9 terms. The 

population and the number of generations however will change and the obtained fitness function 

will be recorded in each run.  Table 2 gives the variation of our experiments. 

 

Table 2: Experiments parameters 

 

Experiment Case No No of terms Population Size No of Generation 

1 9 1000 1000 

2 9 1000 300 

3 9 1000 50 

4 9 200 1000 

5 9 50 1000 

Case 1: ( Best Case) 
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 Population Size: 1000 

 Generations     :  1000 

 Fitness              :   0.252990008807331 

 

In this run instance, we set the population size and generation size to 1000, As you can see from 

the figure (1) , we reached the best value of all of our running experiments by obtaining a fitness 

value of 0.25299.  Since the fitness Value represents the error, it implies that the approximated 

function returned by this instance of genetic algorithm will have an error as low as 0.25299.  To 

have a clearer picture of the behavior of our fitness function, figure (2) shows the same figure but 

at log scale.   Here, we can see that our fitness function is minimized from one generation to 

another until it reaches convergence by not evolving in hundreds of generations. 

 

It is clear that Log Figure shows the minimization from one generation to another better than the 

linear figure. Thus, in the following experiments, we will show the Log figures only.  

 

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
x 10

4

Generation

F
it
n

e
s
s
 v

a
lu

e

Best: 0.25299 Mean: 2121.1762

 

 

Best fitness

Mean fitness

 
Figure 1: Case 1 Fitness value Linear Scale 
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Figure 2: Case 1 Fitness Value Log Scale 

 

 

Case 2: 

 Population Size: 1000 

 Generations      :  300 

 Fitness               :   0.57708 

 

In this experiment, we reduced the number of generations to be maximum 300.  Hence, the 

fitness value is still small relatively, but is not as optimal as the previous case.   It assists in 
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implying that the number of generation’s parameter has a small impact on the final result.  The 

following figure (3) using Log scale shows the behavior of fitness function in finding the 

schema. 
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Figure 3: Case 2 Fitness Value Log Scale 

 

Case 3: 

 

 Population Size: 1000 

 Generations       :  50 

 Fitness                :  0.84211 

 

This experiment supports our claim about the small effect generation’s parameter has on the final 

result. By reducing the number of generations to a very small number such as 50, the fitness 

value is higher than all of the previous two cases.  It’s clear from this figure, that if we extend the 

number of generation a little bit more, then a finer fitness value will be obtained. 
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Figure 4: Case 3 Fitness Value Log Scale 

Case 4: 

 

 Population Size: 200 

 Generations      :  1000 

 Fitness               :   2.0594 

 

Case 4 & 5 targets the impact of the population size parameter on the solution.  By having the 

population size reduced from 1000 to 200, the error reaches a higher value and a convergence 

point reaches quickly.  This case and the following case prove the significant impact of 

Population size on the final result. 
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Figure 5: Case 4 Fitness Value Log Scale 

Case 5: 

 

 Population Size: 50 

 Generations      : 1000 

 Fitness            :     4.5354 

 

The population size is reduced significantly to only 50 random individuals. Even though the 

number of generations is high (1000), the algorithm reaches convergence very early at 800.  That 

implies it has no improvement for 500 consecutive generations and as such it was stopped 

abruptly by the toolbox.   The error is the highest than all of the previous cases.  It’s evident from 

the graph, that genetic algorithms can’t gain much improvement when the population size is very 

small.  Since the population size is very small, genetic algorithm is very restricted in finding an 

optimal solution and no matter how many generations are set or how other parameters behaves; 

the base population size contributes little to the final result. 
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Figure 6: Case 5 Fitness Value Log Scale 

 

Validation of the result can be done by comparing the results of the approximated function to the 

actual function. This type of validation is error prone and time consuming. Instead, the figures 

above show that the fitness function is decreasing across all the generation and this pattern is 

consistent in all experiments. Thus, in all the experiments above, our fitness function is trying to 

reach the global minimum before it reaches convergence.  Hence, we can conclude that our 

program is running correctly and our results are valid and optimized given the parameters 

supplied.  A summary of the result of the best case is given below where the initial population is 

given in Appendix A.  An interesting researcher who would like to replicate the experiment 
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would definitely obtain the same results provided that he or she supplemented the exact same 

parameters values that we set. 

 

Table 3: Results Summary 

Number of Terms 9 

Population Size 1000 

No of Generations 1000 

Fitness Values 0.2599 

Individual populations : Appendix A 

Output Population 

(Binary): 

1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 

0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 

0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 

0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,1,1,0,

1,0,0,1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0,1,1,1,1,1,0,0,1,0,

1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,0,1 

Output approximated 

function: 

3.8 X 3.25  - 5.4 X 0.5  - 39.9 X-3.25  +  25.2 X 2.25  +  

45.4X -0.5 - 3.3 X -0.5 + 13.2 X -0.75 -44.2 X -1.25 + 13.5 

X 
-2.75

 

 

6. CONCLUSION AND FUTURE WORK 
 

Our attempt here of providing a robust yet fast method of finding an approximating function 

works correctly. Genetic algorithm and its stochastic search of optimal solution in a large 

complex space can save the effort and time to predict the approximated curve of any unknown 

engineering system by supplying the input -output pairs only.   

 

The design of chromosome and building parts plays a significant factor in reaching an optimal 

solution quickly.  The number of bits allocated to each building part and the decision of range 

values must be crafted carefully to direct the genetic algorithm to the right region where optimal 

solution may lay. Genetic algorithms even perceived as a successful implementation of random 

search, a guided direction at the initial stage of the algorithm will ensure a better results and 

that’s can be proven in our results above.  We tested our algorithm on one function only which is 

a squared function. Even though this might be considered as a drawback, it’s very important to 

notice that our objective of this project not to design a universal function approximator using 

genetic algorithm. Instead, our main objective is to show how genetic algorithm can play a vital 

role in finding an optimal solution quickly and how adjusting the parameters is contributing to 

the results significantly. Testing the algorithm on many different polynomial and non-polynomial 

functions is set to be a future work plan and requires a deep understanding of mathematics to 

craft an excellent chromosome that absorbs all the contributable features of all mathematical 

equations. 

 

7. THREATS TO VALIDITY 
 

There are two main threats that may have impact on the results of this study. The first threat is 

that we used the data of one system, however, we plan to use the data of more systems in future 

studies.  

 

Another threat is in data collection process. The process of collecting and analysing the data was 

semi-automated. This may impact the results as human error may occur. 
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