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ABSTRACT 

 
Stochastic modeling is a key technique in event prediction and forecasting applications. Recently, 

stochastic models such as the Artificial Neural Network, Hidden Markov, and Markov Chain have received 

a significant attention in agricultural application. These techniques are capable of predicting the actions 

for the better planning and management in various fields. This work comprehensively summarizes and 

compares their applications such as their processing techniques, performance, as well as their strengths 

and limitations with regard to event prediction and forecasting. The work ends with recommendations on 

the appropriate techniques for cereal grain storage application.  
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1. INTRODUCTION 
 

Stochastic modeling techniques have been the most significant in prediction and forecasting. 
These techniques have been used for estimating the probability of outcomes to predict what 
conditions might be under different situations [1]. Forecasting of unknown features depends on 
exploitation of these techniques. They largely contribute to better detection and prediction of data. 
Modeling techniques such as Artificial Neural Networks (ANNs), Hidden Markov and Markov 
Chain models have become increasingly important methods with the growth of complex 
computations [2, 3].  Today, we are faced with the crucial problem of inefficient detecting and 
predicting of condition (variations of moisture  contents and temperature) over the entire grain 
bulk [4] in the storage facility.  The aim of this study is to suggest the best  technique for 
forecasting the grain storage conditions under few given states.  
 

2. LITERATURE REVIEW 
 

Hidden Markov  (HMMs), Artificial Neural Networks (ANNs), and Markov Chains (MC)  
models are popular tools for modelling dependent random variables in diverse areas [5] such as 
speech processing and enhancement [6],  audio segmentation [7], DNA recognition [8] , fault [9], 
and rainfall occurrence [10]. These are based on a stochastic process [11] in  which a chain 
produces an  unobservable state that can be inferred only through another set of stochastic 
process. Previous studies on weather condition and crop activity show that forecasting 
using stochastic techniques is a highly researched area as shown in Table 1 to 2, though 
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not enough has been done for crop grain storage. In Figure 1 and 2, the frequency of 
publications in the area of weather condition and crop activity forecasting published 
between 2008 and 2016 respectively are demonstrated as reviewed in this study.  
 

2.1. ARTIFICIAL NEURAL NETWORKS (ANNS) 
 

For crop activities as demonstrated in Table 2, the study [12] presented a neural network 
approach in which the classification of rice varieties was estimated. An overall classification 
accuracy obtained was 92%. Wheat seeds classification using ANN was also estimated whereby 
the method was found to be effective for recognizing wheat varieties [13]. The study [14] showed 
that back propagation neural network (BPNN) provided more correct wheat classification at 90% 
than discriminant analysis which was at 83.33%. Further [15] illustrated  how Multi layer 
perceptron back propagation with image processing algorithm gave  higher wheat seeds 
classification accuracy which was at 95%. It was presented in [16] that ANN approach was 
capable of predicting wheat production under different conditions and farming systems using 
direct and indirect technical factors. Moreover, three terms ANN back propagation network was 
proposed as a predicting tool for moisture content on maize. The model outweighed the two terms 
back propagation with the proportional factor which increased the convergence speed and 
reduced learning stalls [17].  The study  [18] presented the artificial neural network method in 
which the equilibrium moisture content of maize was predicted. Maize needed less energy at 
higher moisture content (above 11% d.b.) for drying and storing, but at lower moisture contents 
more energy was needed. Artificial Neural Networks (ANN) analysis was also carried to predict 
the extent of shelled corn shrinkage. The method was found to be most appropriate for prediction 
capability of shrinkage [19]. It was also reported in [20] that generic approach for collective 
prediction of moisture sorption isotherms (MSI) for 12 cereals and  5 legumes using artificial 
neural networks was  an effective, reliable, and fast method for the collective prediction of MSIs 
for several grains and legumes simultaneously. 
 
For weather condition as shown in Table 1, the study [21]   reported the prediction of rainfall over 
Udupi District of Karnataka in India through artificial neural network. The method used three 
layered networks of different number of hidden neurons. In [22] rainfall prediction suggested that 
the ANN model could be an important tool for local rain forecasting, although it cannot replace 
the forecasters’ experience. It was also reported in [23] that rainfall prediction by combining 
wavelet technique with ANN gave high accuracy. Moreover, the study [24] presented that  ANN 
with linear transfer function (LTF), and fuzzy rule-based techniques was developed for the 
prediction of rainfall runoff for Narmada catchment up to Manot gauging site. The other study 
[25] presented the rainfall runoff modeling using Modular ANN with singular spectrum analysis. 
In the study [26], an artificial neural network (ANN) approach to forecasting future precipitation  
was proposed. It was done through spatial downscaling and constructing new intensity duration-
frequency (IDF) curves with climate change into consideration using a temporal downscaling 
method. It was reported in [27] that neural network algorithms with wavelet transformation for 
daily precipitation predictions provided significant advantages for estimation process. 
 

2.2. MARKOV CHAIN (MC) 
 

Few studies have been conducted on crop activities forecasting using Markov chain model as 
shown in Table 2. Studies reviewed in this work are of between 2008 and 2016. There are few 
studies that have used Markov chain model for crop activities and average for weather condition 
are very few as demonstrated in Figure 5 and 6. In this work [28], Markov chain model was used 
to predict the crop grown on a field when the crops grown in the previous 3–5 years are known. 
The obtained results showed that the proposed approach was able to predict the crop type of each 
field, before the beginning of the crop season, with accuracy of 60%, which was better than the 
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results obtained with approaches based on remote sensing imagery. Non-stationary Markov chain 
with logistic regression was also used to model dynamics of  crop rotation [29].  
 
Some of studies presented the weather forecasting as shown in Table 1. Among them include: 
estimation of the rainfall sequences during the rainy season in Kurdufan [30], rainfall prediction 
at the Daspalla Region in Odisha, Eastern India [31] for crop planning,  daily rainfall occurrence 
forecasting in Peninsular Malaysia [32], the rainfall estimation during  monsoon season over 
major station in Gangetic West Bengal [33], and a stochastic generator of monthly rainfall series 
in Tunisia [34]. In the study [35], Markov chain model with weights was applied to predict 
Standardized Precipitation Index (SPI) drought intensity by using standardized self coefficients as 
weights. However, the forecasting ability was weak when there was a sharp change or an increase   
in drought intensity. Analysis of hydrological drought characteristics showed that the expected 
frequency of drought occurrence was higher for smaller time scales (i.e., 3-month and 6-month) 
[36]. Moreover, other works presented the wet and dry patterns of daily precipitation in Colombo 
[37]. The method also can be used to investigate the return periods of long wet and dry spells. 
However, the accuracy of modeling wet spells found to be high compared to dry spells.  Markov 
chain was also used to know the dry and wet spell distribution at Varanasi in Uttar Pradesh 
whereby a week period was considered  as the optimum length of time [38]. The study [39] 
presented daily temperature prediction from correlated categorical data sequence in Taipei, 
Taiwan. The proposed method gave higher average forecasting accuracy. 
 

2.3. HIDDEN MARKOV MODEL (HMM) 
 

For crop activities as shown in Table 2, the study [40] found that the rate for single insect with 
normal pattern was about 98%, while for lateral position single insect was about 87%.  In this 
work [41], a general framework of Hidden Markov Models (HMMs) based corn progress 
percentage estimation method was also presented. The results demonstrated the feasibility of 
proposed solutions on corn progress percentage estimation in the state-level. Moreover, the 
optimum growth states and atmospheric conditions were determined using the Viterbi algorithm 
in HMM. 
 
For weather condition as demonstrated in Table 1, the study [42] presented  modeling of winter 
rainfall occurrence using the hidden markov model. The hidden states were assumed to be an 
unknown random function of slowly varying climatic modulation of the winter jet stream and 
moisture transport dynamics. In the study [43], modeling of a homogeneous hidden markov 
model on the northeast rainfall monsoon using 40 rainfall stations in Peninsular, Malaysia for the 
period of 1975 to 2008 was also presented. The model assessed the behaviour of rainfall 
characteristics with large scale atmospheric circulation. It was reported in [44] that  non-
homogeneous hidden Markov model was utilized to investigate potential changes in Indian 
monsoon summer rainfall, comparing with the 2070–2099 period with the second half of the 
twentieth century. The persistence level of Kuantan daily rainfall prediction was reported in [45]. 
It was done using the hybrid of autoregressive fractional integrated moving average (ARFIMA) 
and hidden Markov model (HMM). Moreover, it was presented in [46] that the  hidden markov 
model was used for analyzing the spatiotemporal characterization of droughts at  different 
severities. Another work [47] presented the development of the  hidden markov model for 
assessing the drought characteristics in India using monthly precipitation and streamflow data. 
Moreover, Homogenous Hidden Markov Models (HMMs) were also developed for forecasting 
droughts using the Standardized Precipitation Index, SPI, at short-medium term [48]. 
Furthermore, the paper [49] reported a constrained Hidden Markov Model for evaluating a 
session of precipitation series. The method was capable of checking the quality of precipitation 
series instead of manual way. 
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Table 1. Key Points of Survey on Weather Condition Forecasting Techniques 
 

 
 

Table 2. Key Points of Survey on Crop Activities Forecasting Techniques 

 
 

2.4. STRENGTHS AND LIMITATION OF FORECASTING TECHNIQUES 
 

A number of strengths and limitations of forecasting techniques have been identified in this work 
as summarized in Table 3 [50-69]. Markov Chain Model (especially first order Markov Chain) 
with some of the data is insufficient to estimate reliable probability. Because it may not be 
possible to observe sufficient transitions from a given transient set of states to a closed state 
where this transition is dependent on a rare climatic event, the value of this parameter is of vital 
importance in the dynamics of the community. Also, validation of the Markov model depends on 
predictions of system behaviour over time, and it is; therefore, frequently difficult, and may even 
be impossible for really long period of time [70]. HMM is flexible with fewer computations 
compared to artificial neural network model [71, 72]. However, HMM algorithm [73, 74] 
(forward backward or viterbi) presents poor discriminative power because it bases on the 
Maximum Likelihood (ML) criterion, which is itself non-discriminative. HMM [75] is 
explainable and has solid statistical foundation. It shows potentials for time series prediction. 
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Table 3. Strengths and Limitations of Modeling Techniques 
 

 
 

3. FORECASTING TECHNIQUES 
 

3.1. ARTIFICIAL NEURAL NETWORKS MODEL 
 

Artificial Neural Networks (ANNs) model is the mathematical tool which is used to simulate and 
solve complex problems. It is based on the powerful thought ability of the human brain. It is 
applied to various applications such as industry, health, electronics, finance, chemistry, statistics, 
agriculture, automotive and cognitive sciences. ANNs are described by their modular structure, 
learning capability, prediction performance, and internal non-linearity. As human brain, artificial 
neural network also has neurons with many inputs as human brain synapses as demonstrated in 
Figure 1. Its neuron has the simple model with three functions such as multiplication, summation, 
and activation. Each input of a neuron is multiplied by the weight at the entrance. Then, it sums 
up all weighted inputs and bias. At last, the mathematical model determines the activation level of 
the neuron using the transfer function as shown in Figure 2. This is done once the activation level 
exceeds the threshold value  [76, 77].  
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Figure 1. Biology Neuron [78] 
 

 
 

Figure 2. Artificial Neuron [78] 
 
ANN mode has architecture which consists of three neuron layers such as input, hidden and 
output layers as shown in Figure 3. The first layer has input neurons that send information 
through synapses to the second layer of neurons. Then, they pass through more synapses to the 
third layer of output neurons [79, 80].  
 

 
 

Figure 3. ANN Structure  [81] 
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3.2. MARKOV CHAIN MODEL 
 

A Markov chain is a mathematical model of a random observable fact with time that the past 
affects the future only through the present. The time can be discrete or continuous. It works 
basing on Markov property. It has a finite set of possible states and  transitions among them. 
These are governed by a set of conditional probabilities of the next state given the present one 
[82, 83].  
 
Markov Property: The Markov property states that the conditional probability distribution for the 
system at the next step depends only on the current state of the system, and not the state of the 
system at previous steps. 
 
A Markov chain is defined by a transition probability parameter (aij) associated with each 
transition (arrow) and determines the probability of a certain state (Sj) following another state 
(Si). The state probabilities are well defined below [84, 85]: 
 
It has a finite set of states, S1, S2 ...SN, a set of transition probabilities:  
 ��� = ����	
 = ��|�� = ��
                                                                                           (1) 

 
The initial state probability distribution is given as: 
 �� = ���� = ���                                                                                                       (2) 
 

3.3. HIDDEN MARKOV MODEL (HMM) 
 

Hidden Markov Model (HMM) is an extension of the Markov Chain. It is the simplest dynamic 
bayesian distribution over sequences of observations. It is described as a 5-tuple λ = (q, ∑, π, A, 
B). The states q are hidden. Probabilities A are state transition probabilities that indicate the 
chance that a certain state change might occur. Probabilities π are the initial state transition 
probabilities. Each state has a set of possible emissions ∑. Probabilities B are observation 
probabilities for the emissions. HMM applies the Markovian property. In every state, a Markov 
chain can be observed directly. But sometimes there is a sequence of a state that wants to be 
known but cannot be observed directly but through the observable state as shown in Figure 4. 
That  is why it is called the hidden Markov  model[86, 87]. 
 

 
 

Figure 4. HMM Topology [88] 
                                          
The HMM states [89, 90]  are described as:  
 
N is the number of hidden states in the model. The individual states are denoted as: 
 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 6, November 2016 

34 

� = ��
, ��, . . , ���                                                                                                      (3) 
 

This is done at the length t as Qt. 
 
M is the number of distinct observation symbol per hidden state. The individual symbols are 
denoted as: 
 � = ��
, ��, … , ���                                                                                                     (4) 

 
 It is also done at the length t as Qt. 
 
The state transition probability matrix is described as: 
 ����� = �����                                                                                                             (5) 

 
Whereas,		��� = ��!�	
 = ��|!� = ��
, 1 ≤ i, j ≤ N                                                                  (6) 
 
The observation symbol probability in hidden state j is also described as: 
 �"��# = $%���#�&                                                                                                      (7) 

 
Where, %���#� = ��'� = �#|!� = ��
 

 
1 ≤ j ≤ N, 1 ≤ k ≤ M                                                                                           (8) 

 
The initial state distribution is given as: 
 ( = ����                                                                                                                (9) 

 
Where, �� = ��!
 = ��� 1 ≤ i ≤ N                                                                                       (10)                                                     
Once the HMM is given appropriate values of N, M, A, B, and π, it can be used as a generator to 
a given observation sequence: 
 ' = �'
'� … ')�                                                                                                  (11) 

 
Where, T is the number of observations in the sequence. For simplicity, using the compact 
notation [86, 87, 91]: 
 * = ��, ", ��	                                                                                                         (12) 

 
3.3.1. HMM MAIN PROBLEM SOLVING STEPS 
 
The HMM architecture usually is automated with integrated stochastic processes using solving 
techniques such as evolution, decoding and Leaning.  
 
3.3.1.1. EVOLUTION 
 
This is an algorithm process in HMM with a sequence of observations, P (O | λ). The probability 
of the observation sequence given a model can be computed [86, 91]. One of the efficient 
algorithms for evolution solution is the Forward algorithm.  
 
In evolution if the process in the HMM is a first order Markov Chain, the probabilities of the 
system in particular state s (t) at time t depends on its state at s (t-1) [86, 87, 91, 92] . The 
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probability of the HMM being in state sj at time t having generated the first t emission that is the 
partial probability αj (t) [86, 87, 92]: 
 
 

+��,� = -0																							, , = 0	�/0	1 ≠ 3/3,3�4	�,�,5		1																										, , = 0	�/0	1 = 3/3,3�4	�,�,57∑ +�� �, − 1�ɑ��:%�#��,�,										',ℎ5<=3�5 >                                                      (17) 

 
3.3.1.2. DECODING 
 

This is the algorithm that produces the most probable sequence of hidden states given some 
observations [90, 93]. It applies viterbi algorithm, which is also a trellis algorithm. It is very 
similar to the forward algorithm, except that the transition probabilities are maximized at each 
step instead of being summed [90, 93]. It is a simple and efficient decoding technique. 
 
3.3.1.3. LEARNING 
 

Learning is the process that calculates the Markov model on state transition and emission 
matrices that have generated a sequence of observations. The process has supervised and 
unsupervised trainings. If the training contains both the inputs and outputs of a process, 
supervised training can be performed by equating inputs to observations and outputs to states. But 
if only the inputs are provided in the training data, then unsupervised training is used to guess a 
model that may have produced those observations [86, 94, 95]. 
 

The baum welch algorithm is the mostly used method in the learning technique. This is also 
known as forward backward algorithm. It gives the probabilities that the model is in state si (t) as 
[87]:  These probabilities are the partial in equation (17) and backward probabilities in equation 
(18). 

?��,� = - 0																			, ���,� ≠ ���,�	�/0	, = @1																			, ���,� = ���,�	�/0	, = @∑ ?��, + 1�ɑ��%�#��, + 1�, ',ℎ5<=3�5�
>                                                         (18) 

 
Since, αi (t) and βi (t) are just estimates for the calculation of an improved of these estimates the 
auxiliary γij (t)  quantity is introduced [87, 91]: 
 B���,� = CD��E
�ɑDFGFHIF���J�KL|M�                                                                                         (19) 

 
Using the auxiliary quantity, an estimated version áij of aij can now be calculated by [87, 91, 92]: 

 

ẩ�� = ∑ NDF���LOPQ∑ ∑ NDH���HLOPQ                                                                                                  (20) 

 
Similarly, an estimated version ḃjk of bjk can be given as [87, 91, 92]:  

 

ḃ�# = ∑ ∑ NFR���SLOPQ,T�O�∑ ∑ NFSLOPQ R��� 	                                                                                              (21) 
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Figure 5. Studies of Modeling Techniques on Crop Activities 
 

 
 

Figure 6. Studies on Weather Condition Analysis 
 

 
 

Figure 7: Activities Forecasted using Modeling Techniques Between 2008 and 2016 
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4. DISCUSSION AND CONCLUSION 
 
From literature and as reviewed in this work, the weather condition forecasting dominates crop 
activities as demonstrated in Figure 7. This indicates a positive of stochastic models for 
environment monitoring. Table 3 indicates that Artificial Neural Network (ANN) is applied only 
to non-linearly separable classes. It has the black box nature that causes greater computation 
burden on the hardware infrastructure available for the analysis. This is a great disadvantage to 
many systems. Unlike the Hidden Markov Model, it predicts not yet observed states. However, it 
has a superior capability over other models in complex computations and convergence. The 
Markov Chain Model (MC) does not allow the prediction of hidden states since it is limited to 
emission probability. The Hidden Markov Model (HMM) allows different types of states to be 
defined such as hidden states and observation states in connection with the normal and emission 
probabilities. It always models conditional dependencies of (predicts) hidden states from 
observed states. Therefore, the sequence of states visited is hidden. Unlike in the Markov Chain, 
there is no longer a one to one correspondence between states and output symbols. In the HMM, 
the same symbol may be emitted by more than one state and a state can emit more than one 
symbol. 
 
The published papers with applications of ANN, HMM, and MC for weather condition and crop 
activities were reviewed in this work. All these technologies proved to have given solutions for 
crop planning, weather prediction, moisture detection, temperature estimation, as well as crops 
and seeds classification. But, the reviewed studies have confirmed that the condition forecasting 
of crop storage is not yet seriously researched. For this reason, these modeling techniques can be 
introduced in grain storage application whereby the storage condition must be forecasted basing 
on the variations of temperature and moisture contents. Artificial Neural Network and Hidden 
Markov models have enormous advantages over other models, like Markov Chain Model for their 
ability to learn the environment. Hence they are better models. Either ANN or HMM or both are 
highly recommended to be applied in grain storage condition forecasting. Since the HMM is a 
less computational and flexible model, it might be the best option for the grain storage condition 
when few states are needed to be computed. 
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