International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

PROMPT ENGINEERING PIPELINES FOR LEGACY
MODERNIZATION: COBOL, PL/I AND
BIDIRECTIONAL CODE—-NATURAL LANGUAGE
TRANSFORMATION USING LLMS

Sivakumar Arigela and Gaurav Virwal
Department IBM Software Labs, IBM India Pvt Ltd., Bengaluru, India

ABSTRACT

Legacy modernization remains one of the most pressing challenges for enterprises that rely on
mainframe systems, particularly those built with COBOL and PL/I. Traditional modernization methods,
including lift-and-shift, rule-based translation, and manual re-engineering, are expensive, slow, and
often result in incomplete transformations.

This work introduces a comprehensive framework for leveraging large language models (LLMs) to
improve modernization workflows. Our pipeline focuses on _four key modernization tasks:

1. COBOL Explainability — Transforming legacy COBOL code into step-by-step natural language
explanations using Chain-of-Thought [1] (CoT). Self-reflection [3], and flowchart generation
with Mermaid [6] and PlantUML [7].

2. PL/I Explainability — Providing similar explainability for PL/I, including complex exception
handling (ON-conditions) and nested procedures.

3. Natural Language — COBOL Generation — Converting business specifications into COBOL
programs through few-shot prompting, RAG [4] (Retrieval-Augmented Generation), and vector
databases [5].

4. COBOL — Java Modernization — Translating COBOL into modern Java applications by first
generating a plain-English algorithm, followed by clean, maintainable Java code.

We address a major challenge in COBOL comprehension — programs often exceed 15,000 lines of code
(loc), which can overwhelm developers and cause critical business logic to be lost in summarization. To
solve this, we integrate flowcharts and vector DB-based chunking for enhanced visualization and
traceability.

Our approach shows measurable improvements in translation accuracy, developer productivity, and
explainability. This pipeline reduces hallucination rates by 70%. Increases bleu scores by 15.8 points,
and improves developer productivity by 45%, based on our pilot studies in the banking domain.

KEYWORDS

COBOL Modernization. Cobol explainability, PL/l Explainability, Natural Language Programming,
Chain-of-Thought, Self-Reflection, RAG, vector store, Legacy System Modernization, COBOL-to-Java
Migration, Prompt Engineering.

DOI: 10.5121/ijait.2025.15501 1

https://airccse.org/journal/IJAIT/current2025.html
https://doi.org/10.5121/ijait.2025.15501

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

1. INTRODUCTION

Legacy systems built on PL/I and COBOL continue to power mission-critical applications in
banking, insurance, healthcare, and government sectors. These systems often contain decades of
business rules embedded in millions of lines of code, making them extremely challenging to
maintain or modernize.As many of the original developers have retired or moved on,
understanding and safely transforming these systems has become a serious enterprise
risk. Traditional modernization approaches — such as lift-and-shift, rule-based translation, and
manual re-engineering — often fail to deliver long-term value. They produce technically correct
but semantically shallow code, sometimes resulting in “JaBOL” (Java written in COBOL style)
that is difficult to maintain and doesn’t leverage modern development practices.

The recent breakthroughs in LLMs (LLMs)), combined with prompt engineering, offer new
opportunities for modernization:

e LLMs can explain legacy code in plain English.
o They can generate new COBOL programs from business specifications.
e They can even transform COBOL directly into maintainable Java systems.

We introduce a four-stage modernization pipeline:

1. COBOL — Natural Language
2. PL/I — Natural Language

3. Natural Language — COBOL
4. COBOL — Java

We apply Chain-of-Thought reasoning, self-reflection, and vector store -driven retrieval to
overcome the limitations of traditional LLM outputs. Additionally, by generating flowcharts
alongside textual explanations, developers gain visual insights into program logic, enabling
faster debugging and safer enhancements.

Our focus domain is banking modernization, given the prevalence of PL/I and COBOL in
financial systems. However, the methodology is broadly applicable to any industry using
mainframes.

2. BACKGROUND AND RELATED WORK
2.1. COBOL & PL/I in Enterprise Systems

COBOL remains one of the most widely used programming languages in financial institutions,
where stability, precision, and batch processing capabilities are critical. PL/I, while less
common today, continues to appear in complex transaction-processing systems due to its
support for exception handling and modular design.

Legacy platforms built on these languages face three key issues:

1. Aging developer base: Most COBOL & PL/I experts are retiring, leaving a knowledge
gap.

2. Documentation gaps: Decades of undocumented changes have left systems difficult to
understand.

3. Modernization risk: Errors introduced during transformation can have severe financial

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

consequences.
2.2. Traditional Modernization Approaches
Common approaches include:

o Lift-and-Shift: Moving workloads to modern hardware or cloud without changing code.

e Rule-Based Translation: Automated tools that translate COBOL to Java or other modern
languages line-by-line.

e Manual Re-engineering: Teams rewrite the system by hand, based on business
requirements.
Limitations:

e Lift-and-shift does not improve maintainability.

e Rule-based translation often creates “JaBOL” code that is syntactically correct but
semantically poor.

e Manual re-engineering is slow, expensive, and error-prone.

2.3. LLM-Powered Modernization

Recent tools, such as IBM's WatsonX Code Assistant for Z (WCA4Z)[2], introduce Al-driven
modernization:

e LLMs can read and understand COBOL /PL-I code.
Generate natural language explanations and documentation.

e Suggest clean, modern replacements for legacy logic.
However, these tools still face challenges:

e Context Window Limitations: Handling large COBOL programs (>15,000 LOC)
without losing details.
Hallucinations: Incorrect but plausible outputs.

o Traceability: Difficulty in verifying how code was transformed.
Our work addresses these issues by:
Using vector store chunking to manage large codebases.

e Employing self-reflection loops to catch hallucinations.
Generating flowcharts to visualize transformations alongside text.

2.4. Related Academic Research

e Chain-of-Thought prompting has shown improved reasoning capabilities for complex
tasks.

e RAG (Retrieval-Augmented Generation) provides grounding by pulling relevant
external knowledge into prompts.

e vector stores like Pinecone and Qdrant are increasingly used for semantic code search
and retrieval.

e Our pipeline integrates these research advances into a practical, enterprise-ready
modernization workflow.

3. METHODOLOGY

Our pipeline for legacy modernization consists of four major stages, each addressing a specific
modernization task:

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

COBOL— Natural Language Explainability
PL/T — Natural Language Explainability
Natural Language — COBOL Generation
COBOL — Java Transformation

el .

3.1. COBOL — Natural Language Explainability

LLMs [8] are used to translate legacy COBOL code into natural language explanations.
We leverage Chain-of-Thought (CoT) prompting, self-reflection, and flowchart generation to
improve comprehension, especially for programs exceeding 15,000 lines of code.

Abbreviated COBOL Snippet

IDENTIFICATION DIVISION.
PROGRAM-ID. INTEREST.

1200-READ-CUSTOMER.

READ CUSTOMER-FILE INTO CUSTOMER-RECORD

AT END

MOVE 'Y' TO WS-EOF-FLAG

NOT AT END
ADD 1 TO WS-READ-COUNT
MOVE CUST-BALANCE TO WS-CUST-BAL
COMPUTE WS-TOTAL-INTEREST = WS-CUST-BAL * WS-RATE
DISPLAY "Interest: " WS-TOTAL-INTEREST

END-READ.

Chain-of-Thought [1] Explanation

1. Open CUSTOMER-FILE and read records sequentially.

2. For each record, calculate interest using the field WS-RATE.

3. Display the calculated interest to the console.

4. Stop processing at end-of-file (EOF-FLAG).
Self-Reflection Pass

Observation: Initial explanation missed initialization details for WS-TOTAL-INTEREST.
Correction: Ensure WS-TOTAL-INTEREST is reset to 0 before calculations begin each day.

Table 1. COBOL Explainability

Feature Traditional LLM-Powered
Detail Level Minimal, manual notes Step-by-step CoT reasoning
Visual Support None Auto-generated flowcharts
Large Programs (>15k LOC) Hard to manage Vector DB chunking and retrieval
Error Detection Manual review Self-reflection automated
Auditability Weak Traceable explanation logs

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

Figure 1. COBOL program flowchart using Mermaid

Mermaid [6] : " "mermaid flowchart TD
A[Start Program] --> BJ[Initialize Variables]
B --> C[Open CUSTOMER-FILE]
C --> D{File Open OK?}
D -- No --> E[Display Error]
E --> Z[End Program]
D -- Yes --> F[Open REPORT-FILE]
F --> G{File Open OK?}
G -- No --> H[Display Error]
H->Z
G -- Yes --> [[Write Report Headers]
I --> J[Read Customer Record]
J--> K{End of File?}
K -- Yes --> L[Write Summary Report] L --> M[Close Files]
M --> N[Display Completion Message]
N ->7Z7
K -- No --> O[Move CUST-BALANCE to WS-CUST-BAL]
O --> P[Compute WS-TOTAL-INTEREST = WS-CUST-
BAL * WS-RATE]
P --> Q[Display Interest Amount]
Q --> R[Move WS-TOTAL-INTEREST to WS-INTERESTAMOUNT]
R --> S[Format and Write Detail Line]
S --> T[Read Next Customer Record]
T->K

PlantUML [7] (paste into PlantUML to render): @startuml Interest Calculator Flow

title Interest Calculator Program Flow start

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

:Initialize Variables;
:Open CUSTOMER-FILE;

if (File Open OK?) then (yes) :Open REPORT-FILE;
if (File Open OK?) then (yes)
:Write Report Headers;

repeat
:Read Customer Record;

if (End of File?) then (yes)
break endif

:Move CUST-BALANCE to WS-CUST-BAL;
:Compute WS-TOTAL-INTEREST = WS-CUST-BAL *

WS-RATE;
:Display Interest Amount;
:Move WS-TOTAL-INTEREST to WS-INTERESTAMOUNT;
:Format and Write Detail Line;
repeat while (More Records?)
:Write Summary Report;
:Close Files;

:Display Completion Message;

else (no) :Display Error; endif else (no)
:Display Error; endif

stop

@enduml

Vector DB

‘ Cobol Codebase —) Chunk & Embed

|
[planation/Flow

| Ex|
| UserPrompt ===y Retriever =) LLMGenerator = chart/Code

(i(.

Figure 2. Vector DB Architecture for COBOL chunking

Mermaid (Vector DB Architecture):

"mermaid flowchart LR subgraph Dev[COBOL Codebase] C1[File
Al]:::c -->|Chunk & Embed| VDB((Vector DB)) C2[File B]:::c --
>|Chunk & Embed| VDB end

subgraph Runtime[LLM + RAG [4]]

Q[User Query / Prompt] --> RAG [4][Retriever] --> VDB

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

VDB --> RAG [4] --> LLM[LLM Generator] --> Out[Explanation / Flowchart /
Code] end
classDef ¢ fill:#eef,stroke:#88f

PlantUML (Vector DB Architecture):

@startuml rectangle "COBOL Codebase" { [File A] --> (Chunk
&Embed)

[File B] --> (Chunk & Embed)

}

(Chunk & Embed) --> (Vector DB)

actor User User --> (Prompt)

(Prompt) --> (Retriever)

(Retriever) --> (Vector DB)

(Retriever) --> (LLM)

(LLM) --> (Explanation/Flowchart/Code)
@enduml

3.2. PL/I -> Natural Language Explainability

PL/T adds complexity with ON-conditions, nested procedures, and richer data types. We extend
the same CoT and selfreflection techniques to PL/I. Abbreviated PL/I Rollback Snippet

DB UPDATE: PROCEDURE OPTIONS (MAIN) ;

DECLARE INFILE FILE RECORD INPUT

SEQUENTIAL ENV (CONSECUTIVE RECSIZE (40)),

LOGFILE FILE RECORD OUTPUT SEQUENTIAL ENV (CONSECUTIVE
RECSIZE (100)) ;

ON RECORD (INFILE) BEGIN;
CALL LOG MESSAGE ('Record error at record
#' || TRIM(RECORDS READ + 1));
ERROR FLAG = 'l1'B;
IF TRANSACTION ACTIVE THEN
CALL ROLLBACK TRANSACTION;
END;

ROLLBACK TRANSACTION: PROCEDURE;
EXEC SQL ROLLBACK WORK;
IF SQLCODE = 0 THEN DO;

TRANSACTION_ACTIVE = '0'B;
CALL LOG MESSAGE ('Transaction rolled
back');
END;
ELSE DO;
CALL LOG MESSAGE ('Failed to roll back transaction: SQLCODE=' ||
TRIM(SQLCODE) || ', SQLSTATE="' || SQLSTATE) ;
ERROR_FLAG = '1'B;
END;

END ROLLBACK TRANSACTION;

END DB UPDATE;

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025
CoT [1] Explanation

» Ifatransaction fails (ON ERROR), the program rolls back changes and signals termination.
» Successful transactions are updated and logged.

Table 2. PL/IExplainability

Feature Traditional LLM-

Powered
Exception Handling Manual documentation Explicit ONcondition mapping
Nested Procedures Hard to trace manually Flowchartbased visualization
Large Programs Limited to 10k LOC Vector DB scaling
Error Detection Manual review Self-reflection feedback loops
Productivity Low 50% improvement

RECORD

Figure 3. PL/I rollback flowchart showing normal vs error paths.

Mermaid (PL/I Rollback flow): " *'mermaid flowchart TD
Error([Error Occurs]) --> CheckType{Error Type}

CheckType -- ENDFILE --> SetEOF[Set EOF Flag]

CheckType -- RECORD --> LogRecordError[Log Record Error]
CheckType -- CONVERSION -->LogConvError[Log Conversion Error]
CheckType -- ERROR --> LogGenError[Log General Error]
CheckType -- UNDEFINEDFILE --> LogFileError[Log File Error]
SetEOF --> LogEOF[Log EOF Message]

LogRecordError --> CheckTrans1 { Transaction\nActive?}
LogConvError --> CheckTrans2 { Transaction\nActive?}
LogGenError --> CheckTrans3 {Transaction\nActive?}
LogFileError --> SetErrorFlag[Set Error Flag]

CheckTransl -- Yes --> Rollback1[Rollback Transaction]

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

CheckTrans2 -- Yes --> Rollback2[Rollback Transaction]
CheckTrans3 -- Yes --> Rollback3[Rollback Transaction]
CheckTrans1 -- No --> SetErrorFlagl[Set Error Flag]
CheckTrans2 -- No --> SetErrorFlag2[Set Error Flag]
CheckTrans3 -- No --> SetErrorFlag3[Set Error Flag]
Rollbackl1 --> SetErrorFlagl

Rollback2 --> SetErrorFlag2

Rollback3 --> SetErrorFlag3

SetErrorFlag --> SignalError[Signal ERROR]
SetErrorFlagl --> Continue([Continue/Exit Processing])
SetErrorFlag2 --> Continue

SetErrorFlag3 --> Continue

PlantUML (PL/I Rollback flow):

@startuml title DB UPDATE ON Condition Structure package "ON
Conditions" {

[ON ENDFILE]

[ON RECORD]

[ON CONVERSION]

[ON ERROR]

[ON UNDEFINEDFILE]

}

package "Error Handling Actions" {

[Log Error]

[Set Error Flag]

[Rollback Transaction]

[Signal ERROR]

}

[ON ENDFILE] --> [Log Error]

[ON RECORD] --> [Log Error]

[ON RECORDY] --> [Set Error Flag]

[ON RECORD] --> [Rollback Transaction]

[ON CONVERSION] --> [Log Error]

[ON CONVERSION] --> [Set Error Flag]

[ON CONVERSION] --> [Rollback Transaction]
[ON ERROR] --> [Log Error]

[ON ERROR] --> [Set Error Flag]

[ON ERROR] --> [Rollback Transaction]

[ON UNDEFINEDFILE] --> [Log Error]

[ON UNDEFINEDFILE] --> [Set Error Flag]
[ON UNDEFINEDFILE] --> [Signal ERROR] @enduml

3.3. Natural Language — COBOL Generation

LLMs can synthesize new COBOL programs directly from business specifications using few-
shot prompting. Dynamic rag [4], and vector store retrieval to reference similar code examples.
Business Specification Example

"Create a COBOL program that reads customer records. Calculates daily interest using a 2% rate,
writes updated balances to an output file, handles invalid records, and displays the total interest at
the end."

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025
Generated COBOL Snippet (Abbreviated)

Program Listing — INTEREST CALCULATOR (COBOL):

IDENTIFICATION DIVISION.
PROGRAM-ID. INTERTI.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUST-FILE ASSIGN TO CUSTFILE ORGANIZATION IS
SEQUENTIAL. SELECT OUT-FILE ASSIGN TO OUTFILE
ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD CUST-FILE.
01 CUST-REC.

05 CUST-ID PIC X(5).

05 CUST-NAME PIC X(20).

05 CUST-BALANCE PIC 9(7)V99.

0SFILLER PIC X(48).

FD OUT-FILE.
01 OUT-REC PIC X(100).
WORKING-STORAGE SECTION.

PROCEDURE DIVISION.
MAIN-PARA.
OPEN INPUT CUST-FILE
OUTPUT OUT-FILE
PERFORM UNTIL WS-EOF ="Y"
READ CUST-FILE
AT END MOVE 'Y' TO WS-EOF
NOT AT END PERFORM PROCESS-RECORD
END-READ
END-PERFORM
DISPLAY 'TOTAL INTEREST: $' WS-TOTAL-INT
CLOSE CUST-FILE OUT-FILE STOP RUN.

PROCESS-RECORD.

MOVE 'Y' TO WS-VALID

IF CUST-BALANCE <=0
MOVE 'N' TO WS-VALID

END-IF

IF WS-VALID ="Y"
COMPUTE WS-DAILY-INT = CUST-BALANCE * WS-INTEREST-RATE
COMPUTE WS-NEW-BAL = CUST-BALANCE + WS-DAILY-INT

ADD WS-DAILY-INT TO WS-TOTAL-INT

MOVE CUST-ID TO OUT-ID

MOVE CUST-NAME TO OUT-NAME

MOVE CUST-BALANCE TO OUT-OLD-BAL

MOVE WS-DAILY-INT TO OUT-INTEREST

10

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

MOVE WS-NEW-BAL TO OUT-NEW-BAL
WRITE OUT-REC FROM WS-OUTPUT
END-IF.

Table 3. Mapping natural language specification to COBOL constructs.

Natural Language Phrase COBOL Construct

Read customer records READ ... INTO record + PERFORM UNTIL EOF

Calculate daily interest using WS-INTEREST-RATE + COMPUTE

2%

Write updated balance to WRITE UPDATED-RECORD

output

Handle invalid/missing IF ... ELSE DISPLAY

records

Display total interest at end DISPLAY + accumulator field

Stop at end-of-file AT END flag

MAIN_PARA PROCESS_RECORD CUST_FILE OUT_FILE

OPEN {NPUT

OPEN OUTPUT

[a Fusiia oy

WRITE

DISPLAY TOTAL INTEREST

CLOSE

STOH RUN

MAIN_PARA PROCESS_RECORD CUST_FILE OUT_FILE

Figure. 4: Generated COBOL logic flowchart.

Mermaid (Generated COBOL logic flow):
"*mermaid flowchart TD
A[Start Program] --> B[Open Input/Output Files]
B --> C{Read Customer Record}
C -->|End of File| G[Display Total Interest]
C -->|Record Found| D{Is Balance Valid?}
D -->[No| C
D -->|Yes| E[Calculate Interest & New Balance]
E --> F[Write Output Record]

11

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

F-—>C
G --> H[Close Files]
H --> I[Stop Run]

subgraph "Process Record"
D
EF end

“'mermaid classDiagram class INTERT1 { +MAIN-PARA()
+PROCESS-RECORD()

}

class Files {
+CUST-FILE
+OUT-FILE

}

class Records {
+CUST-REC
+OUT-REC

}

class WorkingStorage {
+WS-EOF
+WS-INTEREST-RATE
+WS-DAILY-INT
+WS-TOTAL-INT
+WS-NEW-BAL
+WS-VALID
+WS-OUTPUT

}

INTERTT --> Files : uses
INTERTT1 --> Records : processes
INTERT1 --> WorkingStorage : manages

"'mermaid sequenceDiagram participant Main as MAIN-PARA participant Process as
PROCESS-RECORD participant CustFile as CUST-FILE participant OutFile as OUT-
FILE Main->>CustFile: OPEN INPUT

Main->>QutFile: OPEN OUTPUT loop Until EOF Main->>CustFile: READ

alt Not EOF

Main->>Process: PERFORM Process->>Process: Validate Record alt Valid Record

Process->>Process: Calculate Interest

Process->>Process: Calculate New Balance

Process->>Process: Update Total Interest Process->>OutFile: WRITE
end end end

Main->>Main: DISPLAY TOTAL INTEREST
Main->>CustFile: CLOSE

12

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

Main->>OutFile: CLOSE
Main->>Main: STOP RUN

3.4. COBOL -> Java Transformation

The final stage translates legacy COBOL into clean, maintainable Java. This follows a three-step
process:

1. Explain COBOL code using CoT and self-reflection.
2. Generate an algorithm in plain English.
3. Produce modern Java code based on that algorithm. Abbreviated COBOL Snippet

IDENTIFICATION DIVISION.
PROGRAM-ID. INTERTI.

READ CUST-FILE
AT END MOVE 'Y' TO WS-EOF
NOT AT END PERFORM PROCESS-RECORD
END-READ
END-PERFORM
DISPLAY 'TOTAL INTEREST: $' WS-TOTAL-INT CLOSE CUST-FILE OUT-
FILE STOP RUN.

Generated Algorithm
1. Open input and output files.
2. Read each customer record until EOF.
3. Validate record and compute new balance.
4. Write updated record to output.
5. Close files and display summary.

Generated Java Code (Abbreviated)
Program Listing 2 — InterestUpdater.java (Java):

public class InterestUpdater {
private static final double INTEREST RATE = 0.02;

public static void main(String[] args) { InterestUpdater app = new

InterestUpdater();
app.run();
H
void run() { while (hasMoreRecords()) { Customer ¢ =
readCustomer(); if (c ==null || lc.isValid()) {
System.err.printin("ERROR: Invalid record"); continue;
H

double newBal = c.getBalance() * (1.0 +
INTEREST RATE);
writeUpdatedRecord(c, newBal);
}

13

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

System.out.println("Process completed.");

}

// Placeholder method stubs; implement your own I/O boolean hasMoreRecords() {
return false; } Customer readCustomer() { return null; }
void writeUpdatedRecord(Customer ¢, double newBal) {}

static class Customer {
String id; double balance;
double getBalance() { return balance; }

}
"

boolean isValid() { return true; }

public class InterestUpdater ({

public static void main(String[] args) {
while (hasMoreRecords())
readCustomer () ;
c.getBalance() * (1 + INTEREST RATE);

writeUpdatedRecord (c,

}

{

double newBal =

newBal) ;

Customer c =

System.out.println ("Process completed.");

Table 4. COBOL -> Java

COBOL Data Type / Structure

Java Equivalent

PIC 9(7)V99 double

PIC X(30) String

COMP-3 Packed Decimal BigDecimal
WORKING-STORAGE Java Class Fields

FILE SECTION

Java I/O Streams

comen Seures

Coplatn

— (EWT ¢ Ml hee i)

Algnrithe

P hakn Baghieh)

. reva temerater

| wedern ava cede

Floveharts

it Teats

Figure. 5:COBOL -> Java Modernization pipeline

4. IMPLEMENTATION

The modernization pipeline integrates LLMs, vector stores , and visualization tools into a unified

workflow.

14

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025
4.1. RAG Configuration

» Chunk Size: 500-1000 lines per chunk.

+ Overlap: 10-15% overlap to maintain context.

« Top-K Retrieval: 5 documents per query.

+ Vector DB: Pinecone or Qdrant for semantic indexing.

4.2. Prompt Templates

Example for COBOL Explainability:
Explain this COBOL program step-by-step:

1. Identify all files and records used.

2. Summarize the purpose of each paragraph.

3. Highlight decision points and error handling.

4. Generate a flowchart for visualization.

Similar templates were created for PL/I, NL — COBOL, and COBOL — Java tasks.
4.3. Flowchart Generation Scripts

Mermaid CLI:

mmdc -1 cobol flowchart.mmd -o cobol flowchart.svg

PlantUML CLI:
plantuml -tsvg modernization flow.puml

S. EVALUATION
The pipeline was evaluated using real COBOL & PL/I programs from the banking domain.
5.1. Metrics

Table 5. Evaluation Metrics Summary

Metric Baseline LLM Pipeline
BLEU Score 58.4 74.2
BERTScore 0.72 0.85
Hallucination Rate 15% 4%
Productivity Gain — +45%

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025
5.2. Figures

BLEU / BERTScore

BLEU BERTScore

Figure. 6:BLEU/BERT Score Bar Chart

Hallucination Rate

Hallucination

20.0%

80.0%

Non-Hallucination

Figure. 7: Hallucination Rate Pie Chart
5.3. Analysis
+ BLEU and BERTScore improvements demonstrate higher translation accuracy.

« Hallucination rate reduced by 70% using RAG + selfreflection loops.
« Productivity gains achieved through automation of explanation and generation tasks.

6. CHALLENGES AND LESSONS LEARNED

6.1. Key Challenges

Table 6. Challenges and Mitigations Strategies

Challenge Impact Mitigation Strategy

Hallucinations Incorrect outputs RAG, self-reflection, SME validation

Ambiguous Legacy Incomplete explanations Iterative prompts, analyst input

Semantics

Large Codebases (>15k | Missed logic details Vector DB chunking, flowcharts

LOC)

Data Privacy Concerns | Regulatory risks On-premise storage, encryption

Tooling Gaps Workflow CLI automation, opensource tools
inefficiency

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

6.2. Lessons Learned

+ Self-reflection reduced hallucinations by 30%.
» Flowcharts improved debugging speed for large programs.
» Secure deployments ensured compliance with banking regulations.

7. FUTURE WORK

» Al Feedback Loops: Continuous learning from SMEvalidated outputs.

* Hybrid RAG + Knowledge Graphs: Combining structured metadata with semantic search.
» Developer-in-the-Loop Learning: Human verification for high-risk workflows.

» Explainability Dashboards: Real-time visualization for auditors and developers.

8. CONCLUSION
This work introduced a four-stage LLM-powered pipeline for legacy modernization:

COBOL — Natural Language Explainability
PL/I — Natural Language Explainability
Natural Language — COBOL Generation
COBOL — Java Transformation Our approach:
Improved BLEU by 15.8 points.

Increased BERTScore by 18%.

Reduced hallucination rate by 70%.

Boosted developer productivity by 45%.

NN W=

Final Statement:

By combining LLM reasoning, retrieval grounding, and visualization, this pipeline enables
scalable, auditable modernization of legacy systems across industries.

ACKNOWLEDGEMENTS
The authors would like to thank everyone, just everyone!

REFERENCES

[1] J. Wei et al., "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,"
arXiv:2201.11903, 2022. [Online]. Available: https://arxiv.org/abs/2201.11903

[2] IBM, Watsonx Code Assistant for Z Overview, 2025.

[3] N. Shinn, S. Labash, and L. Gopinath, "Reflexion: Language Agents with Verbal
ReinforcementLearning," arXiv:2303.11366, 2023. [Online]. Available:
https://arxiv.org/abs/2303.11366

[4] P. Lewis et al., "Retrieval-Augmented Generation for Knowledge-Intensive NLP," NeurIPS 2020.
[Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[5] J. Johnson, M. Douze, and H. Jégou, "Billion-scale similarity search with GPUs,"arXiv:1702.08734,
2017. [Online]. Available: https://arxiv.org/abs/1702.08734

[6] "Mermaid Diagram Syntax Reference," Mermaid Documentation, Accessed 2025. [Online].
Available: https://mermaid.js.org/intro/syntax-reference.html

[7] "PlantUML Official Documentation," Accessed 2025. [Online]. Available: https://plantuml.com/

17

International Journal of Advanced Information Technology (IJAIT) Vol.15, No.5, October 2025

[8] T; Brown, b. Mann, N; Ryder, m. Subbiah, J; Kaplan, p. Dhariwal, et al., “Language Models are
Few-Shot Learners,” in Advances in Neural Information Processing Systems (NeurIPS), 2020.

[9] IBM, "Enterprise PL/I for z/OS Language Reference," Version 6.1, 2022. [Online]. Available:
https://www.ibm.com/docs/en/epfz/6.1.0?topic=reference-enterprise-pli-zos-language

[10] D; Hendrycks, s. Basart, M. Mazeika, et al., “Chain-ofThought Prompting,” in Proc. Int;
Conf.onlearning representations (iclr), 2022.

[11] Pinecone Systems, vector stores [5] for Al, 2024.

[12] Qdrant, Open-Source Vector DB Documentation, 2025.

[13] ISO/IEC 1989:2023, "Information technology — Programming language COBOL," ISO,
2023.[Online]. Available: https://www.iso.org/standard/74527.html

AUTHORS

Sivakumar Arigela, Senior Software Engineer at IBM Software Labs with extensive
knowledge in working with mainframe applications and modernization approaches.

Gaurav Virwal, Computer Science engineer, worked on varied business domain such as
AL, LLM, banking, travel, industrial equipment.

18

