
International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

DOI: 10.5121/ijait.2025.15402 21

DESIGN AND DEVELOPMENT OF A

PRIVACY-PRESERVING SEMI-PUBLIC
BLOCKCHAIN-BASED RIDE-SHARING SYSTEM

USING RAFT CONSENSUS WITH
IPFS-ENABLED SECURE DISTRIBUTED STORAGE

Rayhan Ferdous Srejon, Mostafizur Rahman Fahim, Sk. Md. Shadman Ifaz, Md.

Khairul Hasan, Rafiul Awal Nafi and Nabila Rahman

Department of CSE, Ahsanullah University of Science and Technology (AUST),

Dhaka-1208, Bangladesh

ABSTRACT

Ride-sharing platforms have revolutionized urban mobility, offering millions of users convenient and

costeffective transportation. However, mainstream centralized platforms such as Uber and Lyft continue

to face pressing concerns including data privacy breaches, high service charges, security vulnerabilities,

and a lack of transparency due to centralized control. To address these limitations, this research

proposes a semipublic blockchain-based ride-sharing platform integrating Hyperledger Fabric for

secure and permissioned data management with Ethereum smart contracts for transparent ride booking,

fare calculation, and payments. The platform leverages the InterPlanetary File System (IPFS) for

immutable, decentralized storage and uses the Cosmos SDK to enable seamless interoperability between

public and private blockchains. A user-centric pay-as-you-drive model is introduced to ensure fair and

distance-based billing. Preliminary evaluations show that our system outperforms traditional blockchain

consensus methods (PoW, PoA) in throughput, latency, and resource usage. At the same time, it remains
economically viable with an operational cost of under 33,000 BDT per node. Future improvements

include benchmarking with Hyperledger Caliper, transitioning from Vagrant to Docker for better

scalability, and implementing backend services using Node.js or Golang with MongoDB for efficient

metadata handling. Together, these enhancements support a secure, decentralized, and scalable

alternative to existing ride-sharing systems.

KEYWORDS

Blockchain, Hyperledger Fabric, IPFS, Cosmos SDK, RAFT, PoA, PoS, PoW, Ride Sharing.

1. INTRODUCTION

Ride-sharing has fundamentally changed urban transportation, providing users with a more

flexible and affordable alternative to traditional taxi services. Companies such as Uber, Lyft,
and Pathao have demonstrated the value of real-time ride coordination through centralized

platforms.

However, while these systems are effective in terms of usability and scalability, they come with

significant drawbacks, particularly around data privacy, high operational costs, and centralized

control [1, 2]. As more personal and transactional data is collected and stored on centralized

servers, users are increasingly vulnerable to data breaches and surveillance [2, 3]. In addition,

https://airccse.org/journal/IJAIT/current2025.html
https://doi.org/10.5121/ijait.2025.15402

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

22

drivers and riders remain at the mercy of platform policies and pricing structures, without true
control over their interactions [4]. In this context, decentralization using blockchain

technologies presents a promising path forward [5].

2. PROBLEM STATEMENT

Existing ride-sharing platforms operate on a centralized architecture, where sensitive user

information such as identity, location, and financial details is managed and stored by a single

entity. This creates a critical point of failure, making the system vulnerable to cyberattacks,
data breaches, manipulation, and unregulated third-party access [2, 3, 6]. Furthermore, these

platforms impose high service fees and offer limited transparency in ride price, decision

making, and payment distribution [4, 1]. The lack of user control and the opacity of platform
operations reduce trust and exclude emerging regions from building their local ecosystems [5].

3. MOTIVATION

The limitations of centralized ride-sharing platforms have become increasingly evident in

recent years, particularly as concerns over data misuse, transparency, and platform control

continue to grow. Users entrust these platforms with highly sensitive information, including

their location history, payment credentials, and behavioral data—often with little insight into
how this information is used or shared [2]. Moreover, platform operators act as sole authorities

over pricing, commissions, dispute resolution, and access policies, creating a power imbalance

that undermines trust and user autonomy [4].

At the same time, the rapid evolution of decentralized technologies provides an opportunity to

reimagine the ride-sharing ecosystem. Blockchain technologies, in particular, offer built-in

mechanisms for transparency, immutability, and trustless interaction—qualities that directly
address the shortcomings of current centralized platforms. Public blockchains like Ethereum

allow smart contracts to automate and verify transactions in a transparent manner, reducing the

need for third-party arbitration [7]. However, public chains often suffer from limitations such as
high gas fees, limited throughput, and privacy concerns.

To address this, permissioned blockchains like Hyperledger Fabric present a compelling
alternative. With support for identity management and access control, Fabric enables selective

data disclosure and ensures compliance with privacy-sensitive use cases [3] [8] [9] . In our

system, sensitive user data such as identity and ride history is stored securely on a Hyperledger

Fabric chain, while ride coordination logic is deployed through Ethereum smart contracts to
maintain transaction transparency. This hybrid architecture aims to strike a balance between

confidentiality and openness.

Additionally, off-chain data storage remains a major challenge in blockchain-based

applications. To mitigate this, our platform integrates the InterPlanetary File System (IPFS), a

decentralized storage network that uses content-addressable hashes (CIDs) to retrieve
immutable files. This allows large, non-sensitive data such as GPS traces and vehicle logs to be

efficiently stored offchain while still maintaining verifiability [10]. To further enhance the

system’s flexibility and extensibility, the Cosmos SDK is used to bridge the Fabric and

Ethereum blockchains, enabling secure and seamless inter-chain communication [5].

Collectively, these technologies make it possible to design a ride-sharing platform that is not

only secure and privacy-preserving but also scalable and user-friendly. By eliminating
centralized intermediaries, we reduce operational overhead and give users greater control over

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

23

their data and interactions. Our motivation is to harness the strengths of decentralized
architectures particularly blockchain, IPFS, and Cosmos to create a next-generation ride-

sharing platform that empowers both riders and developers, with the potential for broad

adoption in regions underserved by current models.

4. OBJECTIVES

This research aims to design and implement a decentralized ride-sharing platform to overcome

centralized systems’ issues—data insecurity, opacity, monopolistic control, and rigid pricing.
The platform will be scalable, privacy-focused, and user-centric, using a hybrid blockchain that

blends public and permissioned networks for optimal benefits.

The specific objectives are:

• Ensure data privacy, integrity, and user ownership: The platform uses Hyperledger Fabric
for a permissioned blockchain with role-based access and certificate-based identities,

protecting personal data, ride history, and payments from unauthorized access or

tampering. Following self-sovereign identity principles, users retain full control of their

data.

• Enable transparent, auditable, and tamper-proof transactions: Ethereum smart contracts

will automate ride creation, fare calculation, and payments, ensuring immutability,

removing central authority reliance, and reinforcing trust and accountability.

• Utilize decentralized file storage for scalable metadata handling: The platform uses IPFS

to store large, non-sensitive files (e.g., driver logs, GPS data) off-chain, with CIDs
anchored on-chain, balancing scalability, security, and verifiability.

• Achieve cross-chain interoperability for seamless integration: To bridge blockchain

fragmentation, the platform uses Cosmos SDK for secure, modular communication
between Ethereum and Hyperledger Fabric, enabling synchronized cross-chain

operations and future integrations.

• Introduce a real-time, usage-based pricing model: The platform uses a dynamic ‘pay-
asyou-drive’ model, calculating fares from real-time trip duration, distance, and location

data to ensure transparent, fair pricing and discourage manipulation.

• Evaluate technical performance and economic feasibility: The system will be
benchmarked with Hyperledger Caliper for throughput, latency, and resource use,

alongside a cost analysis of infrastructure, bandwidth, energy, and scalability to ensure

technical and economic viability.

• Design for modular extensibility and upgradeability: The modular architecture supports

adding new blockchain services, APIs, or consensus mechanisms without major redesign,

ensuring long-term adaptability.

• Promote decentralized governance and control: The system reduces central authority

reliance by enabling trustless interactions via smart contracts, fostering fair governance

and enhancing credibility.

By achieving these objectives, the proposed platform aims to serve as a robust, secure, and fair

alternative to current ride-sharing solutions, benefiting both urban commuters and
underrepresented regions lacking infrastructure for centralized services.

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

24

5. LITERATURE REVIEW

Several blockchain-based approaches have been explored to decentralize and enhance ride-

sharing systems, with varying focuses on transparency, privacy, trust, scalability, and

interoperability. This chapter reviews key works in the field, synthesizing their methodologies,

findings, and limitations to position our research in the existing academic landscape.

Naik et al. [7] proposed a decentralized ride-sharing platform using Ethereum smart contracts to

eliminate intermediaries and promote trustless ride-matching and payment. Their solution
automated core operations such as ride booking and fare handling via a decentralized

application (DApp). While the system demonstrated improved transparency, it suffered from

high gas fees, limited scalability, and the absence of user data privacy mechanisms.
Enhancements such as incorporating off-chain storage and Layer-2 scaling solutions were

suggested to address these concerns.

Baza et al. [11] introduced B-Ride, a privacy-preserving ride-sharing framework built atop the
Ethereum blockchain. Their system leveraged zero-knowledge proofs (ZKPs) and time-locked

deposit protocols to ensure secure, fair, and anonymous transactions. The design effectively

reduced the need for user trust and provided strong privacy guarantees. However, the approach
was hampered by Ethereum’s performance limitations and the complexity of implementing

ZKPs, which restricted usability in real-world environments. The authors recommended using

scalable chains and alternative deposit models to improve practicality.

Shivers et al. [12] explored the use of Hyperledger Fabric in building a decentralized ride-

hailing platform for autonomous vehicles. Their system employed smart contracts to manage

vehicle coordination, user authentication, and secure data logging within a permissioned
blockchain environment. The platform showed robust performance under synthetic loads but

lacked integration with public chains for transparency and failed to address off-chain data

storage. Future work was proposed to incorporate decentralized file systems and real-world
deployment testing.

Mahmoud et al. [10] proposed a hybrid ride-sharing platform that integrates Ethereum with the

InterPlanetary File System (IPFS) to improve scalability and data efficiency. In their
architecture, non-sensitive ride metadata was uploaded to IPFS, and only content hashes were

stored on the blockchain to reduce on-chain bloat. While this design effectively minimized

storage overhead, it faced issues such as data retrieval latency, reliance on public IPFS nodes,
and unencrypted data exposure. The authors highlighted the need for encryption, private IPFS

clusters, and improved integration with backend systems.

Namasudra and Sharma [13] presented a decentralized cab-sharing system using

CiphertextPolicy Attribute-Based Encryption (CP-ABE) and Delegated Proof of Stake (DPoS)

for secure access control and consensus. Their solution provided fine-grained control over data

sharing and reduced dependency on centralized platforms. Despite its strong privacy model, the
system lacked support for dynamic ride-matching and integration with decentralized storage or

public smart contracts. Improvements were suggested in the form of hybrid models with smart

contracts and IPFS integration for broader utility.

Wang and Zhang [14] proposed a consortium blockchain-based ride-sharing framework that

emphasized secure ride-matching through attribute-based encryption and proxy re-encryption.

Their implementation used Delegated Proof of Stake (DPoS) for efficient consensus and aimed
to protect sensitive user data within a controlled network. The design offered high data

confidentiality but struggled with infrastructure costs, a lack of public transparency, and limited

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

25

data interoperability. Proposed future directions included cross-chain protocols like Cosmos
SDK and off-chain storage for metadata.

Chang et al. [4] developed a smart contract-driven ride-sharing platform using Ethereum that

incorporated automated fare calculation, user authentication, and trust scoring. The system
allowed decentralized execution of core platform functions and reduced operational overhead.

However, it lacked privacy features and showed poor performance at scale due to Ethereum’s

congestion and limited throughput. The authors acknowledged the potential for privacy-
preserving techniques and recommended shifting to Layer-2 solutions or combining with

permissioned blockchains for better performance.

Tariq et al. [15] proposed a fully decentralized peer-to-peer ride-sharing platform built on

Ethereum. The system leverages smart contracts for ride creation, user verification, matching,

and payments, eliminating the need for intermediaries. A token-based incentive structure

promotes user engagement, and the platform was deployed on Ethereum testnets to analyze gas
consumption and transaction latency. Despite achieving transparency and decentralization, the

platform suffers from high gas costs, lacks privacy mechanisms such as zero-knowledge proofs

(ZKPs), and omits decentralized storage integration like IPFS.

Koubaa et al. [16] presented a comprehensive survey of blockchain-based ride-sharing systems,

categorizing them based on architecture types, consensus mechanisms (e.g., PoW, PoS, PBFT),
and privacy models. The survey identifies key issues such as scalability bottlenecks, identity

management, secure data sharing, and throughput limitations. It also discusses potential future

integrations with IoT for real-time mobility. However, the work is entirely theoretical, lacking

any implementation, benchmarking, or discussion of decentralized storage or blockchain
interoperability solutions such as Cosmos SDK.

Zhang and Wen [17] introduced a hybrid IoT blockchain framework that combines vehicle
telemetry data with Ethereum-based smart contracts to enable dynamic ride-matching and fraud

prevention. The system uses sensor data (e.g., location, speed) for route verification and

incorporates a reputation model to deter malicious actors. While it supports real-time

transparency and trust, the framework depends on stable IoT infrastructure, incurs high
operational costs due to gas fees, and lacks privacy-preserving techniques or decentralized data

offloading.

These studies reflect growing interest in decentralized mobility solutions but reveal recurring

limitations, most notably, the lack of scalable privacy-preserving systems, real-time data

handling, and interoperability between hybrid blockchains. Our proposed system addresses
these gaps by combining Hyperledger Fabric for permissioned data storage, Ethereum for

transparent contract execution, IPFS for decentralized off-chain storage, and the Cosmos SDK

for secure inter-chain communication. A novel pay-as-you-drive mechanism further improves

fairness and usability over time-locked deposit models seen in earlier works.

6. METHODOLOGY

This chapter outlines the methodology used to develop a decentralized ride-sharing system built
on a hybrid blockchain architecture. The system leverages Hyperledger Fabric, the Ethereum

public blockchain, the RAFT consensus algorithm, MetaMask wallet integration, the Cosmos

SDK for blockchain interoperability, and IPFS for decentralized storage. The approach is

design-based, focusing on building a practical and scalable framework that addresses key
limitations in existing blockchain-based ride-sharing solutions. This methodology aligns with

the research objectives by integrating a secure hybrid blockchain architecture and decentralized

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

26

storage mechanisms. It provides a real-world solution to challenges such as lack of
transparency, limited traceability, and compromised data integrity. The following subsections

detail the system architecture, the technologies employed, and the operational workflow of the

proposed solution.

6.1. System Architecture and Design

Figure 1 illustrates the blockchain-enabled architecture of the proposed ride-sharing

application, which consists of two main modules: user management and ride-sharing. The

system securely registers vehicles, drivers, and passengers through smart contracts, ensuring

verified identities and trusted participation. The ride workflow is organized into five clear
steps: the driver posts ride information, passengers book the ride, drivers confirm the booking,

passengers pay at the end of the trip, and drivers close the ride session, preventing further

requests. This structured process promotes transparency, efficiency, and accountability. At the
core, a Hyperledger-based private blockchain stores sensitive user data, including personal

details and ride histories, under strict permissioned access. To reduce blockchain storage load

and improve redundancy, IPFS is integrated to store vehicle-related data such as descriptions
and maintenance records, benefiting from its decentralized and censorship-resistant nature. An

Ethereum public blockchain powers smart contracts for ride matching, fare calculation, and

payment settlements, ensuring automation, transparency, and immutability. To bridge the two

blockchain layers, the system employs Cosmos, enabling secure and seamless interoperability.
This hybrid approach leverages the privacy and control of private blockchains with the

openness and trust guarantees of public blockchains, creating a scalable, secure, and user-

centric ride-sharing platform.

i. Decentralized and Immutable Information Storage using IPFS

The system uses a hybrid architecture for secure, scalable storage. Sensitive data—personal

details, vehicle info, ride history, and payments—is stored on Hyperledger Fabric’s

permissioned blockchain, while large non-sensitive data (e.g., GPS logs, ride metadata) is

stored on IPFS. During registration, sensitive data is encrypted and stored as tamper-proof
blocks on Hyperledger, and bulk data is uploaded to IPFS, generating a unique Content

Identifier (CID) anchored on Hyperledger. For retrieval, authorized users decrypt on-chain data

or use CIDs to fetch files from IPFS, verifying integrity by matching hashes. This dual-layer
design reduces blockchain overhead, ensures immutability, and balances privacy with

decentralized scalability for efficient, secure ridesharing.

ii. User Information Verification and Upload

The first step of the system focuses on verifying the authenticity of user information and

securely uploading any related files. This verification is crucial, especially in case of drivers, as
it ensures

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

27

Figure 1: System Architecture

that the information being registered is genuine and trustworthy. Once users log in and register,

they begin by submitting all required documents linked to their vehicles, such as driving

licenses, national ID card, or vehicle papers.

These submissions are carefully validated through an advanced authentication process that

checks multiple aspects of authenticity. First, the system performs a basic format check to make

sure everything is complete and correctly structured. Then, it uses cryptographic hashing to
create a unique digital fingerprint of the submitted user data. This fingerprint is cross-checked

against existing entries on the blockchain to detect duplicates or any signs of unauthorized use.

Figure 2: Working Mechanism of IPFS for storing and retrieving user files

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

28

Figure 3: Internal Working Mechanism of Hyperledger Fabric

iii. Uploading User Files to IPFS

Once the user details have been verified and approved, any associated media files—such as

images, videos, or documents—go through a preparation phase to ensure they’re stored
securely and efficiently. These files are first broken down into smaller, manageable chunks

using cryptographic hashing. This process generates a unique, fixed-size hash for each segment,

helping maintain data integrity and making it easier to track and retrieve the files.

The segmented media is then uploaded to IPFS (InterPlanetary File System), a decentralized

storage network that distributes data across a peer-to-peer system. Unlike traditional centralized

storage methods, IPFS improves reliability by storing copies of the data on multiple nodes,
minimizing the risk of data loss or corruption. This decentralized structure also makes it more

secure and scalable—especially useful when handling large media files tied to intellectual

property.

After uploading, IPFS assigns each file a unique Content Identifier (CID). This CID acts as a

digital fingerprint of the file, permanently linked to its exact content and version. Even a small
change in the file will generate a completely different CID, ensuring that the data remains

tamperproof. The blockchain then uses this CID to reference the precise version of the media

stored in IPFS. Figure ??illustrates how IPFS operates behind the scenes.

iv. Storing the CID

After IPFS generates the CID, it is recorded on Hyperledger Fabric for traceability and
integrity, with a client transaction proposal triggering the relevant smart contract.

The transaction is first reviewed by a specific group of endorsing peers, as defined by the
network’s endorsement policy. Each of these peers simulates the transaction using its current

ledger state without actually committing any changes and returns a digitally signed read-write

set as its endorsement. Once the client collects enough valid endorsements, it packages the

transaction and forwards it to the ordering service. The ordering service, powered by the RAFT
consensus algorithm, arranges all submitted transactions in a consistent global order. These

transactions are bundled into blocks, which are sent to the leader peer in each organization. The

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

29

leader then distributes the blocks to other peers in the network. Every peer independently
validates the block

Figure 4: Interoperability architecture for synchronizing transactions across Hyperledger and Ethereum

using Cosmos SDK

by verifying the endorsement signatures and ensuring it complies with the set policies. If

everything checks out, the block is committed to the ledger, making the CID a permanent part
of the blockchain’s immutable record. Since the CID is a cryptographic fingerprint of the media

stored on IPFS, it serves as a reliable, tamper-proof reference to the original content. Figure 3

illustrates the inner workings of this Hyperledger Fabric–based private blockchain system.

v. Interoperability between Public and Private Blockchains

As shown in Figure 4, the proposed architecture enables secure interoperability between
Hyperledger Fabric and Ethereum using the Cosmos SDK Bridge. Fabric handles encrypted

ride/user data, stored off-chain in IPFS with CIDs anchored on-chain. Key Fabric events are

relayed to Ethereum, where event hashes are recorded for verifiable proof without exposing
sensitive data. Users access the system via DApps using MetaMask and Web3.js. This hybrid

design combines Fabric’s privacy, Ethereum’s transparency, and IPFS’s efficiency. However,

real-world use may face issues like clock skew and differing finality, requiring custom retry

and validation logic.

vi. Smart Contracts Workflow

The proposed system consists of two main contracts: the UserManagementContract for user

management and the RideSharingContract to handle ride-sharing functions. Additionally, a

utility contract contains utility functions, such as converting poisha to wei, to assist with
various calculations within the ride-sharing DApp. Figure 5 illustrates the detailed workflow of

the smart contract within the ride-sharing DApp.

UserManagementContract is responsible for managing operations related to the user within the
ride-sharing DApp. It handles user registration, authentication, and profile management. Users

can register by providing their necessary information, including their Ethereum wallet address

and personal details. The contract verifies the user’s identity and stores the relevant information
securely on the blockchain. It also allows users to update their profile information, view their

ride history, and manage their preferences. The RideSharingContract serves as the core

contract for facilitating ride-sharing functionalities. It handles operations related to creating

rides, joining rides, and managing ride details. Users can create rides by specifying parameters
such as the starting location, destination, time, and available seats. The contract validates the

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

30

input data, creates a new ride instance, and adds it to the list of active rides. It also maintains a
participant

Figure 5: Smart Contract Workflow

list for each ride, keeping track of the users who have joined. Users can join existing rides by

interacting with the RideSharingContract. The contract verifies seat availability, adds the user
to the participant list, and updates the ride details accordingly.

It also allows users to view ride details, including the creator, participants, starting location,
destination, and time, providing transparency and facilitating communication between ride

participants. The Utility Contract includes utility functions that support various calculations and

conversions required within the ride-sharing DApp. For example, it may provide functions to

convert poysha (a subdivision of the Bangladeshi Taka) to wei (the smallest denomination of
ether in the Ethereum network) to handle payment calculations. These utility functions

streamline the process of converting between different currency units, ensuring accurate and

consistent calculations throughout the application. By utilizing these main contracts, the
proposed system establishes a decentralized ride-sharing platform that allows users to manage

their profiles, create and join rides, and perform necessary calculations for payments. The

contracts leverage the security and transparency of the Ethereum blockchain, providing a
reliable and trustless environment for ride-sharing operations. In failure scenarios like payment

drop or sudden ride cancellation, the system queues those states and retries contract validation

through a hashed log checkpoint system, ensuring consensus integrity is maintained.

6.2. Network Setup and Configuration

Before setting up the full Hyperledger Fabric network, several key tools and environments were

prepared to support the early phases of development and deployment. These prerequisites help

ensure that all parts of the system—from chaincode development to container management—

can be properly configured and tested.

At this stage, the chaincode includes only an example chaincode and currently uses a static

IPFS hash, as the integration with IPFS and Ethereum Blockchain is still pending. Although the
complete system is still in progress, the following section outlines the work completed so far.

6.2.1. Prerequisites

The following tools and dependencies were installed:

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

31

• Visual Studio Code (VS Code): Used for writing chaincode, network configurations, and
scripts. Its integrated terminal and Fabric extensions facilitate development.

• Node.js and npm: Essential for running the Fabric SDK client application and managing

project dependencies. Also required to run the React development server, manage
dependencies, and build the frontend application.

• Golang (Go): Required for writing and compiling chaincode. Go is the primary language
for Hyperledger Fabric smart contracts.

• Git: Used for version control and cloning Fabric samples and network configuration

scripts from official repositories.

• Hyperledger Fabric Binaries: Tools like cryptogen, configtxgen, and peer CLI were

downloaded and used for generating cryptographic material, creating the genesis block,

and managing channels.

• Vagrant: Vagrant is a tool for managing virtual environments. The acloudfan/hlfdev2.2.0

box provides a ready-to-use setup for Hyperledger Fabric v2.2 which includes Fabric

tools. It helps developers to launch and test Fabric networks.

With the prerequisites in place, the network setup process involved generating crypto material,

configuring channels, deploying smart contracts (chaincode), and launching the Fabric network.

6.2.2. System Configuration Tasks

The following setup tasks were performed to initialize and configure the Hyperledger Fabric
network and IPFS integration:

• Crypto Material Generation: Generated certificates and keys using the cryptogen tool
based on the crypto-config.yaml file.

• Channel Configuration Generation: Created the genesis block and channel transaction

configuration using configtxgen.

• Creating the Channel: Created the application channel using the create command.

peer channel create -o $ORDERER_ADDRESS \
-c acmechannel -f $CONFIG_DIRECTORY /acme-channel.tx

• Joining the Channel: Peer nodes joined the created channel by referencing the channel
block.

configtxgen-profileAcmeOrdererGenesis\
- channelIDordererchannel\
- outputBlock./acme-genesis.block

configtxgen-profileAcmeChannel\
- channelIDacmechannel\
- outputCreateChannelTx./acme-channel.tx

cryptogengenerate--config=./crypto-config.yaml

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

32

where the ORDERER ADDRESS=”localhost:7050”

• Chaincode Packaging: Packaged the chaincode (smart contract) into a compressed

archive for deployment.

• Chaincode Installation: Installed the packaged chaincode on each peer node.

• Chaincode Approval: Approved the chaincode definition on behalf of each organization.

• Chaincode Commit: Committed the chaincode definition to the channel after collecting

required approvals.

• Chaincode Invocation: Invoked the chaincode by using Invoke function.

• IPFS Installation and Setup: Installed IPFS to enable decentralized file storage for IP

content and metadata.

• Frontend Design: Some of the pages, such as the homepage, user registration, login, and

admin dashboard, are designed using React.js.

peerchaincodeinvoke-Cacmechannel\
- ngocc-c’{"Args":["invoke","a","b","10"]}’

peerlifecyclechaincodecommit-ngocc\
- v1.0-Cacmechannel--sequence 1.

peerlifecyclechaincodeapproveformyorg\
- nipcc-v1.0-Cacmechannel\
-- sequence1--package-id$CC_PACKAGE_ID

peerlifecyclechaincodeinstall$CC_PACKAGE_FILE

peerlifecyclechaincodepackage\
$CC_PACKAGE_FILE-pchaincode_example02\
-- label$CC_LABEL

peerchanneljoin-o$ORDERER_ADDRESS\
- b./acmechannel.block

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

33

Table 1: Cost analysis for a Hyperledger node setup

Cost Category Description
Estimated Cost (per

unit)

CPU
AMD Ryzen 7 5700X3D for efficiently

running the node and smart contracts.
20,000 BDT per CPU

RAM

Least amount of memory required for

running the node for smoothly processing

transactions (16 GB).

5,500 BDT per 16GB

module

Storage
SSD (Solid State Drive) for storing

blockchain data, logs, and other metadata.

4,500 BDT per 512

GB SSD

IPFS Storage
Cost for decentralized storage using IPFS (if

self-hosted).
5 BDT per GB/month

Stable Internet

Connection

A minimum 40 Mbps broadband

connection is required for low-latency node

communication and faster response.

1,500 BDT per month

per node

Power

Consumption

Electricity costs for running Hyperledger

nodes and supporting the required hardware

to run the nodes.

2,500 BDT per month

per node

Total

34,000 BDT

(approx.)

7. RESULT ANALYSIS

A cost analysis (Table 1) estimates the monthly expense of deploying a single node at 33,000

BDT. This includes an AMD Ryzen 7 5700X3D CPU (20,000 BDT) for smart contract

execution, 16 GB RAM (5,500 BDT) for smooth transaction processing, and a 512 GB SSD

(4,500 BDT). IPFS storage adds 5 BDT/GB/month, 40 Mbps broadband costs 1,500
BDT/month, and power consumption is 2,500 BDT/month. The configuration is both cost-

effective and scalable, supporting secure and transparent ride-sharing.

7.1. Theoretical Result Analysis

This section provides a theoretical analysis of the performance metrics of a blockchain- based
system designed to build a ride-sharing system using Hyperledger Fabric, IPFS, and Ethereum

public blockchain. The consensus algorithms compared include RAFT, Proof of Stake (PoS),

Proof of Work (PoW), and PoA (Proof of Authority).

7.1.1. CPU Usage Estimation

It shows the proportion of processor power used for processing transactions and reaching a
consensus. Greater computational load is implied by higher values. The following generic

equation is used to estimate the CPU utilization for each consensus algorithm[18].

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

34

where:

• N is the number of transactions

• BaseCpu is the base CPU usage percentage

• δ is the CPU growth rate per 1,000 transactions

Table 2: CPU usage coefficients

Consensus BaseCpu δ

PoW 60 0.5

RAFT 15 0.3

PoS 20 0.25

PoA 12 0.2

7.1.2. Latency Estimation

Latency indicates the time delay (in milliseconds) from submitting a transaction to its

confirmation. Lower latency means faster transaction finality. The latency per transaction batch
is estimated by [19]:

where:

• L0 is the base latency due to consensus protocol

• Lipfs ≈ 30 ms is the average IPFS overhead

• Lnet ≈ 40 ms is the assumed network latency

• γ is the queuing/congestion growth factor

7.1.3. Transaction Throughput (TPS) Estimation

TPS measures how many transactions a blockchain system can process per second. Higher TPS

indicates better throughput. TPS is derived from latency using [20]:

This formula estimates the number of transactions per second for a given number of

transactions N by inverting the total latency per batch.

The TPS, latency, and CPU utilization percentage for each consensus mechanism were
determined using the algorithms mentioned above, and their interpretations are given in the part

that follows.

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

35

Table 3: Latency coefficients

Consensus L0 (ms) γ (ms/1k tx)

PoW 2500 100

RAFT 50 20

PoS 150 25

PoA 80 35

7.1.4. Graphical Analysis and Interpretation

To assess the performance of the suggested blockchain-based ride-sharing system, we

examined how four distinct consensus mechanisms—RAFT, PoS, PoW, and PoA—performed

over 10,000 transactions in 1,000-transaction increments. Three major performance measures
were used to display the results: CPU utilization, latency, and Transactions Per Second (TPS).

Figure 6: Transactions Per Second (TPS) vs Number of Transactions

1. TPS vs Transactions (Figure 6): From the TPS graph, PoA exhibits the highest throughput
across all transaction loads, consistently maintaining over 190 TPS even at 10,000

transactions. This highlights the efficiency of PoA’s lightweight, authority-based consensus,

which minimizes communication overhead and block validation time. RAFT closely

follows, starting above 210 TPS and gradually decreasing to 160 TPS as transaction volume
increases. This steady performance reflects RAFT’s optimized ordering service in

Hyperledger Fabric, though its need for endorsement and block packaging slightly limits

scalability under load.

PoS performs moderately well, starting around 160 TPS but steadily declining to 110 TPS

by 10,000 transactions. This drop may be attributed to validator communication overhead

and the cost of maintaining network consensus as transaction volume increases. PoW, on the
other hand, delivers the lowest throughput, starting near 50 TPS and falling to just 28 TPS.

This aligns with its high computational cost and block propagation delay, making PoW

unsuitable for real-time, high-throughput systems like decentralized ride-sharing platforms.

2. Latency vs Transactions (Figure 7): Latency increases progressively across all consensus

mechanisms as the transaction count grows from 1,000 to 10,000. Among them, PoW
exhibits the

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

36

Figure 7: Latency (ms) vs Number of Transactions

highest latency, reaching approximately 1000 ms at peak load, primarily due to the
computational burden of mining and slow block propagation. PoS shows moderate latency

growth, rising to around 550 ms by the 10,000th transaction—this is attributable to validator

rotation, slot scheduling, and network consensus delay.

In contrast, RAFT maintains comparatively low latency, starting at 150 ms and gradually

increasing to 420 ms. This reflects the benefits of deterministic finality and efficient leader-

based block ordering in Hyperledger Fabric. PoA outperforms all others in latency, staying
under 320 ms throughout the test, owing to its simplified block validation model and

minimal consensus overhead. These results suggest that for latency-sensitive applications

such as real-time ride-matching, PoA and RAFT are more suitable, while PoW may not be
ideal due to its high delay.

Figure 8: CPU Usage (%) vs Number of Transactions

3. CPU Usage vs Transactions (Figure 8): CPU usage illustrates the relative computational

demands of each consensus mechanism under increasing transaction loads. PoW exhibits the
steepest curve, beginning at 60% and escalating to nearly 90% at 10,000 transactions,

reflecting its intensive mining operations and constant hash computation. This makes PoW

highly inefficient and resource-consuming for scalable blockchain applications on standard
hardware.

In contrast, RAFT and PoA maintain low to moderate CPU usage, staying well below 40%

even under peak load. RAFT benefits from a streamlined leader-based approach, while PoA

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

37

gains efficiency by eliminating competitive consensus entirely. PoS falls between the two
extremes, reaching about 44% at maximum load, primarily due to validator messaging and

signature verification overhead. These results confirm that RAFT and PoA are the most

efficient choices for CPU-constrained environments, making them ideal for real-time,

decentralized ride-sharing systems or IP marketplaces.

4. Comparison between RAFT and PoA: Although Proof of Authority (PoA) may outperform

RAFT in terms of raw throughput, latency, and CPU usage due to its lightweight and
centralized nature, RAFT offers greater reliability, security, and suitability for enterprise

applications. As a consensus mechanism used in permissioned networks like Hyperledger

Fabric, RAFT ensures deterministic finality, multi-party endorsement, and support for
private data handling—features that PoA lacks. While PoA is ideal for scenarios prioritizing

speed over decentralization, RAFT is better suited for systems requiring robust governance,

privacy, and auditability, making it a more practical choice for secure, multi-organizational

ride-sharing platform.

From the graphs and performance analysis, we can conclude that:

• RAFT offers a strong balance of high TPS, low latency, and moderate CPU usage, while

also ensuring enterprise-grade reliability, privacy, and deterministic finality. It is best

suited for secure, multi-organizational ride-sharing systems requiring auditability and
governance.

• PoA demonstrates superior raw performance in terms of throughput, latency, and CPU

efficiency due to its lightweight, centralized nature. However, it lacks the
decentralization and data control features required for trust-sensitive environments.

• PoS maintains a reasonable compromise between performance and decentralization, with

moderate CPU consumption and stable TPS. It may suit open ecosystems where
validatorbased trust is acceptable.

• PoWperforms the worst in all metrics, showing high latency and CPU usage with the

lowest TPS. Its resource-intensive nature makes it impractical for real-time, large-scale
deployments.

These results validate the choice of RAFT as the preferred consensus mechanism for
implementing a privacy-preserving, scalable, and efficient hybrid blockchain architecture in the

proposed decentralized ride-sharing platform.

7.2. Practical Result Analysis

Using mathematical formulas, a thorough theoretical analysis was carried out in Section 1 to
estimate important performance parameters including TPS, latency, and CPU utilization

percentage across various consensus techniques (RAFT, PoS, PoW, and PoA). System-level

variables including IPFS overhead, network latency, and transaction load were taken into
account in these estimations. However, an open source blockchain performance benchmarking

tool called Hyperledger Caliper will be used to benchmark the final implementation of the

suggested system in order to verify these results under actual execution settings. Real TPS, end-

to-end latency, resource use, and transaction success rate are just a few examples of the
empirical performance metrics that Caliper will offer. This will guarantee that the system

performs as expected under workloads encountered in the real world.

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

38

8. CONCLUSION AND FUTURE WORKS

This study proposes a hybrid blockchain ride-sharing architecture using Hyperledger Fabric,

IPFS, and Ethereum to tackle data centralization, opacity, and limited user control. Leveraging

smart contracts, off-chain storage, and cross-chain sync, it enables secure ride management,

private data storage, and auditable fares.

The research demonstrates the platform’s feasibility: Hyperledger Fabric with RAFT enables

trusted, low-latency transactions; IPFS stores ride logs and documents; Ethereum provides
public event verification and ride tokens; and a React.js frontend delivers real-time booking,

role-based access, dynamic maps, and live tracking.

Consensus benchmarking found PoA fastest and most efficient, but RAFT delivered the best
mix of performance, reliability, and security. PoW was resource-heavy and ill-suited for high-

frequency use, supporting RAFT’s selection for a secure, multi-organizational ride-sharing

platform.

Though still in development, the project’s hybrid use of Fabric, Ethereum, and IPFS provides a

solid foundation for scalable, decentralized ride-sharing.

Looking ahead, the following future enhancements are planned:

• Smart Contract Completion: Extend chaincode logic to cover all stages of ride lifecycle,

including booking, cancellation, fare disputes, and rating. Enable Ethereum-based token

integration for payment verification and user incentives.

• Frontend and UX Improvements: Enhance the UI with driver verification, surge pricing

display, payment integration, and admin controls, progressing toward a mobile-ready

app.

• Backend Middleware Development: A Node.js or Golang backend will handle API calls,

blockchain interaction, authentication, and metadata retrieval.

• Metadata Handling and Database Support: MongoDB will be used store off-chain user
and transaction metadata.

• Migration to Docker-based Infrastructure: The current Vagrant setup will be replaced

with Docker to simplify containerized deployment, CI/CD integration, and system
scalability.

• System Benchmarking and Performance Testing: After complete integration,

Hyperledger Caliper will benchmark latency, TPS, CPU usage, and fault tolerance to
validate results.

In conclusion, this work contributes to the growing research in decentralized mobility systems
by proposing a hybrid blockchain framework that is both technically viable and practically

scalable. With continued development, the system holds the potential to revolutionize the ride-

sharing ecosystem by empowering users with transparency, security, and control over their data
and interactions.

REFERENCES

[1] Gasca, M.-V. and Rigo-Mariani, R. and Debusschere, V. and Sidqi, Y., (2025). Fairness in energy

communities: Centralized and decentralized frameworks. Renewable and Sustainable Energy

Reviews 208, 115054.

[2] Jamal, H. and Algeelani, N. A. and Al-Sammarraie, N., (2024). , 46–54.

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

39

[3] Chowdhury, S. J. and Aich, E. and Reno, S. and Ahmed, M., (2022). Utilizing hyperledger based

private blockchain technology to secure credit card payment system.

[4] Chang, S. E. and Chang, E. C. and Chen, Y., (2022). , 13732.

[5] Theodorakopoulos, L. and Theodoropoulou, A. and Halkiopoulos, C., (2024). , 7007.

[6] Reno, S. and Sadi, I. and Karmakar, J. and Abir, M., (2021). Counterfeit medicine identification

using hyperledger based private blockchain.

[7] Naik, M. and Singh, A. P. and Pradhan, N. R., (2024). Decentralizing ride-sharing: a blockchain-

based application with smart contract automation and performance analysis. Multimedia Tools

and Applications, 1–28.

[8] Yuan, Y. and Wang, F. Y., (2018). , 3133–3142.

[9] Kang, J. and Yu, R. and Huang, X. and Maharjan, S. and Zhang, Y., (2019). , 111–117.

[10] Mahmoud, N. and Aly, A. and Abdelkader, H., (2022). Enhancing blockchain-based ridesharing

services using ipfs. Intelligent Systems with Applications 16, 200135.

[11] Baza, M. and Lasla, N. and Mahmoud, M. M. and Srivastava, G. and Abdallah, M., (2019). ,

1214–1229.

[12] Shivers, R. and Rahman, M. A. and Faruk, M. J. H. and Shahriar, H. and Cuzzocrea, A. and
Clincy, V., (2021). Ride-hailing for autonomous vehicles: Hyperledger fabric-based secure and

decentralize blockchain platform.

[13] Namasudra, S. and Sharma, P., (2022). , 15568–15577.

[14] Wang, D. and Zhang, X., (2020). , 2976–2991.

[15] Tariq, M. and Ali, H. and Rehman, M., (2023). A decentralized ethereum-based ride-sharing

platform: Architecture and performance analysis. Journal of Blockchain Applications, 1–17.

[16] Koubaa, A. and Qureshi, H. and Afzal, A., (2023). Blockchain-based ride-sharing systems: A

comprehensive survey. IEEE Access 11, 56012–56035.

[17] Zhang, Y. and Wen, J., (2022). , 1456.

[18] Melo, C. and Oliveira, F. and Dantas, J. and Araujo, J. and Pereira, P. and Maciel, R. and Maciel,

P., (2022). , 12505–12527.

[19] Piao, X. and Li, M. and Meng, F. and Song, H., (2022). Latency analysis for raft consensus on

hyperledger fabric.

[20] Thakkar, P. and Nathan, S. and Viswanathan, B., (2018). Performance benchmarking and

optimizing hyperledger fabric blockchain platform.

AUTHORS

Rayhan Ferdous Srejon is currently pursuing his Bachelor of Science (B.Sc.) degree in

Computer Science and Engineering at Ahsanullah University of Science and Technology

(AUST), Dhaka, Bangladesh. He is deeply passionate about innovative technologies and

has developed a strong interest in the fields of Blockchain, Artificial Intelligence (AI),

Machine Learning (ML), and Deep Learning (DL).

Mostafizur Rahman Fahim is completing his Bachelor of Science (B.Sc.) degree in

Computer Science and Engineering at Ahsanullah University of Science and Technology

(AUST), Dhaka, Bangladesh. He has a strong research interest in the fields of Blockchain,

Machine Learning (ML), and Deep Learning (DL).

Sk.Md. Shadman Ifaz is a final year student in Computer Science and Engineering at

Ahsanullah University of Science and Technology (AUST), Dhaka, Bangladesh. He has

developed a strong interest in the fields of Blockchain, Machine Learning (ML), and Deep

Learning (DL).

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.4, August 2025

40

Md. Khairul Hasan is currently working as an Associate Professor in the department of

Computer Science and Engineering at Ahsanullah University of Science and Technology.

With over 24 years of teaching experience, he has published 13 research paper. He

received the B. Sc. degree in Computer Science and Engineering from Ahsanullah

University of Science and Technology, Dhaka, Bangladesh and the M.Sc. degree in
Computer Science and Engineering from United International University, Dhaka, Bangladesh. His

research interests include computational intelligence, neural networks, blockchain, optimization, and

their applications.

Raful Awal Nafi has successfully completed his Bachelor of Science (B.Sc.) degree in

Computer Science and Engineering at Ahsanullah University of Science and Technology

(AUST), Dhaka, Bangladesh. He is passionate about innovative technologies with a

strong focus on Blockchain, IoT, Machine Learning (ML), Computer Vision, and web-

based intelligent systems.

Nabila Rahman holds a Bachelor of Science (B.Sc.) degree in Computer Science and

Engineering from Ahsanullah University of Science and Technology (AUST), Dhaka,
Bangladesh. With a strong academic background and a keen interest in emerging

technologies, her core areas of focus include Blockchain, Artificial Intelligence (AI), and

secure computing.

	Abstract
	1. Introduction
	2. Problem Statement
	3. Motivation
	4. Objectives
	5. Literature Review
	6. Methodology
	6.1. System Architecture and Design
	i. Decentralized and Immutable Information Storage using IPFS
	ii. User Information Verification and Upload
	iii. Uploading User Files to IPFS
	iv. Storing the CID
	v. Interoperability between Public and Private Blockchains
	vi. Smart Contracts Workflow

	6.2. Network Setup and Configuration
	6.2.1. Prerequisites
	6.2.2. System Configuration Tasks

	7. Result Analysis
	7.1. Theoretical Result Analysis
	7.1.1. CPU Usage Estimation
	7.1.2. Latency Estimation
	7.1.3. Transaction Throughput (TPS) Estimation
	7.1.4. Graphical Analysis and Interpretation

	7.2. Practical Result Analysis

	8. Conclusion and Future Works
	References
	Authors

