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ABSTRACT 
 
Ride-sharing platforms have revolutionized urban mobility, offering millions of users convenient and 

costeffective transportation. However, mainstream centralized platforms such as Uber and Lyft continue 

to face pressing concerns including data privacy breaches, high service charges, security vulnerabilities, 

and a lack of transparency due to centralized control. To address these limitations, this research 

proposes a semipublic blockchain-based ride-sharing platform integrating Hyperledger Fabric for 

secure and permissioned data management with Ethereum smart contracts for transparent ride booking, 

fare calculation, and payments. The platform leverages the InterPlanetary File System (IPFS) for 

immutable, decentralized storage and uses the Cosmos SDK to enable seamless interoperability between 

public and private blockchains. A user-centric pay-as-you-drive model is introduced to ensure fair and 

distance-based billing. Preliminary evaluations show that our system outperforms traditional blockchain 

consensus methods (PoW, PoA) in throughput, latency, and resource usage. At the same time, it remains 
economically viable with an operational cost of under 33,000 BDT per node. Future improvements 

include benchmarking with Hyperledger Caliper, transitioning from Vagrant to Docker for better 

scalability, and implementing backend services using Node.js or Golang with MongoDB for efficient 

metadata handling. Together, these enhancements support a secure, decentralized, and scalable 

alternative to existing ride-sharing systems. 
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1. INTRODUCTION 
 

Ride-sharing has fundamentally changed urban transportation, providing users with a more 

flexible and affordable alternative to traditional taxi services. Companies such as Uber, Lyft, 
and Pathao have demonstrated the value of real-time ride coordination through centralized 

platforms. 

 
However, while these systems are effective in terms of usability and scalability, they come with 

significant drawbacks, particularly around data privacy, high operational costs, and centralized 

control [1, 2]. As more personal and transactional data is collected and stored on centralized 

servers, users are increasingly vulnerable to data breaches and surveillance [2, 3]. In addition, 
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drivers and riders remain at the mercy of platform policies and pricing structures, without true 
control over their interactions [4]. In this context, decentralization using blockchain 

technologies presents a promising path forward [5]. 

 

2. PROBLEM STATEMENT 
 

Existing ride-sharing platforms operate on a centralized architecture, where sensitive user 

information such as identity, location, and financial details is managed and stored by a single 

entity. This creates a critical point of failure, making the system vulnerable to cyberattacks, 
data breaches, manipulation, and unregulated third-party access [2, 3, 6]. Furthermore, these 

platforms impose high service fees and offer limited transparency in ride price, decision 

making, and payment distribution [4, 1]. The lack of user control and the opacity of platform 
operations reduce trust and exclude emerging regions from building their local ecosystems [5]. 

 

3. MOTIVATION 
 
The limitations of centralized ride-sharing platforms have become increasingly evident in 

recent years, particularly as concerns over data misuse, transparency, and platform control 

continue to grow. Users entrust these platforms with highly sensitive information, including 

their location history, payment credentials, and behavioral data—often with little insight into 
how this information is used or shared [2]. Moreover, platform operators act as sole authorities 

over pricing, commissions, dispute resolution, and access policies, creating a power imbalance 

that undermines trust and user autonomy [4]. 
 

At the same time, the rapid evolution of decentralized technologies provides an opportunity to 

reimagine the ride-sharing ecosystem. Blockchain technologies, in particular, offer built-in 

mechanisms for transparency, immutability, and trustless interaction—qualities that directly 
address the shortcomings of current centralized platforms. Public blockchains like Ethereum 

allow smart contracts to automate and verify transactions in a transparent manner, reducing the 

need for third-party arbitration [7]. However, public chains often suffer from limitations such as 
high gas fees, limited throughput, and privacy concerns. 

 

To address this, permissioned blockchains like Hyperledger Fabric present a compelling 
alternative. With support for identity management and access control, Fabric enables selective 

data disclosure and ensures compliance with privacy-sensitive use cases [3] [8] [9] . In our 

system, sensitive user data such as identity and ride history is stored securely on a Hyperledger 

Fabric chain, while ride coordination logic is deployed through Ethereum smart contracts to 
maintain transaction transparency. This hybrid architecture aims to strike a balance between 

confidentiality and openness. 

 
Additionally, off-chain data storage remains a major challenge in blockchain-based 

applications. To mitigate this, our platform integrates the InterPlanetary File System (IPFS), a 

decentralized storage network that uses content-addressable hashes (CIDs) to retrieve 
immutable files. This allows large, non-sensitive data such as GPS traces and vehicle logs to be 

efficiently stored offchain while still maintaining verifiability [10]. To further enhance the 

system’s flexibility and extensibility, the Cosmos SDK is used to bridge the Fabric and 

Ethereum blockchains, enabling secure and seamless inter-chain communication [5]. 
 

Collectively, these technologies make it possible to design a ride-sharing platform that is not 

only secure and privacy-preserving but also scalable and user-friendly. By eliminating 
centralized intermediaries, we reduce operational overhead and give users greater control over 
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their data and interactions. Our motivation is to harness the strengths of decentralized 
architectures particularly blockchain, IPFS, and Cosmos to create a next-generation ride-

sharing platform that empowers both riders and developers, with the potential for broad 

adoption in regions underserved by current models. 

 

4. OBJECTIVES 
 

This research aims to design and implement a decentralized ride-sharing platform to overcome 

centralized systems’ issues—data insecurity, opacity, monopolistic control, and rigid pricing. 
The platform will be scalable, privacy-focused, and user-centric, using a hybrid blockchain that 

blends public and permissioned networks for optimal benefits. 

 
The specific objectives are: 

 

• Ensure data privacy, integrity, and user ownership: The platform uses Hyperledger Fabric 
for a permissioned blockchain with role-based access and certificate-based identities, 

protecting personal data, ride history, and payments from unauthorized access or 

tampering. Following self-sovereign identity principles, users retain full control of their 

data. 

• Enable transparent, auditable, and tamper-proof transactions: Ethereum smart contracts 

will automate ride creation, fare calculation, and payments, ensuring immutability, 

removing central authority reliance, and reinforcing trust and accountability. 

• Utilize decentralized file storage for scalable metadata handling: The platform uses IPFS 

to store large, non-sensitive files (e.g., driver logs, GPS data) off-chain, with CIDs 
anchored on-chain, balancing scalability, security, and verifiability. 

• Achieve cross-chain interoperability for seamless integration: To bridge blockchain 

fragmentation, the platform uses Cosmos SDK for secure, modular communication 
between Ethereum and Hyperledger Fabric, enabling synchronized cross-chain 

operations and future integrations. 

• Introduce a real-time, usage-based pricing model: The platform uses a dynamic ‘pay-
asyou-drive’ model, calculating fares from real-time trip duration, distance, and location 

data to ensure transparent, fair pricing and discourage manipulation. 

• Evaluate technical performance and economic feasibility: The system will be 
benchmarked with Hyperledger Caliper for throughput, latency, and resource use, 

alongside a cost analysis of infrastructure, bandwidth, energy, and scalability to ensure 

technical and economic viability. 

• Design for modular extensibility and upgradeability: The modular architecture supports 

adding new blockchain services, APIs, or consensus mechanisms without major redesign, 

ensuring long-term adaptability. 

• Promote decentralized governance and control: The system reduces central authority 

reliance by enabling trustless interactions via smart contracts, fostering fair governance 

and enhancing credibility. 
 

By achieving these objectives, the proposed platform aims to serve as a robust, secure, and fair 

alternative to current ride-sharing solutions, benefiting both urban commuters and 
underrepresented regions lacking infrastructure for centralized services. 
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5. LITERATURE REVIEW 
 
Several blockchain-based approaches have been explored to decentralize and enhance ride-

sharing systems, with varying focuses on transparency, privacy, trust, scalability, and 

interoperability. This chapter reviews key works in the field, synthesizing their methodologies, 

findings, and limitations to position our research in the existing academic landscape. 
 

Naik et al. [7] proposed a decentralized ride-sharing platform using Ethereum smart contracts to 

eliminate intermediaries and promote trustless ride-matching and payment. Their solution 
automated core operations such as ride booking and fare handling via a decentralized 

application (DApp). While the system demonstrated improved transparency, it suffered from 

high gas fees, limited scalability, and the absence of user data privacy mechanisms. 
Enhancements such as incorporating off-chain storage and Layer-2 scaling solutions were 

suggested to address these concerns. 

 

Baza et al. [11] introduced B-Ride, a privacy-preserving ride-sharing framework built atop the 
Ethereum blockchain. Their system leveraged zero-knowledge proofs (ZKPs) and time-locked 

deposit protocols to ensure secure, fair, and anonymous transactions. The design effectively 

reduced the need for user trust and provided strong privacy guarantees. However, the approach 
was hampered by Ethereum’s performance limitations and the complexity of implementing 

ZKPs, which restricted usability in real-world environments. The authors recommended using 

scalable chains and alternative deposit models to improve practicality. 

 
Shivers et al. [12] explored the use of Hyperledger Fabric in building a decentralized ride-

hailing platform for autonomous vehicles. Their system employed smart contracts to manage 

vehicle coordination, user authentication, and secure data logging within a permissioned 
blockchain environment. The platform showed robust performance under synthetic loads but 

lacked integration with public chains for transparency and failed to address off-chain data 

storage. Future work was proposed to incorporate decentralized file systems and real-world 
deployment testing. 

 

Mahmoud et al. [10] proposed a hybrid ride-sharing platform that integrates Ethereum with the 

InterPlanetary File System (IPFS) to improve scalability and data efficiency. In their 
architecture, non-sensitive ride metadata was uploaded to IPFS, and only content hashes were 

stored on the blockchain to reduce on-chain bloat. While this design effectively minimized 

storage overhead, it faced issues such as data retrieval latency, reliance on public IPFS nodes, 
and unencrypted data exposure. The authors highlighted the need for encryption, private IPFS 

clusters, and improved integration with backend systems. 

 
Namasudra and Sharma [13] presented a decentralized cab-sharing system using 

CiphertextPolicy Attribute-Based Encryption (CP-ABE) and Delegated Proof of Stake (DPoS) 

for secure access control and consensus. Their solution provided fine-grained control over data 

sharing and reduced dependency on centralized platforms. Despite its strong privacy model, the 
system lacked support for dynamic ride-matching and integration with decentralized storage or 

public smart contracts. Improvements were suggested in the form of hybrid models with smart 

contracts and IPFS integration for broader utility. 
 

Wang and Zhang [14] proposed a consortium blockchain-based ride-sharing framework that 

emphasized secure ride-matching through attribute-based encryption and proxy re-encryption. 

Their implementation used Delegated Proof of Stake (DPoS) for efficient consensus and aimed 
to protect sensitive user data within a controlled network. The design offered high data 

confidentiality but struggled with infrastructure costs, a lack of public transparency, and limited 
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data interoperability. Proposed future directions included cross-chain protocols like Cosmos 
SDK and off-chain storage for metadata. 

 

Chang et al. [4] developed a smart contract-driven ride-sharing platform using Ethereum that 

incorporated automated fare calculation, user authentication, and trust scoring. The system 
allowed decentralized execution of core platform functions and reduced operational overhead. 

However, it lacked privacy features and showed poor performance at scale due to Ethereum’s 

congestion and limited throughput. The authors acknowledged the potential for privacy-
preserving techniques and recommended shifting to Layer-2 solutions or combining with 

permissioned blockchains for better performance. 

 
Tariq et al. [15] proposed a fully decentralized peer-to-peer ride-sharing platform built on 

Ethereum. The system leverages smart contracts for ride creation, user verification, matching, 

and payments, eliminating the need for intermediaries. A token-based incentive structure 

promotes user engagement, and the platform was deployed on Ethereum testnets to analyze gas 
consumption and transaction latency. Despite achieving transparency and decentralization, the 

platform suffers from high gas costs, lacks privacy mechanisms such as zero-knowledge proofs 

(ZKPs), and omits decentralized storage integration like IPFS. 
 

Koubaa et al. [16] presented a comprehensive survey of blockchain-based ride-sharing systems, 

categorizing them based on architecture types, consensus mechanisms (e.g., PoW, PoS, PBFT), 
and privacy models. The survey identifies key issues such as scalability bottlenecks, identity 

management, secure data sharing, and throughput limitations. It also discusses potential future 

integrations with IoT for real-time mobility. However, the work is entirely theoretical, lacking 

any implementation, benchmarking, or discussion of decentralized storage or blockchain 
interoperability solutions such as Cosmos SDK. 

 

Zhang and Wen [17] introduced a hybrid IoT blockchain framework that combines vehicle 
telemetry data with Ethereum-based smart contracts to enable dynamic ride-matching and fraud 

prevention. The system uses sensor data (e.g., location, speed) for route verification and 

incorporates a reputation model to deter malicious actors. While it supports real-time 

transparency and trust, the framework depends on stable IoT infrastructure, incurs high 
operational costs due to gas fees, and lacks privacy-preserving techniques or decentralized data 

offloading. 

 
These studies reflect growing interest in decentralized mobility solutions but reveal recurring 

limitations, most notably, the lack of scalable privacy-preserving systems, real-time data 

handling, and interoperability between hybrid blockchains. Our proposed system addresses 
these gaps by combining Hyperledger Fabric for permissioned data storage, Ethereum for 

transparent contract execution, IPFS for decentralized off-chain storage, and the Cosmos SDK 

for secure inter-chain communication. A novel pay-as-you-drive mechanism further improves 

fairness and usability over time-locked deposit models seen in earlier works. 
 

6. METHODOLOGY 
 

This chapter outlines the methodology used to develop a decentralized ride-sharing system built 
on a hybrid blockchain architecture. The system leverages Hyperledger Fabric, the Ethereum 

public blockchain, the RAFT consensus algorithm, MetaMask wallet integration, the Cosmos 

SDK for blockchain interoperability, and IPFS for decentralized storage. The approach is 

design-based, focusing on building a practical and scalable framework that addresses key 
limitations in existing blockchain-based ride-sharing solutions. This methodology aligns with 

the research objectives by integrating a secure hybrid blockchain architecture and decentralized 
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storage mechanisms. It provides a real-world solution to challenges such as lack of 
transparency, limited traceability, and compromised data integrity. The following subsections 

detail the system architecture, the technologies employed, and the operational workflow of the 

proposed solution. 

 

6.1. System Architecture and Design 
 
Figure 1 illustrates the blockchain-enabled architecture of the proposed ride-sharing 

application, which consists of two main modules: user management and ride-sharing. The 

system securely registers vehicles, drivers, and passengers through smart contracts, ensuring 

verified identities and trusted participation. The ride workflow is organized into five clear 
steps: the driver posts ride information, passengers book the ride, drivers confirm the booking, 

passengers pay at the end of the trip, and drivers close the ride session, preventing further 

requests. This structured process promotes transparency, efficiency, and accountability. At the 
core, a Hyperledger-based private blockchain stores sensitive user data, including personal 

details and ride histories, under strict permissioned access. To reduce blockchain storage load 

and improve redundancy, IPFS is integrated to store vehicle-related data such as descriptions 
and maintenance records, benefiting from its decentralized and censorship-resistant nature. An 

Ethereum public blockchain powers smart contracts for ride matching, fare calculation, and 

payment settlements, ensuring automation, transparency, and immutability. To bridge the two 

blockchain layers, the system employs Cosmos, enabling secure and seamless interoperability. 
This hybrid approach leverages the privacy and control of private blockchains with the 

openness and trust guarantees of public blockchains, creating a scalable, secure, and user-

centric ride-sharing platform. 
 

i. Decentralized and Immutable Information Storage using IPFS 

 
The system uses a hybrid architecture for secure, scalable storage. Sensitive data—personal 

details, vehicle info, ride history, and payments—is stored on Hyperledger Fabric’s 

permissioned blockchain, while large non-sensitive data (e.g., GPS logs, ride metadata) is 

stored on IPFS. During registration, sensitive data is encrypted and stored as tamper-proof 
blocks on Hyperledger, and bulk data is uploaded to IPFS, generating a unique Content 

Identifier (CID) anchored on Hyperledger. For retrieval, authorized users decrypt on-chain data 

or use CIDs to fetch files from IPFS, verifying integrity by matching hashes. This dual-layer 
design reduces blockchain overhead, ensures immutability, and balances privacy with 

decentralized scalability for efficient, secure ridesharing. 

 

ii. User Information Verification and Upload 
 

The first step of the system focuses on verifying the authenticity of user information and 

securely uploading any related files. This verification is crucial, especially in case of drivers, as 
it ensures 
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Figure 1: System Architecture 

 
that the information being registered is genuine and trustworthy. Once users log in and register, 

they begin by submitting all required documents linked to their vehicles, such as driving 

licenses, national ID card, or vehicle papers. 

 
These submissions are carefully validated through an advanced authentication process that 

checks multiple aspects of authenticity. First, the system performs a basic format check to make 

sure everything is complete and correctly structured. Then, it uses cryptographic hashing to 
create a unique digital fingerprint of the submitted user data. This fingerprint is cross-checked 

against existing entries on the blockchain to detect duplicates or any signs of unauthorized use. 

 

 
 

Figure 2: Working Mechanism of IPFS for storing and retrieving user files 
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Figure 3: Internal Working Mechanism of Hyperledger Fabric 

 
iii. Uploading User Files to IPFS 

 

Once the user details have been verified and approved, any associated media files—such as 

images, videos, or documents—go through a preparation phase to ensure they’re stored 
securely and efficiently. These files are first broken down into smaller, manageable chunks 

using cryptographic hashing. This process generates a unique, fixed-size hash for each segment, 

helping maintain data integrity and making it easier to track and retrieve the files. 
 

The segmented media is then uploaded to IPFS (InterPlanetary File System), a decentralized 

storage network that distributes data across a peer-to-peer system. Unlike traditional centralized 

storage methods, IPFS improves reliability by storing copies of the data on multiple nodes, 
minimizing the risk of data loss or corruption. This decentralized structure also makes it more 

secure and scalable—especially useful when handling large media files tied to intellectual 

property. 
 

After uploading, IPFS assigns each file a unique Content Identifier (CID). This CID acts as a 

digital fingerprint of the file, permanently linked to its exact content and version. Even a small 
change in the file will generate a completely different CID, ensuring that the data remains 

tamperproof. The blockchain then uses this CID to reference the precise version of the media 

stored in IPFS. Figure ??illustrates how IPFS operates behind the scenes. 

 
iv. Storing the CID 

 

After IPFS generates the CID, it is recorded on Hyperledger Fabric for traceability and 
integrity, with a client transaction proposal triggering the relevant smart contract. 

 

The transaction is first reviewed by a specific group of endorsing peers, as defined by the 
network’s endorsement policy. Each of these peers simulates the transaction using its current 

ledger state without actually committing any changes and returns a digitally signed read-write 

set as its endorsement. Once the client collects enough valid endorsements, it packages the 

transaction and forwards it to the ordering service. The ordering service, powered by the RAFT 
consensus algorithm, arranges all submitted transactions in a consistent global order. These 

transactions are bundled into blocks, which are sent to the leader peer in each organization. The 
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leader then distributes the blocks to other peers in the network. Every peer independently 
validates the block 

 

 
 

Figure 4: Interoperability architecture for synchronizing transactions across Hyperledger and Ethereum 

using Cosmos SDK 

 

by verifying the endorsement signatures and ensuring it complies with the set policies. If 

everything checks out, the block is committed to the ledger, making the CID a permanent part 
of the blockchain’s immutable record. Since the CID is a cryptographic fingerprint of the media 

stored on IPFS, it serves as a reliable, tamper-proof reference to the original content. Figure 3 

illustrates the inner workings of this Hyperledger Fabric–based private blockchain system. 

 
v. Interoperability between Public and Private Blockchains 

 

As shown in Figure 4, the proposed architecture enables secure interoperability between 
Hyperledger Fabric and Ethereum using the Cosmos SDK Bridge. Fabric handles encrypted 

ride/user data, stored off-chain in IPFS with CIDs anchored on-chain. Key Fabric events are 

relayed to Ethereum, where event hashes are recorded for verifiable proof without exposing 
sensitive data. Users access the system via DApps using MetaMask and Web3.js. This hybrid 

design combines Fabric’s privacy, Ethereum’s transparency, and IPFS’s efficiency. However, 

real-world use may face issues like clock skew and differing finality, requiring custom retry 

and validation logic. 
 

vi. Smart Contracts Workflow 

 
The proposed system consists of two main contracts: the UserManagementContract for user 

management and the RideSharingContract to handle ride-sharing functions. Additionally, a 

utility contract contains utility functions, such as converting poisha to wei, to assist with 
various calculations within the ride-sharing DApp. Figure 5 illustrates the detailed workflow of 

the smart contract within the ride-sharing DApp. 

 

UserManagementContract is responsible for managing operations related to the user within the 
ride-sharing DApp. It handles user registration, authentication, and profile management. Users 

can register by providing their necessary information, including their Ethereum wallet address 

and personal details. The contract verifies the user’s identity and stores the relevant information 
securely on the blockchain. It also allows users to update their profile information, view their 

ride history, and manage their preferences. The RideSharingContract serves as the core 

contract for facilitating ride-sharing functionalities. It handles operations related to creating 

rides, joining rides, and managing ride details. Users can create rides by specifying parameters 
such as the starting location, destination, time, and available seats. The contract validates the 
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input data, creates a new ride instance, and adds it to the list of active rides. It also maintains a 
participant 

 

 
 

Figure 5: Smart Contract Workflow 

 

list for each ride, keeping track of the users who have joined. Users can join existing rides by 

interacting with the RideSharingContract. The contract verifies seat availability, adds the user 
to the participant list, and updates the ride details accordingly. 

 

It also allows users to view ride details, including the creator, participants, starting location, 
destination, and time, providing transparency and facilitating communication between ride 

participants. The Utility Contract includes utility functions that support various calculations and 

conversions required within the ride-sharing DApp. For example, it may provide functions to 

convert poysha (a subdivision of the Bangladeshi Taka) to wei (the smallest denomination of 
ether in the Ethereum network) to handle payment calculations. These utility functions 

streamline the process of converting between different currency units, ensuring accurate and 

consistent calculations throughout the application. By utilizing these main contracts, the 
proposed system establishes a decentralized ride-sharing platform that allows users to manage 

their profiles, create and join rides, and perform necessary calculations for payments. The 

contracts leverage the security and transparency of the Ethereum blockchain, providing a 
reliable and trustless environment for ride-sharing operations. In failure scenarios like payment 

drop or sudden ride cancellation, the system queues those states and retries contract validation 

through a hashed log checkpoint system, ensuring consensus integrity is maintained. 

 

6.2. Network Setup and Configuration 
 
Before setting up the full Hyperledger Fabric network, several key tools and environments were 

prepared to support the early phases of development and deployment. These prerequisites help 

ensure that all parts of the system—from chaincode development to container management—

can be properly configured and tested. 
 

At this stage, the chaincode includes only an example chaincode and currently uses a static 

IPFS hash, as the integration with IPFS and Ethereum Blockchain is still pending. Although the 
complete system is still in progress, the following section outlines the work completed so far. 

 

6.2.1. Prerequisites 
 

The following tools and dependencies were installed: 
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• Visual Studio Code (VS Code): Used for writing chaincode, network configurations, and 
scripts. Its integrated terminal and Fabric extensions facilitate development. 

• Node.js and npm: Essential for running the Fabric SDK client application and managing 

project dependencies. Also required to run the React development server, manage 
dependencies, and build the frontend application. 

• Golang (Go): Required for writing and compiling chaincode. Go is the primary language 
for Hyperledger Fabric smart contracts. 

• Git: Used for version control and cloning Fabric samples and network configuration 

scripts from official repositories. 

• Hyperledger Fabric Binaries: Tools like cryptogen, configtxgen, and peer CLI were 

downloaded and used for generating cryptographic material, creating the genesis block, 

and managing channels. 

• Vagrant: Vagrant is a tool for managing virtual environments. The acloudfan/hlfdev2.2.0 

box provides a ready-to-use setup for Hyperledger Fabric v2.2 which includes Fabric 

tools. It helps developers to launch and test Fabric networks. 
 

With the prerequisites in place, the network setup process involved generating crypto material, 

configuring channels, deploying smart contracts (chaincode), and launching the Fabric network. 
 

6.2.2. System Configuration Tasks 

 

The following setup tasks were performed to initialize and configure the Hyperledger Fabric 
network and IPFS integration: 

 

• Crypto Material Generation: Generated certificates and keys using the cryptogen tool 
based on the crypto-config.yaml file. 

 

 
 

• Channel Configuration Generation: Created the genesis block and channel transaction 

configuration using configtxgen. 
 

 
 

• Creating the Channel: Created the application channel using the create command. 

peer channel create -o $ORDERER_ADDRESS \ 
-c acmechannel -f $CONFIG_DIRECTORY /acme-channel.tx 

 

• Joining the Channel: Peer nodes joined the created channel by referencing the channel 
block. 

 

configtxgen-profileAcmeOrdererGenesis\ 
- channelIDordererchannel\ 
- outputBlock./acme-genesis.block 

configtxgen-profileAcmeChannel\ 
- channelIDacmechannel\ 
- outputCreateChannelTx./acme-channel.tx 

cryptogengenerate--config=./crypto-config.yaml 
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where the ORDERER ADDRESS=”localhost:7050” 
 

• Chaincode Packaging: Packaged the chaincode (smart contract) into a compressed 

archive for deployment. 
 

 
 

• Chaincode Installation: Installed the packaged chaincode on each peer node. 

 

 
 

• Chaincode Approval: Approved the chaincode definition on behalf of each organization. 

 

 
 

• Chaincode Commit: Committed the chaincode definition to the channel after collecting 

required approvals. 

 

 
 

• Chaincode Invocation: Invoked the chaincode by using Invoke function. 

 

 
 

• IPFS Installation and Setup: Installed IPFS to enable decentralized file storage for IP 

content and metadata. 

 

 
 

• Frontend Design: Some of the pages, such as the homepage, user registration, login, and 

admin dashboard, are designed using React.js. 

peerchaincodeinvoke-Cacmechannel\ 
- ngocc-c’{"Args":["invoke","a","b","10"]}’ 

peerlifecyclechaincodecommit-ngocc\ 
- v1.0-Cacmechannel--sequence 1. 

peerlifecyclechaincodeapproveformyorg\ 
- nipcc-v1.0-Cacmechannel\ 
-- sequence1--package-id$CC_PACKAGE_ID 

peerlifecyclechaincodeinstall$CC_PACKAGE_FILE 

peerlifecyclechaincodepackage\ 
$CC_PACKAGE_FILE-pchaincode_example02\ 
-- label$CC_LABEL 

peerchanneljoin-o$ORDERER_ADDRESS\ 
- b./acmechannel.block 
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Table 1: Cost analysis for a Hyperledger node setup 

 

Cost Category Description 
Estimated Cost (per 

unit) 

CPU 
AMD Ryzen 7 5700X3D for efficiently 

running the node and smart contracts. 
20,000 BDT per CPU 

RAM 

Least amount of memory required for 

running the node for smoothly processing 

transactions (16 GB). 

5,500 BDT per 16GB 

module 

Storage 
SSD (Solid State Drive) for storing 

blockchain data, logs, and other metadata. 

4,500 BDT per 512 

GB SSD 

IPFS Storage 
Cost for decentralized storage using IPFS (if 

self-hosted). 
5 BDT per GB/month 

Stable Internet 

Connection 

A minimum 40 Mbps broadband 

connection is required for low-latency node 

communication and faster response. 

1,500 BDT per month 

per node 

Power 

Consumption 

Electricity costs for running Hyperledger 

nodes and supporting the required hardware 

to run the nodes. 

2,500 BDT per month 

per node 

 
Total 

34,000 BDT 

(approx.) 

 

7. RESULT ANALYSIS 
 
A cost analysis (Table 1) estimates the monthly expense of deploying a single node at 33,000 

BDT. This includes an AMD Ryzen 7 5700X3D CPU (20,000 BDT) for smart contract 

execution, 16 GB RAM (5,500 BDT) for smooth transaction processing, and a 512 GB SSD 

(4,500 BDT). IPFS storage adds 5 BDT/GB/month, 40 Mbps broadband costs 1,500 
BDT/month, and power consumption is 2,500 BDT/month. The configuration is both cost-

effective and scalable, supporting secure and transparent ride-sharing. 

 

7.1. Theoretical Result Analysis 
 

This section provides a theoretical analysis of the performance metrics of a blockchain- based 
system designed to build a ride-sharing system using Hyperledger Fabric, IPFS, and Ethereum 

public blockchain. The consensus algorithms compared include RAFT, Proof of Stake (PoS), 

Proof of Work (PoW), and PoA (Proof of Authority). 
 

7.1.1. CPU Usage Estimation 

 

It shows the proportion of processor power used for processing transactions and reaching a 
consensus. Greater computational load is implied by higher values. The following generic 

equation is used to estimate the CPU utilization for each consensus algorithm[18]. 
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where: 
 

• N is the number of transactions 

• BaseCpu is the base CPU usage percentage 

• δ is the CPU growth rate per 1,000 transactions 

 
Table 2: CPU usage coefficients 

 

Consensus BaseCpu δ 

PoW 60 0.5 

RAFT 15 0.3 

PoS 20 0.25 

PoA 12 0.2 

 

7.1.2. Latency Estimation 
 

Latency indicates the time delay (in milliseconds) from submitting a transaction to its 

confirmation. Lower latency means faster transaction finality. The latency per transaction batch 
is estimated by [19]: 

 

 
where: 

 

• L0 is the base latency due to consensus protocol 

• Lipfs ≈ 30 ms is the average IPFS overhead 

• Lnet ≈ 40 ms is the assumed network latency 

• γ is the queuing/congestion growth factor 

 

7.1.3. Transaction Throughput (TPS) Estimation 
 

TPS measures how many transactions a blockchain system can process per second. Higher TPS 

indicates better throughput. TPS is derived from latency using [20]: 
 

  
 
This formula estimates the number of transactions per second for a given number of 

transactions N by inverting the total latency per batch. 

 

The TPS, latency, and CPU utilization percentage for each consensus mechanism were 
determined using the algorithms mentioned above, and their interpretations are given in the part 

that follows. 
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Table 3: Latency coefficients 

 

Consensus L0 (ms) γ (ms/1k tx) 

PoW 2500 100 

RAFT 50 20 

PoS 150 25 

PoA 80 35 

 

7.1.4. Graphical Analysis and Interpretation 

 
To assess the performance of the suggested blockchain-based ride-sharing system, we 

examined how four distinct consensus mechanisms—RAFT, PoS, PoW, and PoA—performed 

over 10,000 transactions in 1,000-transaction increments. Three major performance measures 
were used to display the results: CPU utilization, latency, and Transactions Per Second (TPS). 

 

 
 

Figure 6: Transactions Per Second (TPS) vs Number of Transactions 

 

1. TPS vs Transactions (Figure 6): From the TPS graph, PoA exhibits the highest throughput 
across all transaction loads, consistently maintaining over 190 TPS even at 10,000 

transactions. This highlights the efficiency of PoA’s lightweight, authority-based consensus, 

which minimizes communication overhead and block validation time. RAFT closely 

follows, starting above 210 TPS and gradually decreasing to 160 TPS as transaction volume 
increases. This steady performance reflects RAFT’s optimized ordering service in 

Hyperledger Fabric, though its need for endorsement and block packaging slightly limits 

scalability under load. 
 

PoS performs moderately well, starting around 160 TPS but steadily declining to 110 TPS 

by 10,000 transactions. This drop may be attributed to validator communication overhead 

and the cost of maintaining network consensus as transaction volume increases. PoW, on the 
other hand, delivers the lowest throughput, starting near 50 TPS and falling to just 28 TPS. 

This aligns with its high computational cost and block propagation delay, making PoW 

unsuitable for real-time, high-throughput systems like decentralized ride-sharing platforms. 
 

2. Latency vs Transactions (Figure 7): Latency increases progressively across all consensus 

mechanisms as the transaction count grows from 1,000 to 10,000. Among them, PoW 
exhibits the 
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Figure 7: Latency (ms) vs Number of Transactions 

 

highest latency, reaching approximately 1000 ms at peak load, primarily due to the 
computational burden of mining and slow block propagation. PoS shows moderate latency 

growth, rising to around 550 ms by the 10,000th transaction—this is attributable to validator 

rotation, slot scheduling, and network consensus delay. 

 
In contrast, RAFT maintains comparatively low latency, starting at 150 ms and gradually 

increasing to 420 ms. This reflects the benefits of deterministic finality and efficient leader-

based block ordering in Hyperledger Fabric. PoA outperforms all others in latency, staying 
under 320 ms throughout the test, owing to its simplified block validation model and 

minimal consensus overhead. These results suggest that for latency-sensitive applications 

such as real-time ride-matching, PoA and RAFT are more suitable, while PoW may not be 
ideal due to its high delay. 

 

 
 

Figure 8: CPU Usage (%) vs Number of Transactions 

 

3. CPU Usage vs Transactions (Figure 8): CPU usage illustrates the relative computational 

demands of each consensus mechanism under increasing transaction loads. PoW exhibits the 
steepest curve, beginning at 60% and escalating to nearly 90% at 10,000 transactions, 

reflecting its intensive mining operations and constant hash computation. This makes PoW 

highly inefficient and resource-consuming for scalable blockchain applications on standard 
hardware. 

 

In contrast, RAFT and PoA maintain low to moderate CPU usage, staying well below 40% 

even under peak load. RAFT benefits from a streamlined leader-based approach, while PoA 
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gains efficiency by eliminating competitive consensus entirely. PoS falls between the two 
extremes, reaching about 44% at maximum load, primarily due to validator messaging and 

signature verification overhead. These results confirm that RAFT and PoA are the most 

efficient choices for CPU-constrained environments, making them ideal for real-time, 

decentralized ride-sharing systems or IP marketplaces. 
 

4. Comparison between RAFT and PoA: Although Proof of Authority (PoA) may outperform 

RAFT in terms of raw throughput, latency, and CPU usage due to its lightweight and 
centralized nature, RAFT offers greater reliability, security, and suitability for enterprise 

applications. As a consensus mechanism used in permissioned networks like Hyperledger 

Fabric, RAFT ensures deterministic finality, multi-party endorsement, and support for 
private data handling—features that PoA lacks. While PoA is ideal for scenarios prioritizing 

speed over decentralization, RAFT is better suited for systems requiring robust governance, 

privacy, and auditability, making it a more practical choice for secure, multi-organizational 

ride-sharing platform. 
 

From the graphs and performance analysis, we can conclude that: 

 

• RAFT offers a strong balance of high TPS, low latency, and moderate CPU usage, while 

also ensuring enterprise-grade reliability, privacy, and deterministic finality. It is best 

suited for secure, multi-organizational ride-sharing systems requiring auditability and 
governance. 

• PoA demonstrates superior raw performance in terms of throughput, latency, and CPU 

efficiency due to its lightweight, centralized nature. However, it lacks the 
decentralization and data control features required for trust-sensitive environments. 

• PoS maintains a reasonable compromise between performance and decentralization, with 

moderate CPU consumption and stable TPS. It may suit open ecosystems where 
validatorbased trust is acceptable. 

• PoWperforms the worst in all metrics, showing high latency and CPU usage with the 

lowest TPS. Its resource-intensive nature makes it impractical for real-time, large-scale 
deployments. 

 

These results validate the choice of RAFT as the preferred consensus mechanism for 
implementing a privacy-preserving, scalable, and efficient hybrid blockchain architecture in the 

proposed decentralized ride-sharing platform. 

 

7.2. Practical Result Analysis 
 

Using mathematical formulas, a thorough theoretical analysis was carried out in Section 1 to 
estimate important performance parameters including TPS, latency, and CPU utilization 

percentage across various consensus techniques (RAFT, PoS, PoW, and PoA). System-level 

variables including IPFS overhead, network latency, and transaction load were taken into 
account in these estimations. However, an open source blockchain performance benchmarking 

tool called Hyperledger Caliper will be used to benchmark the final implementation of the 

suggested system in order to verify these results under actual execution settings. Real TPS, end-

to-end latency, resource use, and transaction success rate are just a few examples of the 
empirical performance metrics that Caliper will offer. This will guarantee that the system 

performs as expected under workloads encountered in the real world. 
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8. CONCLUSION AND FUTURE WORKS 
 
This study proposes a hybrid blockchain ride-sharing architecture using Hyperledger Fabric, 

IPFS, and Ethereum to tackle data centralization, opacity, and limited user control. Leveraging 

smart contracts, off-chain storage, and cross-chain sync, it enables secure ride management, 

private data storage, and auditable fares. 
 

The research demonstrates the platform’s feasibility: Hyperledger Fabric with RAFT enables 

trusted, low-latency transactions; IPFS stores ride logs and documents; Ethereum provides 
public event verification and ride tokens; and a React.js frontend delivers real-time booking, 

role-based access, dynamic maps, and live tracking. 

 

Consensus benchmarking found PoA fastest and most efficient, but RAFT delivered the best 
mix of performance, reliability, and security. PoW was resource-heavy and ill-suited for high-

frequency use, supporting RAFT’s selection for a secure, multi-organizational ride-sharing 

platform. 
 

Though still in development, the project’s hybrid use of Fabric, Ethereum, and IPFS provides a 

solid foundation for scalable, decentralized ride-sharing. 
 

Looking ahead, the following future enhancements are planned: 

 

• Smart Contract Completion: Extend chaincode logic to cover all stages of ride lifecycle, 

including booking, cancellation, fare disputes, and rating. Enable Ethereum-based token 

integration for payment verification and user incentives. 

• Frontend and UX Improvements: Enhance the UI with driver verification, surge pricing 

display, payment integration, and admin controls, progressing toward a mobile-ready 

app. 

• Backend Middleware Development: A Node.js or Golang backend will handle API calls, 

blockchain interaction, authentication, and metadata retrieval. 

• Metadata Handling and Database Support: MongoDB will be used store off-chain user 
and transaction metadata. 

• Migration to Docker-based Infrastructure: The current Vagrant setup will be replaced 

with Docker to simplify containerized deployment, CI/CD integration, and system 
scalability. 

• System Benchmarking and Performance Testing: After complete integration, 

Hyperledger Caliper will benchmark latency, TPS, CPU usage, and fault tolerance to 
validate results. 

 

In conclusion, this work contributes to the growing research in decentralized mobility systems 
by proposing a hybrid blockchain framework that is both technically viable and practically 

scalable. With continued development, the system holds the potential to revolutionize the ride-

sharing ecosystem by empowering users with transparency, security, and control over their data 
and interactions. 
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