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ABSTRACT 

 
Energy routers are recent topics of interest for scientific community working on alternative energy. 

Enabling technologies supporting installation and monitoring energy efficiency in building are discussed in 

this paper, by focusing the attention on innovative aspects and on approaches to predict risks and failures 

conditions of energy router devices. Infrared (IR) Thermography and Augmented Reality (AR) are 

indicated in this work as potential technologies for the installation testing and tools for predictive 

maintenance of energy networks, while thermal simulation, image post-processing and data mining 

improve the analysis of the prediction process. Image post- processing has been applied on thermal images 

and for WiFi AR.  Concerning data mining we applied k-Means and Artificial Neural Network –ANN- 

obtaining outputs based on measured data. The paper proposes some tools procedure and methods 

supporting the Building Information Modeling- BIM- in smart grid applications. Finally we provide some 

ISO standards matching with the enabling technologies by completing the overview of scenario 

.   
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1. INTRODUCTION 
 
Smart Grid applications and energy management are interesting topics in the research field [1]-
[3]. A particular attention has been focused on Home Energy Management (HEMS) [3] and  on 
energy management by means of simulators [4]. As simulator useful for the study and the design 
of energy system some authors have applied the open sources Energy 2D [5]-[7] and Energy 3D 
tools [8]-[12]. The use of the simulator tools are suitable for the improvement of the Visual 
Process Analytics (VPA) which includes data mining algorithms and multiple visualization 
oriented on energy monitoring and predictions [8]. A good matching between Artificial 
intelligence and computer-aided design (CAD) platforms support human designers for a high 
performance energy models [9]-[11]. Approaches including  infrared (IR) thermography post-
processed by data mining (K-Means clustering) algorithms, are able to support the planning of  
procedures oriented on the monitoring of energy efficiency in building, by defining risk maps of 
energy leakage with only a radiometric image [12]. The application of Artificial Neural Network 
(ANNs) together with infrared thermography has been discussed in [13], where ANNs network 
(Multilayered Perceptron –MLP-) provided predictive maintenance of electrical equipment by 
classifying defects identified into thermal images. Also Augmented Reality (AR) technologies 
have been applied on thermal visualizations [14]-[16] thus suggesting their application in 
Building Information Modeling (BIM) [17]. In order to implement a decision support system 
(DSS) based on predictive maintenance it is necessary to apply data mining algorithms. These 
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algorithms can be executed by using open source tools such as R language, Orange Canvas, 
Rapid Miner, KNIME and Weka (Waikato Environment for Knowledge Analysis), available as 
Graphical User Interfaces (GUIs) using objects or libraries [18]-[19]. Advanced image processing 
tools such as ImageJ can provide further typologies of advanced analyses such as 3D processing 
and segmentation of images [20]-[21]. A typical tool for the design of hybrid renewable energy 
systems is Homer [22]. This tools provides ideal load distribution during the time starting from 
the energy power distribution of a smart grid. In this paper we discuss and apply the tools and the 
approaches mentioned partially in the state of the art by highlighting some aspects concerning the 
predictive maintenance. The paper is structured as follows: 
 

• Description of the main architecture of enabling technologies utilized in a pilot research 
project involving energy routing of renewable energy; 

• Application of different tools considered the proposed architecture; 

• Definition of algorithms for intelligent electric load management based on power 
prediction; 

• Discussion about  ISO standard laws regarding the main topics developed in this work. 
 
 

 
Figure 1.  System architecture integrating enabling technologies for energy routing analysis. 

 

2. ENABLING TECHNOLOGIES AND RESULTS  
 
In this section we describe the architecture of Fig. 1 embedding different enabling technologies 
oriented on the design, the installation, the monitoring and on the predictive maintenance of an 
energy routing building network. 
  

2.1. System architecture and main use cases 
In Fig. 1 we illustrate the proposed system architecture containing the main use cases. We list 
below the use case concerning the main actors of the system:  
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• Case 1 (testing installation): the thermographic operator acquires thermal images by 
means of a thermal camera or by a visor/mobile device supporting real time thermal 
image processing (processing of augmented reality). The inspection of the energy router 
components should be performed under good environment conditions (good  thermal 
excitation, absence of rain and humidity, etc.), and good operator position (good angle of 
view). The thermal testing should executed by applying the electrical loads. 
 

• Case 2 (testing and verification before to apply maintenance procedures): the operator 
downloads thermal data and thermograms on the personal computer and verify better the 
detected anomalies. After he compares the design specifications with the measured data 
of the produced energy by observing possible mismatching. This verification it is 
important to update the maintenance procedures (predictive maintenance of first level).  
 
 

• Case 3 (data post-processing): the operator post-processes the radiometric data in order to 
classify in details the defects and the anomalies by means of data mining algorithms (k-
Means for clustering and ANNs network for prediction) and of image processing tools. 
The post-processing outputs provide further information about predictive maintenance 
(predictive maintenance of second level). The post-processing phase includes the 
improvement of the electric load management due to the analysis of data sensors 
monitoring electrical power distribution in the building. 
 

• Case 4 (training): the operator visualizes in a AR visor the post-processed image in order 
to learn risk levels and maintenance procedures.    
         

2.2. IR Thermography: basic principle and thermal camera specifications used in 

the experimentation  
 

Temperature measurement using IR Thermography measures the infrared radiation emitted by an 
object and converts the energy detected due to particle vibrations into a temperature value [23]. 
For a good setting of a thermal camera radiation from other sources or from environment must be 
removed in the conversion to temperature. This setting process is called compensation. As 
reported in equation (1), the total radiation received by the thermal camera (WT) comes from three 
sources: the emission of the target object (Eo), the emission of the surroundings and reflected by 
the object (Er) and the emission of the environment (Ee): 
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being σ is the Stefan–Boltzmann constant, ε is the emissivity, τ is the transmittance, and T is the 
temperature. The transmittance of the environment is generally estimated using the distance from 
the object to the camera and the relative humidity. In general, this value is very close to one. The 
temperature of the environment can be obtained using a common thermometer.  For the 
experimental radiometric images used this work has been used a FLIR T1020 camera, having the 
following main specifications: thermal sensitivity <0,02 °C at 30 °C, IR sensor resolution of 1024 
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x 768 pixel, temperature range of -40°C to 2000°C, frame rate of 30 Hz, spectral range between 

7.5 – 14 µm. 
 

2.3. Augmented Reality Embedding IR Thermography 
 
Augmented Reality embedding thermography could be improved in different ways such as: (i) by 
constructing visor objects by means of development platform (Unity 3D [24] or Vuforia [25]) 
able to download them in a visor or in a smartphone inserted into a cardboard ; (ii) by integrating 
a thermal sensor inside the visor [26]; (iii) by using smartphone or tablet in Multi-Spectral 
Dynamic Imaging (MSX), thermal fusion and picture-in-picture modalities. The last approach is 
the basic mode to improve augmented reality directly on a mobile device: a simple way to 
produce a real time AR images is to use Flir Tools Mobile App which allows to view the thermal 
images in real time by means of the WiFi connection. The ‘augmented’ reality is due to the 
superposition of real photo contours (or part of the real image) on the thermal images, by viewing 
in real time the composed images. Concerning this last approach it is possible to add in the 
thermal image different information about inspected object such as parameters or comments, or 
colour maps filtering different range of temperature values. In Fig. 2 we show an example of 
importing assets elements in Unity 3D platform by considering a post-processed image of an 
electrical cabinet. This approach could be useful for training procedures (case 4) by constructing 
a virtual environment of a thermal post–processed image, in order highlight possible critical 
aspects about fire risk or failure of electrical  components. In Fig. 3 we show an image observed 
on a smartphone through different modalities of an electrical cabinet: in this image it is possible 
to distinguish better each element of the object thus facilitating the localization of the anomaly 
characterized by a higher temperature. Therefore  the Augmented reality can be adopted to: 
 
 

• verify the energy equpment status by means ‘augmented’ viewing modalities, or by 
means of a visor integrating IR thermal sensor, after the installation activity; 
 

• transfer knowledge to workers enabled for installation and  maintenance of elements 
of the energy network by designing virtual environments; 

 

• predict imminent electrical failures.    
 
 

 
 

Figure 2.  Case 4: thermal image loaded as assets in Unity 3D platform. 
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Figure 3.  Thermal image of a small electrical cabinet: case 1. (a) Original thermal image, (b) MSX image, 
(c) thermal fusion image, (d) picture-in-picture image. 

 

2.4. Software oriented on design, on verification, and on predictive maintenance  
 
The design software can be used in order to test the correct work of the energy router network and 
to optimize the energy router layout. We discuss in this paragraph different simulators applied for 
the study of building thermal properties and for thermal characterization of some electrical 
components. The simulator Energy 2D [5]-[7] has been applied for the thermal characterization of 
building indoor heat transfer and for thermal characterization of the electrical cabinets, while 
Energy 3D [8]-[12] provides mainly data about outdoor applications involving solar energy of 
whole buildings and on photovoltaic (PV) panels. Both the simulators solve the follow 
differential equation: 
    

( ) [ ]
T

c T k T q
t

ρ
∂ 

+ ∇ ⋅ = ∇ ⋅ ∇ + ∂ 
υ     (3) 

 

being k the thermal conductivity, c the heat capacity, ρ the density, νννν field velocity, and q the heat 
generation. The equation (3) is solved in the 3D (x,y,z) space by means of the Finite Difference 
Time Domain (FDTD) approach. In Fig 4 (a) we illustrate an Energy 2D simulation of heat 
indoor distribution by considering a model with two heat source (see circles) and three 
“numerical” thermometers placed in the middle of the room. This model is useful in order to 
compare measured indoor data with ideals ones provided by the simulation, and to allocate 
efficiently sensors in the building structure (case 2). Furthermore the indoor simulation can be 
analysed for the explanation of thermal phenomena observed by the IR thermography (location of 
heat sources, thermal bridges, etc.): for example the predictive maintenance can be applied by 
analysing results of thermal leakage of windows or some parts of the building to restructure. It 
was observed from the simulations that the thermometer 1 (higher position), starting from 0 ° C, 
reached the temperature of 20 °C after only 4 minutes and 30 seconds. This is an important aspect 
about the monitoring of the real case, where is needed the knowledge of the time necessary to 
heat a room. We report in same Fig. 4 (a) the superimposed graphs related to the temperature 
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transitory which calculated the room heating time. We illustrate in Table 1 the parameters used 
for the simulation.  
 

Table 1.  Energy 2D: parameters used in the simulation of Fig. 4 (a). 
 

Element Physical Properties 

Wall Thermal Conductivity= 0.001 W/m⋅°C 

Specific Heat= 1300 J/(kg⋅°C) 
Density = 25 kg/m3 

Ceiling Thermal Conductivity= 1 W/m⋅°C 

Specific Heat= 2000 J/(kg⋅°C) 
Density = 25 kg/m3 

Window  Thermal Conductivity= 1 W/m⋅°C 

Specific Heat= 1300 J/(kg⋅°C) 
Density = 25 kg/m3 

Ground Thermal Conductivity= 0.001 W/m⋅°C 

Specific Heat= 1300 J/(kg⋅°C) 
Density = 25 kg/m3 

Roof Thermal Conductivity= 0.1 W/m⋅°C 

Specific Heat= 1300 J/(kg⋅°C) 
Density = 25 kg/m3 

Thermal sources Thermal Conductivity= 1 W/m⋅°C 

Specific Heat= 1300 J/(kg⋅°C) 
Density = 25 kg/m3 

Temperature Source = 75 °C 

 
In Fig. 4 (b) we illustrate the time domain simulation of the coupled temperature inside an 
electrical cabinet by setting each modules as a temperature source (for a total of six temperature 
sources, where a critical one is at 50 °C ), and by placing three thermometers inside the cabinet. 
In order to calculate the temperature distribution, we considered an air transmission medium 
(yellow box). By executing simulation we observe that after one minute the estimated value of the 
central thermometer is 43.6 °C which could represent a condition of overheating and therefore of 
risk. So if only one element reaches high irregular temperatures, it can damage the other elements 
and can origin an electrical malfunction. In Fig. 4 (c) and Fig. 4 (d) we illustrate some Energy 3D 
simulations. Specifically in Fig. 4 (a) we show the thermal simulation of the building that takes 
into account the solar heating due to geolocation, exposure and surrounding environment, besides 
in Fig. 4 (c) we illustrate the heat distribution of an irradiated multiple solar racks calculating the 
solar energy produced by 128 panels characterized by the following specification: average land 
area occupied by panel of 6 m2

, total surface area of panels of 248.37 m2, cost of solar panels $ 
82.20, output of maximum energy per hour 20.86 kWh. Simulation 3D is suitable for design, for 
installation, and for verification of total energy produced (case 1 and case 2). If a defined alert 
gap between energy simulated and energy measured is observed, will be updated the maintenance 
programme by predicting the panels inefficiency (predictive maintenance of first level).      
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Figure 4. (a) Energy 2D:  thermal simulation of indoor heat propagation; in the plot are superimposed the 
time evolution of the three temperatures. (b) Energy 2D: thermal simulation of temperature coupling in an 
electrical cabinet; in the plot are superimposed the time evolution of the three temperatures. (c) Energy 3D: 
simulation of solar impact on a building. (d) Energy 3D: simulation of solar impact and energy production 

of four photovoltaic panels. 

We illustrate in Table 2 an example of working and critical temperature values of elements of an electrical 
cabinet (CEI EN 61439) useful for the comparison of numerical results. 

 
Table 2.  Element of an electrical cabinet: critical and operating temperatures. 

 

Element Recommended operating 

temperature 

Maximum temperature 

with risk of malfunction 

Speed variators 35 °C 50 °C 

PLC 35 °C 40 - 45  °C 

Contactors  45 °C 50 °C 

Switches  45 °C 50 °C 

Fuses 50 °C 50 °C 

Power supplies 35 °C 40 °C 

PCB 30 °C 40 °C 

Batteries 20 - 25  °C 30 °C 

TLC devices 40 – 50 °C 55° C 

PFC Capacitors  50 °C 55° C 

 
We observe that online are available other open source tools oriented on the design and 
temperature modelling of an electrical cabinet [27]. The design of a whole smart grid network 
integrating different alternative energy sources can be achieved by Homer Simulator [22]. This 
simulator is able to provide the main sizing of the smart grid and the template system 
architecture. In the simulation of Fig. 5 is illustrated the schematic architecture of a network 
characterized by a primary load of 10 kWh/d, 1.65 kW of peak, 1 kW wind turbine (module 
XL1), 1 kW photovoltaic panels (module PV), 2.6 kW gasoline generator  (module Gen), AC/DC 
converter, and energy storage batteries (module P16P having nominal capacity 2kW/h). The 
illustrated layout has been designed to handle small electrical loads lights only. In Fig. 5 we show 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.9, No.2, March 2018 

8 

 

the electric load characteristics of the simulated network: the curves refer to daily, monthly and 
annual trends. By analysing these curves it is evident how there are three load peaks during the 
day at the sixth hour, at the twelfth hour and at the eighteenth hour (most intense peak of 1.231 
kW). The same simulator provides also information about load frequency (in the simulated case 
0.35 kW is the power most used corresponding to a percentage of about 12% of the entire use of 
the entire electric load), and about equipment characteristics (costs, replacement costs, life cycle). 
      

 
 

Figure 5.  Homer simulator: template of a smart grid architecture and load distribution.  

 

2.5. Data post-processing  
 
The data post-processing represent the real innovation of the BIM approach and provides 
important information about predictive maintenance. In order to create an efficient predictive 
model it is important to create the training dataset by experimental results. To do this different 
sensors (meter analyser, data logger, meteorological sensors) have been installed on a PV 
prototype demonstrator (having a peak power of 30 kWp). For the data post-processing we used 
the java libraries using Eclipse platform, and ANN Weka libraries (Time Series Forecasting with 
Multilayer Perceptron  -MLP- classifier [28]). The training dataset has been created by 3690 
measured data extracted from the experimental Sunguard platform [29], where each data sample 
corresponds t the total energy measured at a time step of 5 minutes. The testing dataset has been 
created by the measurements of the last 2.5 days (720 counts). In order to compare predicted 
values with real ones, we have waited 2.5 days (from 00:01 on 23/June/2017 to 12:00 on 

25/June/2017, equal to a count of other 720 measured data). A good data matching is observed in 

the result of Fig. 6, thus validating of the neural networks predictive model. We observe that the 
initial oscillation may be due to the initial calculation error which is successively attenuated. The 
predictive maintenance should be obtained in this case by predicting long term efficiency of PV 
panels, and by correlating other predicted data such as meteorological data. Data post-processing 
can be applied also to radiometric data of thermal images. In Fig. 7 we shows an example of 
measured thermal defect points by using the line measurement approach in Flir Tools software: 
measured temperature are extracted from the written line crossing the defect point, and 
successively measurement data are plotted from the exported csv file. We indicates in Table 3 
some defect characterization useful for monitoring of PV panel efficiency and for predictive 
maintenance (modification of standard maintenance planning). Concerning wind turbine defect 
detection, thermography could provide information about abnormal overheating thus predicting 
breakages. Wind turbines infact incorporate different electrical and mechanical components 
which can break down, generating costly downtime and dangerous accidents.  Inspections with 
thermal imaging cameras can help prevent such accidents. Both for electrical and mechanical 
components the general rule is that a component will become hot before it fails. Thermography 
can be used to spot this rise in temperature before a failure occurs (hot spot detection of  
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transformers, connectors, controllers yaw motors etc.). Another data post-processing process able 
to facilitate the prediction of anomalies for electrical devices is data mining clustering. 
Specifically the application of K-Means algorithm [30] provides clustering of radiometric values. 
In Fig. 8 we illustrate the clustering calculation of measurements of a selection box embedding 
power supplies. For this result we have adopted the KNIME K-Means module: the three clusters 
(K=3) are characterized by increasing temperatures (cluster 0 = lower temperatures, cluster 1 = 
average temperatures, cluster 2 =  higher temperatures).  The increase of  measurements of cluster 
2 dataset could mean a damage risk.   
          

Table 3.  PV panels: Defects detect by thermal images. 
 

Error type Example Image representation 

Production defect Impurity and gas inclusion Hot/could defect points 

Cracks in cells Heating of cells with a 
predominantly elongated 

shape 

Damages Cracks Heating of cells with a 
predominantly elongated 

shape 
Cracks in cells a part of the cell looks 

warmer 

Temporary darkening Pollution Hot defect points 

Bird excrements 
Humidity 

Defective bypass diode Short circuit and reduced circuit 
protections 

Patchwork conformation 

Failed interconnections Modules or series of modules not 
connected 

Module or series of 
modules continuously 

warmer 

 
 

 
 

Figure 6.  Times series forecasting neural network (MLP) simulation: comparison between predicted and 

measured results. Inset: geolocation of the PV prototype demonstrator.   
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Figure 7. Defect point characterization. (a) Photo of PV panels of the prototype demonstrator. (b) MSX 
thermal image with a marker indicating a thermal defect point. (c) Thermal image of a selected PV panel 

obtained by changing color scale. (d) Thermal image of the region surrounding the defect point crossed by 
the calculus line Li1 (A and B indicate the line extremes). (e) Data plotting of extracted csv file of the 

radiometric measurements related to line plot.  
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Figure 8. (a) Box selection of thermal image of power supplies of an electrical cabinet. (b) data mining 
workflow implementing KNIME K-Means algorithm reading the exported csv file of the box selection (Flir 

Tools data exporting). (c) Box plot of box selection measurements. (d) Scattering plot of measurements 
grouped in clusters (plot of  column values of Fig. 8 (c)). 

 
In Fig. 9 (a) is shown a group of power supplies image post-processed by setting a filter 
temperature range: this function highlights the regions where the temperature is between a 
temperature range thus analyzing temperature coupling. The 3D image processed Fig. 9 (b) 
highlights the pixel intensity information by observing the whole thermal environment of the 
electrical cabinet. This processing could be adopted for training by AR technology (case 4). In 
Fig. 9 (c) and Fig. 9 (d)  are illustrated other measurements plotted by Flir ResearchIR software. 
In Fig. 10 is illustrated in succession the post processing of a thermal image by means of K-
Means clustering [31] (ImageJ processing with K=10). This tool is a part of the trainable Weka 
segmentation of ImageJ plugin that combines a collection of machine learning algorithms with a 
set of selected image features to produce pixel-based segmentations. From Fig. 10 (d) it is 
possible to observe an irregular heating for the panels located on middle and on the top right of 
the detected row of photovoltaic panels. This could explain an inefficiency and suggest to 
reformulate the maintenance planning. In table 4 are indicated the calculated centroid values and 
the numerical errors related to the different calculus iteration of the K-Means processing (the 
error decrease with the iteration number until value 0 related to the 12 th. iteration). The ImageJ 
K-Means algorithm has been executed in about 2 second using a Intel core i3-403OU. 1.9GHz PC 
CPU.    
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Figure 9. (a) Temperature range filterning between  23.7 °C and 29.7 °C. (b) ImageJ 3D Surface Plot of a 
post processed image. (c) Flir ResearchIR: histogram plot of pixel measurements  enclosed in Box1, and 

(d) oscilloscope plot. 
 

 

 
 

Figure 10. (a) Photo of the PV panels related to the prototype demonstrator and (b) related  thermal images. 
(c) Flir ResearchIR: exported jpeg image containing pixel temperature information. (d) K-Means clustering 

(K=10) of image of Fig. 10 (c). 
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Table 4. Image J: K-Means image clustering results (It: iteration). 
 

Cluster Centroid 

Value  

(it. 12) 

Initial  

Cluster 

(it. 0) 

It. 1 It. 2 It. 3 It. 4 It. 5 It. 6 It. 7 It. 8 It. 9 It. 10 It. 11 

0 213.15 188 197.11 201.31 204.58 206.25 207.85 209.59 210.47 211.35 212.25 213.15 213.15 

1 18.83 6 10.38 13.40 15.52 16.40 17.19 17.99 17.99 18.83 18.83 18.83 18.83 

2 89.84 86 88.53 88.93 88.93 89.43 89.84 89.84 89.84 89.84 89.84 89.84 89.84 

3 100.12 100 98.94 99.01 99.07 99.90 99.95 100 100 100.05 100.05 100.05 100.12 

4 152.74 137 139.41 142.73 145.31 147.35 148.64 149.98 150.42 151.35 151.78 152.21 152.73 

5 58.35 57 58.22 58.22 58.22 58.22 58.22 58.35 58.35 58.35 58.35 58.35 58.35 

6 79.43 79 78.61 78.83 78.83 78.83 79.43 79.43 79.43 79.43 79.43 79.43 79.43 

7 41.27 40 39.49 39.49 39.49 39.49 40.17 40.61 41.27 41.27 41.27 41.27 41.27 

8 28.67 25 25.27 25.76 26.39 26.74 27.46 27.85 28.20 28.67 28.67 28.67 28.67 

9 66.42 68 66.86 66.43 66.42 66.42 66.42 66.42 66.42 66.42 66.42 66.42 66.42 

Error 0 // 118.89 38.31 22.28 8.83 6.33 5.81 1.53 2.57 0.98 0.99 0.28 

 

2.6. Algorithms for electrical load management based on power consumption 

prediction  

  
Cloud monitoring and control of electric loads represent an important topic for energy routing 
research. In Fig. 11 is illustrated an example of architecture oriented on fault tolerance (property 
that enables the electric system to continue operating properly in the event of the failure, where 
failure could mean that the total power overcomes a threshold). The smart building can be 
monitored in cloud by different sensors (for example transmitting in Message Queuing Telemetry 
Transport –MTTQ- or Advanced Message Queuing Protocol –AMQP- or other protocols [32]): 
by means of dashboards an external user can activate or deactivate electric loads predicting the 
total power behaviour. Different technologies could be implemented for the realization of electric 
boards connecting sensors measuring electric power. Raspberry PI and Arduino are used in 
research for smart home control [33], and are good candidates for programming fault tolerance 
intelligence. Industrial  components such as Controllino [34] are compatible with Arduino 
technology and are versatile because can be installed directly on electrical cabinet and can be 
easily interfaced with cloud. We report in Fig. 12 and Fig.13 the criteria of load management by 
load lines, where segmented line indicates the measured electrical power and the red line 
indicates the threshold line having a defined slope. Each power variation during the time is 
characterized by a slope, if the predicted measurement of the total power (in this case one minute 
prediction indicated by the dashed line of Fig. 13 (a) is considered) overcomes the threshold line, 
will be deactivated a possible no priority load or groups of no priority loads for more accentuated 
predicted slope (selecting from a list containing priority levels of each loads). Figure 12 (b) 
exhibits the flowchart representing the load activation taking into account the priority order. 
Figure 13 (b) indicates the deactivation procedure by considering the over threshold of the total 
predicted (sum of  power of each load which are classified by priority levels). The prediction is 
estimated by hypothesizing the same slope behaviour of the last minute.    
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Figure 11. Case Use 3: (a) schematic architecture of monitoring and control of  power load switching; (b) 
scheme of a case of fault tolerance managed by DSS.  
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Figure 12. (a) Case of power load threshold estimation and definition of parameters related the case of load 
activation (total loads under threshold). (b) Flowchart of load activation.  
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Figure 13. (a) Case of power load threshold estimation and definition of parameters related the case of load 
deactivation (total loads over threshold). (b) Flowchart of load deactivation.  

 

3. INTERNATIONAL STANDARDS 
  
International standards are standards studied and developed by international standards 
organizations. International standards are references for consideration and use worldwide in 
different applications. The main organization is the International Organization for Standardization 
(ISO). International standards in wind and solar energy generation are nowadays driving all the 
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most relevant aspects in engineering and construction of RES energy facilities. Standards and 
Conformity Assessment issued by International bodies and Institutions (IEC, ISO) provide solid 
bases for development of this sector with regard to site suitability and resource assessment, 
design, engineering, modeling, measurement, test, operation and maintenance. Following some of 
the most relevant standards in solar and wind: 
 

• S+ IEC/TS 61836 Ed. 3.0 en:2016 (Redline version): solar photovoltaic energy systems - 
Terms, definitions and symbols; 

• IEC 60904-3 Ed. 3.0 b:2016: Photovoltaic devices - Part 3, measurement principles for 
terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data; 

• ISO 9847:1992: Solar energy - Calibration of field pyranometers by comparison to a 
reference pyranometer; 

• IEC/TS 62727 Ed. 1.0 en:2012: Photovoltaic systems, specification for solar trackers; 

• IEC 60050-415 Ed. 1.0 b:1999:  International Electrotechnical Vocabulary - Part 415: 
Wind turbine generator systems; 

• ISO 12494:2017: Atmospheric icing of structures; 

• ANSI/AGMA/AWEA 6006-A03 (R2016): design and specification of gearboxes for 
wind turbines; 

• IEC 60076-16 Ed. 1.0 b:2011: power transformers - Part 16: Transformers for wind 
turbine applications; 

• AS 4959-2010: Acoustics - Measurement, prediction and assessment of noise from wind 
turbine generators (FOREIGN STANDARD), sets out a method for the measurement, 
prediction and assessment of noise from wind turbine generators; 

• BS EN 50308:2004: wind turbines; protective measures; requirements for design, 
operation and maintenance (British Standard);  

• IEC 61400-1 Ed. 3.0 b:2005: wind turbines- Part 1, design requirements; 

• IEC 61400-2 Ed. 3.0 b:2013: wind turbines -Part 2, small wind turbines; 

• IEC 61400-3 Ed. 1.0 b:2009: wind turbines - Part 3, design requirements for offshore 
wind turbines; 

• IEC 61400-4 Ed. 1.0 en:2012: wind turbines - Part 4, design requirements for wind 
turbine gearboxe; 

• IEC 61400-21 Ed. 2.0 b:2008: wind turbines - Part 21, measurement and assessment of 
power quality characteristics of grid connected wind turbines 

• IEC 61400-23 Ed. 1.0 en:2014: wind turbines - Part 23, full-scale structural testing of 
rotor blades. 

• Concerning thermography we list below some useful international standards:  

• ISO 9712 – Third edition – 2005 “Non-destructive testing – Qualification and 
certification of personnel”; 

• ISO 18436-1 (2012) “Condition monitoring and diagnostics of machines - Requirements 
for qualification and assessment of personnel - Part 1: Requirements for assessment 
bodies and the assessment process”; 

• ISO 18436-3 (2012) “Condition monitoring and diagnostics of machines - Requirements 
for qualification and assessment of personnel - Part 3: Requirements for training bodies 
and the training process”; 

• ISO 18436-7 (2014) “Condition monitoring and diagnostics of machines - Requirements 
for qualification and assessment of personnel - Part 7: Thermography”; 

• ISO 18434-1:2008 Condition monitoring and diagnostics of machines –Thermography- 
Part 1: General procedures. 

• ISO 6781:1983 Thermal insulation—Qualitative detection of thermal irregularities in 
building envelopes—Infrared method. 
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• EN 13187 Thermal performance of buildings. Qualitative detection of thermal 
irregularities in building envelopes. Infrared method. 

• DIN 54190-1 Zerstörungsfreie Prüfung—Thermografische Prüfung—Teil 1: Allgemeine 
Grundlagen. 

• DIN 54190-2 Non-destructive testing—Thermographic testing—Part 2: Equipment. 

• DIN 54190-3 Zerstörungsfreie Prüfung—Thermografische Prüfung—Teil 3: Begriffe. 

• DIN 54191 Zerstörungsfreie Prüfung—Thermografische Prüfung elektrischer Anlagen. 

• DIN 54192 Zerstörungsfreie Prüfung—Aktive Thermografie. 

• VdS 2858en Thermography in electrical installations, a contribute to loss prevention and 
operational reliability. 

• ASTM E1934-99a (2014) Standard guide for examining electrical and mechanical 
equipment with infrared thermography. 

• CAN/CGSB 149-GP-2MP: Manual for Thermographic Analysis of Building Enclosures; 

• ASTM C1060: Standard Practice for Thermographic Inspection of Insulation Installations 
in Envelope Cavities of Frame Buildings; 

• ASTM E1186: Standard Practice for Air Leakage Site Detection in Building Envelopes 
and Air Barrier Systems; 

• ASTM  C1153: Standard Practice for Locating of Wet Insulation in Roofing System 
Using Infrared Imaging; 

• ASTM E1316: Terminology for Non Destructive Examinations; 

• ASTM E1213: Standard Test Methods for Minimum Resolvable Difference for Thermal 
Imaging System; 

• ASTM E1311: Standard Test Methods for Minimum Detectable Temperature Difference 
for Thermal Imaging System; 

• ASTM E1862: Standard Test Methods for Measuring and Compensating for Reflected 
Temperature Using Infrared Imaging Radiometers; 

• ASTM E1897: Measuring and Compensating for Transmittance and Using Infrared 
Imaging Radiometers; 

• ASTM E1933: Standard Test Method for Measuring and Compensating for Emissivity 
Using Infrared Imaging Radiometers; 

• ASTM D4788: Standard Test Method for Detecting Delaminations in Bridge Decks 
Using Infrared Thermography; 

• Canada NMS Section 022713-2008: Thermographic Assessment: Building Envelope; 

• Canada NMS Section 022719-2008: Thermographic Assessment: Mechanical 
Equipment; 

• Canada NMS Section 022723-2008: Thermographic Assessment: Electrical Systems. 

 

4. CONCLUSION  
 
The goal of the proposed paper is to describe the use of possible software and hardware 
technologies enabling intelligent design, installation, monitoring and management of energy 
router building equipements. All the proposed results are described in order to suggest some uses 
of the proposed facilities the and to facilitate technology transfer. The discussed facilities are 
related to IR Thermography, AR, image processing, load management and data mining. Al the 
proposed technologies are oriented on Building Information Modeling and predictive 
maintenance.   
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