
International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

DOI: 10.5121/ijait.2025.15501 1

PROMPT ENGINEERING PIPELINES FOR LEGACY

MODERNIZATION: COBOL, PL/I AND

BIDIRECTIONAL CODE–NATURAL LANGUAGE

TRANSFORMATION USING LLMS

Sivakumar Arigela and Gaurav Virwal

Department IBM Software Labs, IBM India Pvt Ltd., Bengaluru, India

ABSTRACT

Legacy modernization remains one of the most pressing challenges for enterprises that rely on

mainframe systems, particularly those built with COBOL and PL/I. Traditional modernization methods,

including lift-and-shift, rule-based translation, and manual re-engineering, are expensive, slow, and

often result in incomplete transformations.

This work introduces a comprehensive framework for leveraging large language models (LLMs) to

improve modernization workflows. Our pipeline focuses on four key modernization tasks:

1. COBOL Explainability — Transforming legacy COBOL code into step-by-step natural language

explanations using Chain-of-Thought [1] (CoT). Self-reflection [3], and flowchart generation

with Mermaid [6] and PlantUML [7].

2. PL/I Explainability — Providing similar explainability for PL/I, including complex exception

handling (ON-conditions) and nested procedures.

3. Natural Language → COBOL Generation — Converting business specifications into COBOL

programs through few-shot prompting, RAG [4] (Retrieval-Augmented Generation), and vector

databases [5].

4. COBOL → Java Modernization — Translating COBOL into modern Java applications by first

generating a plain-English algorithm, followed by clean, maintainable Java code.

We address a major challenge in COBOL comprehension — programs often exceed 15,000 lines of code

(loc), which can overwhelm developers and cause critical business logic to be lost in summarization. To

solve this, we integrate flowcharts and vector DB-based chunking for enhanced visualization and

traceability.

Our approach shows measurable improvements in translation accuracy, developer productivity, and

explainability. This pipeline reduces hallucination rates by 70%. Increases bleu scores by 15.8 points,

and improves developer productivity by 45%, based on our pilot studies in the banking domain.

KEYWORDS

COBOL Modernization. Cobol explainability, PL/I Explainability, Natural Language Programming,

Chain-of-Thought, Self-Reflection, RAG, vector store, Legacy System Modernization, COBOL-to-Java

Migration, Prompt Engineering.

https://airccse.org/journal/IJAIT/current2025.html
https://doi.org/10.5121/ijait.2025.15501

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

2

1. INTRODUCTION

Legacy systems built on PL/I and COBOL continue to power mission-critical applications in

banking, insurance, healthcare, and government sectors. These systems often contain decades of

business rules embedded in millions of lines of code, making them extremely challenging to

maintain or modernize.As many of the original developers have retired or moved on,

understanding and safely transforming these systems has become a serious enterprise

risk.Traditional modernization approaches — such as lift-and-shift, rule-based translation, and

manual re-engineering — often fail to deliver long-term value. They produce technically correct

but semantically shallow code, sometimes resulting in “JaBOL” (Java written in COBOL style)

that is difficult to maintain and doesn’t leverage modern development practices.

The recent breakthroughs in LLMs (LLMs)), combined with prompt engineering, offer new

opportunities for modernization:

• LLMs can explain legacy code in plain English.

• They can generate new COBOL programs from business specifications.

• They can even transform COBOL directly into maintainable Java systems.

We introduce a four-stage modernization pipeline:

1. COBOL → Natural Language

2. PL/I → Natural Language

3. Natural Language → COBOL

4. COBOL → Java

We apply Chain-of-Thought reasoning, self-reflection, and vector store -driven retrieval to

overcome the limitations of traditional LLM outputs. Additionally, by generating flowcharts

alongside textual explanations, developers gain visual insights into program logic, enabling

faster debugging and safer enhancements.

Our focus domain is banking modernization, given the prevalence of PL/I and COBOL in

financial systems. However, the methodology is broadly applicable to any industry using

mainframes.

2. BACKGROUND AND RELATED WORK

2.1. COBOL & PL/I in Enterprise Systems

COBOL remains one of the most widely used programming languages in financial institutions,

where stability, precision, and batch processing capabilities are critical. PL/I, while less

common today, continues to appear in complex transaction-processing systems due to its

support for exception handling and modular design.

Legacy platforms built on these languages face three key issues:

1. Aging developer base: Most COBOL & PL/I experts are retiring, leaving a knowledge

gap.

2. Documentation gaps: Decades of undocumented changes have left systems difficult to

understand.

3. Modernization risk: Errors introduced during transformation can have severe financial

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

3

consequences.

2.2. Traditional Modernization Approaches

Common approaches include:

• Lift-and-Shift: Moving workloads to modern hardware or cloud without changing code.

• Rule-Based Translation: Automated tools that translate COBOL to Java or other modern

languages line-by-line.

• Manual Re-engineering: Teams rewrite the system by hand, based on business

requirements.

Limitations:

• Lift-and-shift does not improve maintainability.

• Rule-based translation often creates “JaBOL” code that is syntactically correct but

semantically poor.

• Manual re-engineering is slow, expensive, and error-prone.

2.3. LLM-Powered Modernization

Recent tools, such as IBM's WatsonX Code Assistant for Z (WCA4Z)[2], introduce AI-driven

modernization:

• LLMs can read and understand COBOL /PL-I code.

• Generate natural language explanations and documentation.

• Suggest clean, modern replacements for legacy logic.

However, these tools still face challenges:

• Context Window Limitations: Handling large COBOL programs (>15,000 LOC)

without losing details.

• Hallucinations: Incorrect but plausible outputs.

• Traceability: Difficulty in verifying how code was transformed.

Our work addresses these issues by:

• Using vector store chunking to manage large codebases.

• Employing self-reflection loops to catch hallucinations.

• Generating flowcharts to visualize transformations alongside text.

2.4. Related Academic Research

• Chain-of-Thought prompting has shown improved reasoning capabilities for complex

tasks.

• RAG (Retrieval-Augmented Generation) provides grounding by pulling relevant

external knowledge into prompts.

• vector stores like Pinecone and Qdrant are increasingly used for semantic code search

and retrieval.

• Our pipeline integrates these research advances into a practical, enterprise-ready

modernization workflow.

3. METHODOLOGY

Our pipeline for legacy modernization consists of four major stages, each addressing a specific

modernization task:

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

4

1. COBOL→ Natural Language Explainability

2. PL/I → Natural Language Explainability

3. Natural Language → COBOL Generation

4. COBOL → Java Transformation

3.1. COBOL → Natural Language Explainability

LLMs [8] are used to translate legacy COBOL code into natural language explanations.

We leverage Chain-of-Thought (CoT) prompting, self-reflection, and flowchart generation to

improve comprehension, especially for programs exceeding 15,000 lines of code.

Abbreviated COBOL Snippet

IDENTIFICATION DIVISION.

PROGRAM-ID. INTEREST.
...

1200-READ-CUSTOMER.
 READ CUSTOMER-FILE INTO CUSTOMER-RECORD
 AT END
 MOVE 'Y' TO WS-EOF-FLAG
 NOT AT END
 ADD 1 TO WS-READ-COUNT
 MOVE CUST-BALANCE TO WS-CUST-BAL
 COMPUTE WS-TOTAL-INTEREST = WS-CUST-BAL * WS-RATE
 DISPLAY "Interest: " WS-TOTAL-INTEREST
 END-READ.
...

Chain-of-Thought [1] Explanation

1. Open CUSTOMER-FILE and read records sequentially.

2. For each record, calculate interest using the field WS-RATE.

3. Display the calculated interest to the console.

4. Stop processing at end-of-file (EOF-FLAG).

Self-Reflection Pass

Observation: Initial explanation missed initialization details for WS-TOTAL-INTEREST.

Correction: Ensure WS-TOTAL-INTEREST is reset to 0 before calculations begin each day.

Table 1. COBOL Explainability

Feature Traditional LLM-Powered

Detail Level Minimal, manual notes Step-by-step CoT reasoning

Visual Support None Auto-generated flowcharts

Large Programs (>15k LOC) Hard to manage Vector DB chunking and retrieval

Error Detection Manual review Self-reflection automated

Auditability Weak Traceable explanation logs

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

5

Figure 1. COBOL program flowchart using Mermaid

Mermaid [6] : ```mermaid flowchart TD

A[Start Program] --> B[Initialize Variables]

B --> C[Open CUSTOMER-FILE]

C --> D{File Open OK?}

D -- No --> E[Display Error]

E --> Z[End Program]

D -- Yes --> F[Open REPORT-FILE]

F --> G{File Open OK?}

G -- No --> H[Display Error]

H --> Z

G -- Yes --> I[Write Report Headers]

I --> J[Read Customer Record]

J --> K{End of File?}

K -- Yes --> L[Write Summary Report] L --> M[Close Files]

M --> N[Display Completion Message]

N --> Z

K -- No --> O[Move CUST-BALANCE to WS-CUST-BAL]

O --> P[Compute WS-TOTAL-INTEREST = WS-CUST-

BAL * WS-RATE]

P --> Q[Display Interest Amount]

Q --> R[Move WS-TOTAL-INTEREST to WS-INTERESTAMOUNT]

R --> S[Format and Write Detail Line]

S --> T[Read Next Customer Record]

T --> K

PlantUML [7] (paste into PlantUML to render): @startuml Interest Calculator Flow

title Interest Calculator Program Flow start

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

6

:Initialize Variables;

:Open CUSTOMER-FILE;

if (File Open OK?) then (yes) :Open REPORT-FILE;

 if (File Open OK?) then (yes)

 :Write Report Headers;

 repeat

 :Read Customer Record;

 if (End of File?) then (yes)

 break endif

 :Move CUST-BALANCE to WS-CUST-BAL;

 :Compute WS-TOTAL-INTEREST = WS-CUST-BAL *

WS-RATE;

 :Display Interest Amount;

 :Move WS-TOTAL-INTEREST to WS-INTERESTAMOUNT;

 :Format and Write Detail Line;

 repeat while (More Records?)

 :Write Summary Report;

 :Close Files;

 :Display Completion Message;

 else (no) :Display Error; endif else (no)

:Display Error; endif

stop

@enduml

Figure 2. Vector DB Architecture for COBOL chunking

Mermaid (Vector DB Architecture):

```mermaid  flowchart LR subgraph Dev[COBOL Codebase] C1[File 

A]:::c -->|Chunk & Embed| VDB((Vector DB)) C2[File B]:::c --

>|Chunk & Embed| VDB end  

subgraph Runtime[LLM + RAG [4]]  

Q[User Query / Prompt] --> RAG [4][Retriever] --> VDB  



International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025 

7 

VDB --> RAG [4] --> LLM[LLM Generator] --> Out[Explanation / Flowchart / 

Code] end  

classDef c fill:#eef,stroke:#88f  

```  

PlantUML (Vector DB Architecture):

@startuml rectangle "COBOL Codebase" { [File A] --> (Chunk

&Embed)

[File B] --> (Chunk & Embed)

}

(Chunk & Embed) --> (Vector DB)

actor User User --> (Prompt)

(Prompt) --> (Retriever)

(Retriever) --> (Vector DB)

(Retriever) --> (LLM)

(LLM) --> (Explanation/Flowchart/Code)

@enduml

3.2. PL/I -> Natural Language Explainability

PL/I adds complexity with ON-conditions, nested procedures, and richer data types. We extend

the same CoT and selfreflection techniques to PL/I. Abbreviated PL/I Rollback Snippet

DB_UPDATE: PROCEDURE OPTIONS(MAIN);
...
DECLARE INFILE FILE RECORD INPUT
SEQUENTIAL ENV(CONSECUTIVE RECSIZE(40)),
LOGFILE FILE RECORD OUTPUT SEQUENTIAL ENV(CONSECUTIVE

RECSIZE(100));
...
ON RECORD(INFILE) BEGIN;
CALL LOG_MESSAGE('Record error at record
#' || TRIM(RECORDS_READ + 1));
ERROR_FLAG = '1'B;
IF TRANSACTION_ACTIVE THEN
 CALL ROLLBACK_TRANSACTION;
END;
...
ROLLBACK_TRANSACTION: PROCEDURE;
EXEC SQL ROLLBACK WORK;
IF SQLCODE = 0 THEN DO;
 TRANSACTION_ACTIVE = '0'B;
CALL LOG_MESSAGE('Transaction rolled
back');

END;
ELSE DO;
CALL LOG_MESSAGE('Failed to roll back transaction: SQLCODE=' ||

TRIM(SQLCODE) || ', SQLSTATE=' || SQLSTATE);
 ERROR_FLAG = '1'B;
END;

END ROLLBACK_TRANSACTION;
...
END DB_UPDATE;

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

8

CoT [1] Explanation

• If a transaction fails (ON ERROR), the program rolls back changes and signals termination.

• Successful transactions are updated and logged.

Table 2. PL/IExplainability

Feature Traditional LLM-

Powered

Exception Handling Manual documentation Explicit ONcondition mapping

Nested Procedures Hard to trace manually Flowchartbased visualization

Large Programs Limited to 10k LOC Vector DB scaling

Error Detection Manual review Self-reflection feedback loops

Productivity Low 50% improvement

Figure 3. PL/I rollback flowchart showing normal vs error paths.

Mermaid (PL/I Rollback flow): ```mermaid flowchart TD

Error([Error Occurs]) --> CheckType{Error Type}

CheckType -- ENDFILE --> SetEOF[Set EOF Flag]

CheckType -- RECORD --> LogRecordError[Log Record Error]

CheckType -- CONVERSION -->LogConvError[Log Conversion Error]

CheckType -- ERROR --> LogGenError[Log General Error]

CheckType -- UNDEFINEDFILE --> LogFileError[Log File Error]

SetEOF --> LogEOF[Log EOF Message]

LogRecordError --> CheckTrans1{Transaction\nActive?}

LogConvError --> CheckTrans2{Transaction\nActive?}

LogGenError --> CheckTrans3{Transaction\nActive?}

LogFileError --> SetErrorFlag[Set Error Flag]

CheckTrans1 -- Yes --> Rollback1[Rollback Transaction]

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

9

CheckTrans2 -- Yes --> Rollback2[Rollback Transaction]

CheckTrans3 -- Yes --> Rollback3[Rollback Transaction]

CheckTrans1 -- No --> SetErrorFlag1[Set Error Flag]

CheckTrans2 -- No --> SetErrorFlag2[Set Error Flag]

CheckTrans3 -- No --> SetErrorFlag3[Set Error Flag]

Rollback1 --> SetErrorFlag1

Rollback2 --> SetErrorFlag2

Rollback3 --> SetErrorFlag3

SetErrorFlag --> SignalError[Signal ERROR]

SetErrorFlag1 --> Continue([Continue/Exit Processing])

SetErrorFlag2 --> Continue

SetErrorFlag3 --> Continue

```  

PlantUML (PL/I Rollback flow):  

@startuml title DB_UPDATE ON Condition Structure package "ON 

Conditions" {  

[ON ENDFILE]  

[ON RECORD]  

[ON CONVERSION]  

[ON ERROR]  

[ON UNDEFINEDFILE]  

} 

package "Error Handling Actions" {  

[Log Error]  

[Set Error Flag]  

[Rollback Transaction]  

[Signal ERROR]  

}  

[ON ENDFILE] --> [Log Error]  

[ON RECORD] --> [Log Error]  

[ON RECORD] --> [Set Error Flag]  

[ON RECORD] --> [Rollback Transaction]  

[ON CONVERSION] --> [Log Error]  

[ON CONVERSION] --> [Set Error Flag]  

[ON CONVERSION] --> [Rollback Transaction]  

[ON ERROR] --> [Log Error]  

[ON ERROR] --> [Set Error Flag]  

[ON ERROR] --> [Rollback Transaction]  

[ON UNDEFINEDFILE] --> [Log Error]  

[ON UNDEFINEDFILE] --> [Set Error Flag]  

[ON UNDEFINEDFILE] --> [Signal ERROR] @enduml  

 

3.3. Natural Language → COBOL Generation 
 

LLMs can synthesize new COBOL programs directly from business specifications using few-

shot prompting. Dynamic rag [4], and vector store retrieval to reference similar code examples.  

Business Specification Example  
 

"Create a COBOL program that reads customer records. Calculates daily interest using a 2% rate, 

writes updated balances to an output file, handles invalid records, and displays the total interest at 

the end."  

 



International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025 

10 

Generated COBOL  Snippet (Abbreviated) 

 

Program Listing — INTEREST CALCULATOR (COBOL):  

```  

 IDENTIFICATION DIVISION.

 PROGRAM-ID. INTERT1.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT CUST-FILE ASSIGN TO CUSTFILE ORGANIZATION IS

SEQUENTIAL. SELECT OUT-FILE ASSIGN TO OUTFILE

ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD CUST-FILE.

 01 CUST-REC.

 05 CUST-ID PIC X(5).

 05 CUST-NAME PIC X(20).

 05 CUST-BALANCE PIC 9(7)V99.

 05 FILLER PIC X(48).

 FD OUT-FILE.

 01 OUT-REC PIC X(100).

 WORKING-STORAGE SECTION.

 ...

 PROCEDURE DIVISION.

 MAIN-PARA.

 OPEN INPUT CUST-FILE

 OUTPUT OUT-FILE

 PERFORM UNTIL WS-EOF = 'Y'

 READ CUST-FILE

 AT END MOVE 'Y' TO WS-EOF

 NOT AT END PERFORM PROCESS-RECORD

 END-READ

 END-PERFORM

 DISPLAY 'TOTAL INTEREST: $' WS-TOTAL-INT

 CLOSE CUST-FILE OUT-FILE STOP RUN.

 PROCESS-RECORD.

 MOVE 'Y' TO WS-VALID

 IF CUST-BALANCE <= 0

 MOVE 'N' TO WS-VALID

 END-IF

 IF WS-VALID = 'Y'

 COMPUTE WS-DAILY-INT = CUST-BALANCE * WS-INTEREST-RATE

 COMPUTE WS-NEW-BAL = CUST-BALANCE + WS-DAILY-INT

 ADD WS-DAILY-INT TO WS-TOTAL-INT

 MOVE CUST-ID TO OUT-ID

 MOVE CUST-NAME TO OUT-NAME

 MOVE CUST-BALANCE TO OUT-OLD-BAL

 MOVE WS-DAILY-INT TO OUT-INTEREST

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

11

 MOVE WS-NEW-BAL TO OUT-NEW-BAL

 WRITE OUT-REC FROM WS-OUTPUT

 END-IF.

``` 
Table 3.  Mapping natural language specification to COBOL constructs. 

 

Natural Language Phrase COBOL Construct 

Read customer records  READ ... INTO record + PERFORM UNTIL EOF  

Calculate daily interest using 

2%  

WS-INTEREST-RATE + COMPUTE  

Write updated balance to 

output  

WRITE UPDATED-RECORD  

Handle invalid/missing 

records  

IF ... ELSE DISPLAY  

Display total interest at end  DISPLAY + accumulator field  

Stop at end-of-file  AT END flag  

 

 
 

Figure. 4: Generated COBOL logic flowchart. 

 

Mermaid (Generated COBOL logic flow):  

```mermaid flowchart TD  

A[Start Program] --> B[Open Input/Output Files]

B --> C{Read Customer Record}

C -->|End of File| G[Display Total Interest]

C -->|Record Found| D{Is Balance Valid?}

D -->|No| C

D -->|Yes| E[Calculate Interest & New Balance]

E --> F[Write Output Record]

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

12

F --> C

G --> H[Close Files]

H --> I[Stop Run]

subgraph "Process Record"

D

E F end

```  

 

```mermaid classDiagram class INTERT1 { +MAIN-PARA()  

+PROCESS-RECORD()

}

class Files {

+CUST-FILE

+OUT-FILE

}

class Records {

+CUST-REC

+OUT-REC

}

class WorkingStorage {

+WS-EOF

+WS-INTEREST-RATE

+WS-DAILY-INT

+WS-TOTAL-INT

+WS-NEW-BAL

+WS-VALID

+WS-OUTPUT

}

INTERT1 --> Files : uses

INTERT1 --> Records : processes

INTERT1 --> WorkingStorage : manages

```  

 

```mermaid sequenceDiagram participant Main as MAIN-PARA participant Process as 

PROCESS-RECORD participant CustFile as CUST-FILE participant OutFile as OUT-

FILE Main->>CustFile: OPEN INPUT

Main->>OutFile: OPEN OUTPUT loop Until EOF Main->>CustFile: READ

alt Not EOF

Main->>Process: PERFORM Process->>Process: Validate Record alt Valid Record

Process->>Process: Calculate Interest

Process->>Process: Calculate New Balance

Process->>Process: Update Total Interest Process->>OutFile: WRITE

end end end

Main->>Main: DISPLAY TOTAL INTEREST

Main->>CustFile: CLOSE

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

13

Main->>OutFile: CLOSE

Main->>Main: STOP RUN

 ```  

3.4. COBOL -> Java Transformation 
 

The final stage translates legacy COBOL into clean, maintainable Java. This follows a three-step 

process:  

 

1. Explain COBOL code using CoT and self-reflection.  

2. Generate an algorithm in plain English.  

3. Produce modern Java code based on that algorithm. Abbreviated COBOL Snippet 

 
IDENTIFICATION DIVISION.  
PROGRAM-ID. INTERT1. 
 ... 
 READ CUST-FILE 
     AT END MOVE 'Y' TO WS-EOF 
     NOT AT END PERFORM PROCESS-RECORD 
     END-READ 
  END-PERFORM 
  DISPLAY 'TOTAL INTEREST: $' WS-TOTAL-INT  CLOSE CUST-FILE OUT-

FILE  STOP RUN.          
      ... 

 

Generated Algorithm  

 

1. Open input and output files.  

2. Read each customer record until EOF.  

3. Validate record and compute new balance.  

4. Write updated record to output.  

5. Close files and display summary.  

 

Generated Java Code (Abbreviated)  

 

Program Listing 2 — InterestUpdater.java (Java):  

```  

public class InterestUpdater {

private static final double INTEREST_RATE = 0.02;

public static void main(String[] args) { InterestUpdater app = new

InterestUpdater();

 app.run();

}

void run() { while (hasMoreRecords()) { Customer c =

readCustomer(); if (c == null || !c.isValid()) {

System.err.println("ERROR: Invalid record"); continue;

 }

 double newBal = c.getBalance() * (1.0 +

INTEREST_RATE);

 writeUpdatedRecord(c, newBal);

 }

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

14

 System.out.println("Process completed.");

}

// Placeholder method stubs; implement your own I/O boolean hasMoreRecords() {

return false; } Customer readCustomer() { return null; }

void writeUpdatedRecord(Customer c, double newBal) {}

static class Customer {

 String id; double balance; boolean isValid() { return true; }

double getBalance() { return balance; }

}

} ```
public class InterestUpdater {

public static void main(String[] args) {
 while (hasMoreRecords()) { Customer c =

readCustomer(); double newBal =
c.getBalance() * (1 + INTEREST_RATE);

writeUpdatedRecord(c, newBal);
 }
 System.out.println("Process completed.");

}
}

Table 4. COBOL -> Java

COBOL Data Type / Structure Java Equivalent

PIC 9(7)V99 double

PIC X(30) String

COMP-3 Packed Decimal BigDecimal

WORKING-STORAGE Java Class Fields

FILE SECTION Java I/O Streams

Figure. 5:COBOL -> Java Modernization pipeline

4. IMPLEMENTATION

The modernization pipeline integrates LLMs, vector stores , and visualization tools into a unified

workflow.

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

15

4.1. RAG Configuration

• Chunk Size: 500–1000 lines per chunk.

• Overlap: 10–15% overlap to maintain context.

• Top-K Retrieval: 5 documents per query.

• Vector DB: Pinecone or Qdrant for semantic indexing.

4.2. Prompt Templates

Example for COBOL Explainability:

Explain this COBOL program step-by-step:

1. Identify all files and records used.

2. Summarize the purpose of each paragraph.

3. Highlight decision points and error handling.

4. Generate a flowchart for visualization.

Similar templates were created for PL/I, NL → COBOL, and COBOL → Java tasks.

4.3. Flowchart Generation Scripts

Mermaid CLI:

mmdc -i cobol_flowchart.mmd -o cobol_flowchart.svg

PlantUML CLI:

plantuml -tsvg modernization_flow.puml

5. EVALUATION

The pipeline was evaluated using real COBOL & PL/I programs from the banking domain.

5.1. Metrics

Table 5. Evaluation Metrics Summary

Metric Baseline LLM Pipeline

BLEU Score 58.4 74.2

BERTScore 0.72 0.85

Hallucination Rate 15% 4%

Productivity Gain – +45%

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

16

5.2. Figures

Figure. 6:BLEU/BERT Score Bar Chart

Figure. 7: Hallucination Rate Pie Chart

5.3. Analysis

• BLEU and BERTScore improvements demonstrate higher translation accuracy.

• Hallucination rate reduced by 70% using RAG + selfreflection loops.

• Productivity gains achieved through automation of explanation and generation tasks.

6. CHALLENGES AND LESSONS LEARNED

6.1. Key Challenges

Table 6. Challenges and Mitigations Strategies

Challenge Impact Mitigation Strategy

Hallucinations Incorrect outputs RAG, self-reflection, SME validation

Ambiguous Legacy

Semantics

Incomplete explanations Iterative prompts, analyst input

Large Codebases (>15k

LOC)

Missed logic details Vector DB chunking, flowcharts

Data Privacy Concerns Regulatory risks On-premise storage, encryption

Tooling Gaps Workflow

inefficiency

CLI automation, opensource tools

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

17

6.2. Lessons Learned

• Self-reflection reduced hallucinations by 30%.

• Flowcharts improved debugging speed for large programs.

• Secure deployments ensured compliance with banking regulations.

7. FUTURE WORK

• AI Feedback Loops: Continuous learning from SMEvalidated outputs.

• Hybrid RAG + Knowledge Graphs: Combining structured metadata with semantic search.

• Developer-in-the-Loop Learning: Human verification for high-risk workflows.

• Explainability Dashboards: Real-time visualization for auditors and developers.

8. CONCLUSION

This work introduced a four-stage LLM-powered pipeline for legacy modernization:

1. COBOL → Natural Language Explainability

2. PL/I → Natural Language Explainability

3. Natural Language → COBOL Generation

4. COBOL → Java Transformation Our approach:

5. Improved BLEU by 15.8 points.

6. Increased BERTScore by 18%.

7. Reduced hallucination rate by 70%.

8. Boosted developer productivity by 45%.

Final Statement:

By combining LLM reasoning, retrieval grounding, and visualization, this pipeline enables

scalable, auditable modernization of legacy systems across industries.

ACKNOWLEDGEMENTS

The authors would like to thank everyone, just everyone!

REFERENCES

[1] J. Wei et al., "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,"

arXiv:2201.11903, 2022. [Online]. Available: https://arxiv.org/abs/2201.11903

[2] IBM, Watsonx Code Assistant for Z Overview, 2025.

[3] N. Shinn, S. Labash, and L. Gopinath, "Reflexion: Language Agents with Verbal

ReinforcementLearning," arXiv:2303.11366, 2023. [Online]. Available:

https://arxiv.org/abs/2303.11366

[4] P. Lewis et al., "Retrieval-Augmented Generation for Knowledge-Intensive NLP," NeurIPS 2020.

[Online]. Available:

https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[5] J. Johnson, M. Douze, and H. Jégou, "Billion-scale similarity search with GPUs,"arXiv:1702.08734,

2017. [Online]. Available: https://arxiv.org/abs/1702.08734

[6] "Mermaid Diagram Syntax Reference," Mermaid Documentation, Accessed 2025. [Online].

Available: https://mermaid.js.org/intro/syntax-reference.html

[7] "PlantUML Official Documentation," Accessed 2025. [Online]. Available: https://plantuml.com/

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

18

[8] T; Brown, b. Mann, N; Ryder, m. Subbiah, J; Kaplan, p. Dhariwal, et al., “Language Models are

Few-Shot Learners,” in Advances in Neural Information Processing Systems (NeurIPS), 2020.

[9] IBM, "Enterprise PL/I for z/OS Language Reference," Version 6.1, 2022. [Online]. Available:

https://www.ibm.com/docs/en/epfz/6.1.0?topic=reference-enterprise-pli-zos-language

[10] D; Hendrycks, s. Basart, M. Mazeika, et al., “Chain-ofThought Prompting,” in Proc. Int;

Conf.onlearning representations (iclr), 2022.

[11] Pinecone Systems, vector stores [5] for AI, 2024.

[12] Qdrant, Open-Source Vector DB Documentation, 2025.

[13] ISO/IEC 1989:2023, "Information technology — Programming language COBOL," ISO,

2023.[Online]. Available: https://www.iso.org/standard/74527.html

AUTHORS

Sivakumar Arigela, Senior Software Engineer at IBM Software Labs with extensive

knowledge in working with mainframe applications and modernization approaches.

Gaurav Virwal, Computer Science engineer, worked on varied business domain such as

AL, LLM, banking, travel, industrial equipment.

