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ABSTRACT 

 

The work in this paper shows intensive empirical experiments using 13 datasets to understand the 

regularization effectiveness of ridge regression, the lasso estimate, and elastic net regularization methods. 

the study offers a deep understanding of how the datasets affect the goodness of the prediction accuracy of 

each regularization method for a given problem given the diver- sity in the datasets used. the results have 

shown that datasets play crucial rules on the performance of the regularization method and that the 

predication accuracy depends heavily on the nature of the sampled datasets. 
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1. INTRODUCTION 
 

Penalization over regressive parameters have taken much attention in the literature  recently.  

This  is  clearly  due  to  the optimality such methods can provide in the model se- lections over 

non-penalized regressive parameters(such as in linear regression). The way that penalized 

regressive methods shrink the parameters associated with features in the model, is key in 

providing better predictions when model selection  is required among models in the search  space.  

The  most  well known penalized regressive methods can be seen  in  ridge regression[1], lasso 

estimate[2], and recently elastic net regularization method[3]. In the ridge regression, the model 

selection is not much severed in which the regressive param- eters are penalized towards ”zeros” 

which usually introduces light sparsity to the model selection and includes all the chosen subset 

features from the search space. However, lasso estimate introduces much severity and usually the  

penalization term (λ) discards irrelevant features from the chosen model[2]. However, the 

shortcoming from lasso estimate is when the search space includes features which are highly 

correlated. The lasso estimate in a highly correlated feature space tends  to choose one among the 

correlated features and ignores the others which,if were chosen, might lead to a better prediction 

accuracy. In addition, the lasso estimate selects at most (n) features when the number of features 

(p) is greater than the number of samples(n) which indicates that the number of features is 

bounded by the number of samples[3]. Elastic net regularization method on the other hand, can 

handle limitations encountered by the lasso estimate in terms of : (1) choosing the group of 

features that best give better prediction, and (2) giving unbounded behavior by the number of 

samples in (p >> n) situation. 
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Hence, given the formentioned interesting diversities between regularisation methods, we show in 

this work empirical exper- iments to step further in analyzing model selection behavior  in terms 

of prediction accuracy for ridge regression, the lasso estimate, and elastic net regularization 

methods. 

 

To curry out model selection, we used Bayesian information criteria(BIC) and cross validation 

score functions for all fitted models in the search space by using a set of different (λ) values as 

well as different (α) values for elastic net regularization method. 

 

In the next section, we detail the related work then we proceed to detail the methodology, the 

results, and the conclusion 

 

2. RELATED WORK 
 

Ridge regression, the lasso estimate, , and lately elastic net regularization methods have been 

extensively used for model selections and feature reductions in machine learning literature and 

applications. In [4] ridge regression has been applied in a combination approach between 

homomorhpic encryption and Yao garbled circuits which outperformed using homomorphic 

encryption or Yao circuits only. Ridge regression also has shown interesting results when multi-

colinearity exist in model selection and associated parameters specially when ridge re- gression is 

combined with Variance Inflation Factors(VIF) [5], [6]. However, ridge regression  is  often  used  

when features in the model selection are all important to be included in resultant classifiers or 

models. However, when the search space encounters many irrelevant features to the problem 

under modeling, then lasso estimate can investigate and return sparser models that contain the 

most important features. this  is because lasso estimate shrinks many associated parameters 

towards zero that tend to be less relevant. In [7] the paper has experimented with the lasso 

estimate and its variants and the results have shown that when the lasso estimate is relaxed with 

filtering methods, the prediction is improved. Also, the lasso estimate in [8] has been applied for 

visual object tracking and the results have shown promising performance for computer vision 

field. Moreover, for network modeling, the work in [9] has addressed how useful the lasso 

estimate is to estimate psy-chopathological networks specially that estimated parameters fast 

growing comparing to the data samples. However, the work has concerned that the lasso estimate 

can yield a sparse models that can capture interesting results usinge exponential growth 

parameters in the search space under investigation. However, when there exists a group of 

features naturally correlated and co-work with each other such as between genes in cellular 

systems , often the lasso estimate tends to choose a member  of the group and ignores the others 

[3] as well as the bounders imposed by the number of chosen features which is subject to the 

sample size [3]. The aforementioned shortcomings from the lasso estimate have already been 

addressed and solved by the elastic net regularization methods which deals with the correlated 

features either to be all in-or-out of the selected model. Elastic net regularization method also 

shows a more reliable feature selection in the p >> n datasets and due to   the scalability elastic 

net regularization method provides in the model selection and in the estimated parameters, it has 

drawn much attention recently.  Elastic  net  regularization  method  in [10] was able to determine 

a reliable performance  with high accuracy in assessing the uncertainties on node voltage and 
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determine the influential factors along with calculating their voltage influence parameters. In the 

study by [11] a hybrid probabilistic prediction methodology based on elastic net regularization 

method with probabilistic Bayesian belief network has been applied to predict the on-show 

probability  of the patient to the clinic using demographics, socioeconomic status as well as 

available appointment information history which provide a notable comparable predictive results 

among many approaches in the literature. 

In our current study we aim to provide an intensive compar- ison between the lasso estimate, 

ridge regression, and elastic net regularization methods in order to further analyze the prediction 

accuracy of these methods. We used 13 datasets  that are different in sample size and the systems 

that have been sampled from to apply different diversities to the behavioral analysis for each 

penalized method as well as the score functions used to do model selection. 

 

In the next section we go in details for the methodology and the datasets used in the study. 

 

3. DATASETS 
 
The datasets used in the study have been obtained from different systems. We used gene 

expression datasets from microarray experiments that differ in sample and feature size. The 

datasets are annotated by different signaling pathways : (1) cell-cycle signaling pathway which 

has 5 samples and 98 genes that considered to be hard-to-learn-from as the feature space is far 

exceeds the sample space. (2) MAPK signaling pathway has the same gene size as cell-cycle 

signaling pathway but with 100 samples. We also used two different microarray datasets sampled 

from prostate cancer gene expression signal- ing pathways : (1) JAKSTAT signaling pathway 

with 86 genes across 13 samples, and (2) JAKSTAT1 signaling pathway that has 35 genes v.s. 62 

samples. A much harder-to-learn-from datasets we used come from breast-cancer tissues : (1) the 

breast cancer dataset1 contains 209 genes vs. 14 samples, and the breast cancer dataset2 contains 

209 samples vs. 10 samples. In order to allow diversity to the methods in the experiments, we 

used 7 datasets from equities market that allow for big sample size comparing to the feature space 

that are banks in the market. The banks in the equities market have been monitored in 7 intervals 

as follows : (1) equities-dataset1 has 11 features vs. 80 sample size,(2) equities-dataset2 has 11 

features vs. 59 sample size, (3) equities-dataset3 has 11 features vs. 39 sample size , (4) equities-

dataset4 has 11 features vs. 19 sample size,(5) equities-dataset5 has 11 features vs. 7 sample size, 

(6) equities-dataset6 has 11 features vs. 250 sample size, and (7) equities-dataset7 has 11 features 

vs. 250 sample size. 

 

4. METHODOLOGY 
 
All 13 datasets described above have been injected to the three penalized regressive methods : 

ridge regression, the  lasso estimate, and elastic net regularization methods. In ridge regression, 

the lasso estimate, and elastic net regularization methods the set of (λ) values have been 

computed by the func- tion (glmnet) in R for 100 values [12], [13]. Thus, each dataset generates a 

search space of 100 models corresponding to 100 λ values. The generated models then have been 

scored by two scoring functions, namely cross validation (Algorithm 1) and Bayesian information 

criterion (BIC) (Algorithm 2) . When using BIC score function, all models were generated by the 

corresponding (λ) values and then BIC scores all these models and returns from the search space 

the model with the smallest BIC score. For cross validation we set (nfolds=3) as we have small 
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sample size in some datasets used in the experiments. For the elastic net regularization method, 

we experimented with 8 different (α) values that were between [0.1, 0.9] since α=1.0 corresponds 

to the lasso penalty and when α=0.0 it gives ridge regression penalty. After defining the necessary 

parameters, (λ, α, and nf olds)), we executed the experiments over the 13 datasets. Algorithm 1, 

and Algorithm 2 describe the framework of applying cross validation score function, and BIC 

score function respectively on ridge regression, the lasso estimate, and elastic net regularization 

methods. 

 

In the next sections we explain the component of Algorithm 1 that gives how cross validation was 

used from within the pre- defined (λ,α) to choose the most optimal model in the search space of 

each dataset used in the experiment, and Algorithm  2 explains the same but for BIC score 

function. 

 

A. Algorithm 1 
 

Algorithm (1) starts in step(1) by defining the vector of (α) used in the experiments that ranges 

between [0.0,1.0], where (0.0) penalizes for the lasso estimate and (1.0) penalizes for ridge 

regression. Then, in step(2) the algorithm iterates on each value of α.vector for the dataset under 

investigation in step(3). The algorithm iterates on the length of feature space  to experiment with 

each feature(step(6)) to find out the most optimal subset of features from the remaining features 

in the dataset(step(5)). To do that, first ; in step(7), cross validation score function with the pre-

defined((nf olds))is used to score all possible models generated from the set of (λ) values(100 

values between [0-1]) for the possible subset of features from step(5). Second, the algorithm in 

step(8) returns the best optimal value of (λ) that corresponds to the smallest error from cross 

validation score function which in turns is used in step(9) in order to return the best fit model in 

the search space for the current(αi). Finally , in step(10), and step(11)  the best fit model is used 

as a predictive model to estimate the goodness-of-fit for the chosen optimal (λ). 
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B. Algorithm(2) 
 

Algorithm (2) starts in step(1) by defining the vector of (α) used in the experiments that ranges 

between [0.0-1.0] , where (0.0) penalizes for the lasso estimate and (1.0) penalizes for ridge 

regression. Then, in step (2) the algorithm iterates on each value of α. vector for the dataset under 

investigation in step(3).vector for the dataset under investigation in step(3). After that the sample 

size parameter is determined in step (4) in order to be used in BIC score function later. The 

algorithm in step (5) iterates on the length of feature space to experiment with each feature 

(step(7)) in order to find out the most optimal subset of features from the remaining features in 

To do that, first ; in step(8) all pre- defined (λ) are used to fit all the possible models in the search 

space for a particular (α) . Then, the algorithm in step (9) extracts the exact (λ) values used to 

generate all models in   the search space. After that, in step(10) the algorithm iterates on each 

value of (λ. vector) to generate a model(step(11)),predict on the fitted model(step(12)), calculate 

the prediction error(step(13)), and then calculate the number of features found in the 

model(step(14)) which can be determined by the nonzero parameters( s) in the model. After that, 

the algorithm calculates the BIC scoring function as in step (15). All BIC score functions for all 

models are stored in a vector (step(16)) in order to be used to return the best BIC score function 

as in step(18). After that the best BIC score function is used to return the best model as in step 

(19), then finally the prediction accuracy for the chosen model is calculated in step (20), and step 

(21). 
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5. RESULTS AND DISCUSSION 
 
The algorithms described in the previous section, have been applied to the aforementioned 13 

datasets. Table .I shows the results of applying the methodology described in Algorithm 1, and 

Table .II shows the results of applying the methodology described in Algorithm 2. The range of 

(α) values from 0.0-1.0 were used in order to experiment with the lasso estimate (when α=0.0), 

ridge regression (when alpha=1.0), and elastic net regularization methods. When datasets were 

used  to experiment with the methodology in Algorithm 1, cross validation score function did not 

significantly show a better (α) over another in terms of prediction accuracy except for cell-cycle 

dataset when α= 0.7,0.8,0.9,1.0 , and for MAPK dataset when α= 0.6,0.7,0.8,0.9,1.0 in which the 

prediction accuracy considered to be the worst among other α values. Hence the lasso estimate 

worked better than ridge regression and elastic net regularization methods for these particular 

datasets. Similarly, Table. II shows the results of applying the methodology described in 

Algorithm 2. When datasets were used to experiment with the methodology in Algorithm  2 BIC 

score function has shown similar prediction accuracies for the datasets across different values of 

(α) comparing to cross validation score function in Algorithm 1 except for 6 datasets in which 

BIC score function has given a better prediction accuracy  comparing  to  cross  validation.  These  

datasets  are : equities-dataset5 when α={0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, cell- cycle dataset when 

α={0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, MAPK dataset when α= 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 , 

JAKSTAT1 dataset when α= 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 , breast cancer dataset1 when α= 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 , and breast cancer dataset2 when α= 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 

as  the  prediction  accuracy  was almost (~ 0.0). As a result from Table-I, the lasso estimate, 

ridge regression, and elastic net regularization methods tend to work similarly expect for cell-

cycle , and MAPK datasets in which ridge regression outperformed the lasso estimate and elastic 

net  regulariza- tion methods. In Table-II, the lasso estimate and elastic net regulariztion methods 

have shown a better results than ridge regression in ~47% of the datasets but still work similarly   

in the other datasets. On looking thoroughly for the score functions used in the comparison, the 

average of prediction accuracies for all datasets across all different values  of  α were considered 

and it can be seen that BIC score function outperformed cross validation score function as shown 

in Figure(fig:prediction). 

Final Prediction Accuracy for all datasets vs. alpha values 0.0 

 
Fig.  1. This figure shows the average of prediction accuracies for all datasets across all different values of . 

The figurte shows that BIC score functionoutperformed cross validation score function. 
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6. CONCLUSION 
 

The study in this paper focused on how the ridge regression, the lasso estimate, and elastic net 

regularization methods behave in terms of prediction accuracy when wrapped up with BIC, and 

cross validation score functions in 13 different datasets that are different in dimensionality. The 

results clearly show that the performance of a single regularizer  is subject    to the dataset under 

investigation which makes the prediction accuracy differ accordingly. The results also show that 

the lasso estimate and elastic net regularization methods perform better compared with ridge 

regression and this is a justification that ridge regression includes more irrelevant features than 

the lasso estimate and elastic net in the chosen model which decreases accuracy in the prediction. 
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