
International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

DOI : 10.5121/ijait.2016.6101 1

GREATFREE: THE JAVA APIS AND IDIOMS TO

PROGRAM LARGE-SCALE DISTRIBUTED SYSTEMS

Bing Li

Department of Computer Science and Engineering, Xi’An Technological University,

Xi’An, China

ABSTRACT

This paper introduces a series of APIs and idioms in Java SE (Java Standard Edition), GreatFree, to

program large-scale distributed systems from scratch without adopting any third party frameworks. When

programming with GreatFree, developers are required to take care of rather than be invisible to most of

the implementation issues in a distributed system. It not only strengthens developers’ skills to polish a

system but also provides them with the techniques to create brand new and creative systems. However,

taking care of many such issues is a heavy load because of the low-level of Java SE. To alleviate the burden

to program with Java SE directly, GreatFree provides numerous APIs and idioms in Java SE to help

programmers resolve indispensable distributed problems, such as communication programming,

serialization, asynchronous and synchronous programming, resource management, load balancing,

caching, eventing, requesting/responding, multicasting, and so forth. Additionally, as an open source tool

to program, developers are able to strengthen their systems through not only adjusting GreatFree

parameters but also upgrading GreatFree APIs and idioms themselves. According to the current intensive

experiments, it is convenient for developers to program an ordinary or a large-scale distributed system

from scratch with GreatFree.

KEYWORDS

Design Patterns, Distributed Systems, Wireless Network, Idioms, Application Program Interface,

Distributed Programming, Concurrency

1. INTRODUCTION

The paper exhibits an open-source programming tool, GreatFree, to assist developers to program

large-scale distributed systems from scratch. Based on Java SE, GreatFree includes a series of

APIs and idioms to ease the programming procedure. Nowadays most developers avoid

programming a distributed system directly because of many issues to be resolved. In contrast, it is

more convenient to configure mature open sources and commercial frameworks than to program

with generic low-level programming languages like Java SE. However, in many specific cases it

needs to implement a system by programming rather than configuring. Professional developers are

required to be competent with dealing with complicated problems in a distributed computing

environment through programming.

To implement a distributed system by programming, it encounters many implementation barriers,

such as communication [1], serialization [1], asynchronous and synchronous management [2][3],

resource management [4], load balancing [5], caching [6], eventing and requesting/responding

[7], multicasting [8], and so forth. It is tough to implement such a system with generic

fundamental programming languages like Java SE. Nevertheless, programming a distributed

system from scratch is required in many specific cases. First of all, a brand new creative system

requires developers to program the low-level models themselves to construct a self-contained

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

2

system other than to resolve high-level problems only. The goal can never be achieved with the

approaches of configuring and customizing. Second, a system needs to be flexible enough to be

customized for a specific issue by programming. Though it is seldom that all of the distributed

features be implemented from scratch, a limited change is frequently required in a system. It is

convenient for programmers to handle that only if all of the code is open and easy to be changed.

Third, for professional developers, it is required for them to be competent with the task of

programming a complicated system without the assistance of mature frameworks. Fourth, for

security reasons, some systems, such as a creative one in a new environment, are forced to

implement from an initial level. For those considerations, a bunch of APIs and idioms, which is

named GreatFree, are proposed to assist developers to program distributed systems, specially the

large-scale ones.

The methodology GreatFree represents encourages proficient developers to program their own

distributed systems rapidly rather than to configure a mature framework. It provides developers

with a new programming tool that focuses on the large-scale distributed computing environment.

To achieve the goal, it prevents developers from heavy loads of programming a complicated

system with fundamental programming languages, such as Java SE (Java Standard Edition) [9].

For that, it comes up with a bunch of APIs (Application Program Interfaces) and design patterns

as idioms to solve the specific distributed issues such as client/server [10] and peer-to-peer

models [10], distributing eventing [7] and polling [7], resource management [4], distributed

concurrency and synchronization [2][3], distributed multicasting [8], distributed clusters [10] for

computing and memorizing, and so forth. With the support of the GreatFree APIs and idioms, it is

convenient for developers to program a large-scale distributed system from scratch. In brief,

GreatFree is a programming environment that resides between the mature configurable systems

and the naked generic programming languages. Using it, a high quality distributed system can be

conveniently programmed from scratch.

When using GreatFree, it is required for developers to keep most of the distributed issues in mind.

That is different from the traditional opinions of software engineering, which emphasizes the goal

to hide all of the details of low-level systems such that developers are invisible to the specific

computing environments. They need only to change limited parameters or configurations

following tutorials and guiding books without worrying about what happens underlying high-

level applications. On the contrary, the methodology of GreatFree proposes that most important

techniques should be discernible to developers such that they need to resolve them by

programming with relevant APIs and patterns. Developers are required to compose those stuffs to

form an arbitrary application. Although mature systems minimize developers’ effort, they also

lower developers’ abilities such that they can hardly deal with changes if they do not program for

a long-term. Such developers without sufficient knowledge might be able to customize a high

quality system by configuring mature systems. But they will never be able to implement a

creative system in a new domain. Therefore, using GreatFree, developers always need to learn

and keep in mind the relevant technologies. And then, when they would like to implement a brand

new system, the methodology of GreatFree become their potential silver bullet.

On the other hand, GreatFree is different from the naked generic programming languages like

Java SE. First of all, it contains a series of domain-specific APIs and idioms, which focus on the

area of distributed systems, especially the large-scale ones whereas a generic programming

language is required to deal with all of the issues in any domains. The convenience of GreatFree

is that developers’ programming loads are reduced magnificently for its well-defined APIs and

idioms. Although they need to be aware of the issues of distributed systems, they are not required

to implement them using Java SE. On the contrary, they just need to program in a composing

manner with the APIs and idioms from GreatFree. More important, proficient programmers are

encouraged to revise the code of the APIs and idioms because all of the source code of GreatFree

is open [11].

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

3

For the distinguished character of GreatFree, developers of the programming tool need to learn

the distributed issues at first. To be invisible to the problems, they must have no idea which APIs

and idioms should be chosen to program with a composing style. Fortunately, the programming

procedure looks like constructing a tower with high quality building blocks rather than sands and

stones directly.

The main contributions of the paper are summarized as follows.

As a methodology, a developer needs to learn the core techniques of the system they are

programming rather than to configure a mature system without knowing anything about its

internal principles. This is especially important to design a brand new and creative system.

To lower the burden of developers’ effort, open source based APIs and idioms are effective in

terms of its high quality and high changeability.

According to the above opinions, a series of APIs and idioms are proposed to help developers

program a large-scale distributed system.

The sections of the paper are organized as follows. Section 2 gives an introduction to the related

work, including configuring mature frameworks, design patterns and programming scratch.

Section 3 addresses the primary methodologies of GreatFree. Section 4 presents GreatFree APIs

to support distributed system programming. Section 5 discusses GreatFree idioms that compose

GreatFree APIs. Section 6 explains the experiment environment of GreatFree APIs and idioms.

Section 7 describes the future work.

2. RELATED WORK

In the domain of software engineering, to lower the burden to implement a distributed system,

many mature frameworks are put forward as open sources [12][13][14][15] or commercial

products [16] for specific application environments. Thus, developers are not required to program

but configure those systems to fulfill their requirements. In addition, although some generic

programming languages [9] are strengthened gradually to lower the cost to program, their

distances to a distributed system are still too long to be reached by coding directly for most

programmers. Finally, design patterns [17][18][19][20][21][22] are also believed to be one

approach to implement a complicated system like a distributed one. However, until now, most

design patterns are not the code in specific languages to be reused conveniently. Although idioms,

as small-scale design patterns, intend to resolve the issue, a comprehensive solution of idioms is

not available in the domain of distributed systems.

2.1. Configuring Mature Systems

Nowadays when implementing a distributed system, a common phenomenon is that developers

get accustomed to downloading existing mature open sources or commercial systems rather than

programming themselves line by line. No matter whether a system is complicated enough like a

so-called cloud [15] or even a fundamental one like a client/server model [10], most developers

give up implementing a system through programming. Although each of them must take the

relevant classes or trainings in universities or other schools, they become scared about

programming those systems themselves.

The primary reason is due to the fact that those mature systems could fulfill their requirements.

For example, to set up a Web site, Tomcat [12] is one of the popular choices as a Web server.

Even for a gaming system, a Web server like Tomcat is suitable to support its centralized

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

4

information exchanging among users. To initiate an e-commerce online system, developers prefer

the Java EE (Java Enterprise Edition) [13] to the generic programming language, Java SE (Java

Standard Edition) [9], since the former one hides most details of distributed techniques for

enterprises from developers.

In addition, it is difficult to program high quality distributed systems by programming from

scratch. Developers have to be aware of numerous technical details, such as network

communication [1], serialization [1], asynchronous and synchronous programming [2][3], caching

[6], eventing and requesting/responding [7], resource management [4], load balancing [5],

multicasting [8], and so forth. All of the issues turn out to be a heavy workload to program.

Finally, most mature systems are adaptable to subtle changes in their specific environments.

Those systems allow developers to configure in the event that some requirements cannot be

fulfilled by default. They provide developers with configuration files in an XML [23] format such

that they can set up their own preferences through modifying relevant parameters. For example, to

update the Solr [24] configuration file, developers are able to construct a tree-like structure to

distribute searching loads. When using JBoss [25], WebSphere [26] or other application servers,

business transactions [6] are required to be specified in configuration files.

In short, when the requirements are clear and the relevant mature frameworks are available to the

specific environment, it is reasonable to select an appropriate commercial framework or

download an open source system to accomplish the goal rapidly.

2.2. Disadvantages of Configuring Mature Systems

However, besides the advantages of mature frameworks, developers should be aware of the

disadvantages when using them to implement their systems. First of all, all of those mature

systems are specific to their respective particular domains and their adaptability is restricted to

narrow scopes. Although most existing frameworks claim they are adjustable to different

environments, it is always an impossible mission when using the systems to a domain out of their

ranges. For example, no one ever believes Java EE based enterprise systems could be used to take

the load of sharing online videos. If a conventional Web server, like Tomcat [12], could work

efficiently to transmit high-volume data, why some browser plug-in systems, like FlashGet [27],

exist? Although online Web chatting systems were popular in 1990s, they were completely

replaced by instant messaging [28]. Even though instant messaging systems dominate the market

of lightweight information exchanging, they are almost beat by socialized systems, like Twitter

[29], eventually. Therefore, once if a framework is designed, its adaptation is usually constrained

tightly within its domain. In brief, mature frameworks can hardly adapt to the updates in their

preferred computing environment.

Second, even though within the preferred specific domain for their designs, their adaptability is

limited in terms of the obvious differences between configuring and programming. For example,

in Solr, using its configuration files, developers are offered the privilege to customize a

hierarchical distributed structure to achieve the goal of load balancing. Indexed data is transmitted

among the nodes by the protocol of HTTP [30]. Each node in the structure has to pull its parent

node periodically to obtain latest data. However, the drawback is apparent in the case. First,

developers are not free enough to construct an arbitrary topology other than the hierarchical one.

Moreover, only the protocol of HTTP is used between the nodes. The periodically pulling is not

efficient as an eventing and streaming based protocol [10], especially when the timing issue is

critical in a particular application. Because of the limitations of the Solr, developers can do

nothing. Only programming can achieve the goal to upgrade underlying protocols and algorithms.

Mature systems are not adaptable enough to fulfill the requirements. Compared with

programming, the flexibility upon configuring is believed to be extremely limited.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

5

Third, developers probably rely on those systems such that it is difficult for them to keep and

improve their skills. Using them, developers need only to describe requirements and change

configurations. It can be achieved with few programming experiences. For example, to implement

an e-commerce system with a Java EE application server [13][26], only business logic is required

for developers to write code in the object-oriented model [17]. It is unnecessary for them to worry

about threading [2][3], data transmission [1], synchronizing [6], resource management [4], state

management [6], transaction management [6] and so forth. From the perspective of software

engineering, it lowers developers’ cost and speed up the system development. However, those

developers always lose the indispensable expertise during the procedure. For some beginners,

they even ignore the required knowledge and skills. After a period, it is impossible for them to be

competent with implementing a creative system from scratch.

Fourth, sometimes those mature systems are easily misused and excessively utilized in

inappropriate environments. The problem often happens when developers deploy those systems to

unsuitable domains. Even though they become aware of the potential problems, the convenience

of deploying and configuring attracts them to avoid the troubles of programming. Sometimes

such a misusing might work, but that is usually a high cost and cumbersome solution. For

example, to set up a peer-to-peer (P2P) [10] model in a distributed environment, developers

would rather install Tomcat [12] on each node as the server to receive data and then find a HTTP

client [30] for each of them to send data. The solution works since data can be sent from the client

to the server by the HTTP request and any nodes are able to play the role of a server to receive

remote requests and notifications. However, Tomcat is a huge stuff itself. It contains many other

irrelevant components that are never used in the P2P system, such as JavaServer Pages [31].

Moreover, Tomcat consumes a large portion of resources as a Web based application platform on

a server that has rich computing resources. Thus, it influences the quality of the P2P system,

especially when it is deployed to the devices whose resources are limited. In most time, a P2P

system needs to deal with a large number of heterogeneous computing devices. Most of them lack

computing resources. Therefore, Tomcat is unsuitable to the case. To some extent, the above

solution is not bad although it is far from perfect. The most typical mistake is that developers

would rather use Web servers anywhere for communications. The problem is often seen in the

case that developers lack rich experiences, especially who scares about the TCP programming and

the concurrency programming.

Finally, there are always new domains and novel ideas that are not covered by those mature

systems. A mature system emerges only when the specific application environment becomes

dominant and its primary requirements keep steady for a long period. For example, the so-called

application server is usually suitable to the centralized mission-critical enterprise distributed

environment to support e-commerce. Hadoop is proposed for the high concurrency and large-

scale distributed clusters that primarily deal with high volume read-only data. Fortunately, with

the progress of the computing world, new domains or computing environments always come out.

The mobile Internet is apparently such an instance. Many fancy applications are to be

implemented to accommodate the specific context. For example, when developers are designing

an application to present Web pages on a smart phone, they have to take into account to

accomplish the task with programming rather than simply to embed a browser into their

applications. Thus, many Web sites nowadays design their own clients on smart phones and

encourage users to access their sites using the specially customized clients rather than using

traditional generic browsers. Because of the specific designs, the clients provide users with high

quality accessing experiences. In addition, when new ideas are available about a specific topic,

traditional approaches must be out of date. It is required for developers to keep programming to

implement additional modules and integrate them with others. For instance, when a new routing

algorithm [32] is available for a P2P system [33], it is impossible to exploit it by configuring

existing systems. Developers have to implement the algorithm by programming.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

6

In brief, although mature software systems are convenient for developers to deal with

requirements in a particular computing environment, for a software developer, it is required to

keep in mind that programming instead of configuring is the only way to raise their ability to deal

with all kinds of difficult problems. In some specific scenarios, programming line-by-line is

mandatory to the success of a system, especially when it is a brand new one in terms of scientific

or business creations.

2.3. Design Patterns

For the problem of programming languages, some senior researchers and engineers propose

design patterns [17][18][19][20][21][22] to assist junior programmers. Design patterns aim to

provide developers with a bunch of mature solutions written in pattern languages [21][22] to

resolve recurring problems in various domains, such as the object-oriented (OO) programming

context [17], the distributed computing [18] and the enterprise systems [18]. The patterns are

proved to be effective. For example, to the issues of OO programming, patterns like creational,

structural and behavioral [17] ones lower developers’ effort to reinvent them themselves through

a long-term practice. Unfortunately, those stuffs retain to be generic in all of the above domains.

Thus, design patterns are not regarded as the final solution that can be reused rapidly to solve the

problems of specific computing environments. Instead, they need to spend high effort to be aware

the contexts where those abstract patterns are suitable. After that, those patterns have to be

transformed into specific code. During the process, programmers are never isolated from the

implementation details. It is still a tough job. In the domain of distributed systems, the burden

becomes severely heavier.

For a particular type of patterns, idioms are defined as the ones written in specific languages. If

so, the effort to program with them must be low. However, a comprehensive solution to the topic

of distributed systems is not available to the best of my knowledge. In the Java world, such a

solution is also almost unavailable. Even though some exists, it is still fine for developers to taste

the solution of GreatFree and make a better choice.

2.4. Programming from Scratch

Most developers who lack rich experiences are scared about programming directly, especially

when implementing a distributed system from scratch. Programming from scratch is designated as

the developing approach through which developers take into account most of the specific issues

of a particular application domain and solve them by coding themselves rather than importing

existing modules from third parties. It seems that the approach violates the convention of software

engineering that encourages developers to reuse mature legacy code and systems. In fact, that is

not the truth all the time.

In the following three cases, programming is still required. First, reusable legacy resources are

unavailable in a specific domain. Second, changes are required to fit a particular situation. Third,

new ideas or new environments emerge such that it is required to come up with a relatively

independent system. To deal with the issues of the above cases, programming becomes the

indispensible skills for developers.

The primary reason that developers dislike programming from scratch is that most languages,

such as Java SE, are generic to various application domains such that it is short of effective

modules, fully grown APIs and compelling patterns to deal with specific issues. Even though

developers grasp all of the details of a language and learn the requirements and solutions of the

domain, it still takes them a high cost to program a high quality system in a specific area directly.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

7

3. THE INTENTIONS OF GREATFREE

GreatFree is made up with a series of APIs and idioms to overcome the difficulties of

programming large-scale distributed systems. It believes the reusable code is the most convenient

tool to speed up the implementation procedure. For the domain of distributed environment, the

APIs and idioms play the role of building blocks to deal with most common problems. Those

components are neither conceptual models like regular design patterns for developers to refer to

nor black boxes like mature frameworks for configuring and customizing. Rather, the solution of

GreatFree turns out to be constructible and revisable high quality resources for programming. For

that, developers are required to be familiar with the relevant knowledge to come up with a

distributed system rather than to follow a tutorial only and forget about the critical technical

issues. A high quality, creative and flexible system cannot be implemented unless programmers

understand the essences and details. Meanwhile, developers’ effort is still lowered with the APIs

and idioms. Inspired by developers’ knowledge, the components can take the role to program a

system conveniently in terms of their high readability, constructability and changeability.

3.1. Specific Code is the Silver Bullet

Specific code is the silver bullet to speed up the development of a self-contained system

compared with other resources like design patterns and frameworks. Although they cover

common solutions in either the manner of object-oriented programming [17] or even in

distributed environments [18], design patterns belong to conceptual models for references rather

than the ones that can be embedded into an existing system directly for execution. On the other

hand, a mature framework is an established system for customization instead of a self-contained

one in which each detail is visible to developers.

Specific code is the reusable program that is proved to resolve one typical issue in a high quality

state in a particular computing environment. Once if a bunch of such code is available, it is

convenient for developers to either weave them to their own programs following straightforward

patterns or reconstruct them to implement other systems further. During the procedure, developers

are only required to transform the code to their own particular programs in accordance with the

specific code as samples. For the maturity of the specific code, the transforming is similar to a

mapping process rather than the conventional one to learn requirements, propose solutions, design

and test programs. Developers take the task without considering the details of code themselves in

most cases such that the effort is apparently lower than programming from scratch.

3.2. Knowledge of Distributed Systems is Required

GreatFree provides a series of APIs and idioms to assist developers to implement a self-contained

distributed system rapidly. Different from the transparency perspective of the traditional software

engineering, GreatFree developers are required to learn the specific issues of the system they are

implementing. Although it is unnecessary to resolve the problems by programming themselves,

they ought to be aware of what components are needed, where to place them in the program and

what effects the components take. As a common sense, it is unreasonable that developers know

little about the principles of the system they are implementing. As a matter of fact, the

programming environment supported by GreatFree is not a black box to hide details from

programmers. Instead, it is the composing-enabled open source for them to follow and speed up

the distributed system development. Only then, they are able to understand what they are doing

such that it is possible for them to raise the quality of their systems and improve GreatFree

through revising the open source.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

8

3.3. Changeable APIs and Idioms

GreatFree is an open source development tool that consists of a series of APIs and idioms.

Although it is tested, it does not mean that the exact solutions are not replaceable and changeable.

With the support of the idioms, the overall structure of the system is stable and developer-

friendly. However, it allows programmers to update the internal algorithms, i.e., the APIs,

without ruining the code organization upon GreatFree idioms. For example, developers could

upgrade the issues like resource management, thread management, multicasting approaches,

remote eventing and pulling and so forth. In addition, although the system implemented by

GreatFree is scalable, it does not guarantee that it fits in all of the heterogeneous distributed

environments. It encourages developers to follow the current version and make changes for their

own requirements in either the APIs or the idioms.

4. THE GREAT FREE APIS

GreatFree is comprised of two portions, the APIs and the design patterns as idioms. GreatFree

APIs attempt to provide developers with numerous mature encapsulated programs to resolve most

distributed problems. The portion of GreatFree APIs covers five areas, including remote

interactions, resource reusing, concurrency implementation and control, multicasting and some

other utilities. It helps developers construct their systems without taking care about the details of

each solution.

4.1. Remote Interactions

The APIs for remote interactions aim to support developers to accomplish four types of remote

interactions tasks, including establishing remote connections, sending synchronous/asynchronous

notifications, performing remote reading and managing remote IO resources. The APIs for remote

interactions consist of 15 classes, as shown in Table 1.

Table 1. Great Free Remote Interactions.

API Description

AsyncRemoteEven

ter

This class aims to send notifications to a remote server asynchronously

without waiting for responses. The sending methods are nonblocking.

Eventer This is a thread derived from NotificationObjectQueue. It keeps working

until no objects are available in the queue. The thread keeps alive unless it

is shutdown by a manager outside.

EventerIdleChecke

r

The class works with AsyncRemoteEventer to check whether an instance

of Eventer is idle long enough so that it should be disposed.

FreeClient This is a TCP client that encloses some details of TCP APIs such that it is

convenient for developers to interact with remote servers. Moreover, the

client is upgraded to fit the caching management.

FreeClientCreator The class contains the method to create an instance of FreeClient by its IP

address and port number. It extends the interface of Creatable and it is

used as the resource creator in the RetrievablePool.

FreeClientDisposer The class implements the interface of Disposable and aims to invoke the

dispose method of an instance of FreeClient to collect the resource. It is

used a resource disposer in RetrievablePool.

FreeClientPool The pool, RetrievablePool, is mainly used to manage the resource of

FreeClient. Some problems exist when instances of FreeClient are

exposed outside since they might be disposed inside in the pool. It is a

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

9

better solution to wrap the instances of FreeClient and the management on

them. The stuffs should be invisible to outside. For that, a new pool,

FreeClientPool, is proposed.

IPNotification This is an object to contain the instance of IPPort and the message to be

sent to it. It is used by the class of Eventer in most time.

IPPort The class consists of all of the values to create an instance of FreeClient.

For example, it is the source that is used to initialize resources in

RetrievablePool.

OutMessageStream The class consists of the output stream that responds a client. The lock is

used to keep responding operations atomic. The request is any message

that extends ServerMessage.

RemoteReader The class is responsible for sending a request to the remote end, waiting

for the response and returning it to the local end which sends the request.

ServerIO The class encloses all the IO required details to receive and respond a

client's requests.

ServerIORegistry The class is used to keep all of the ServerIOs, which are assigned to each

client for the interactions between the server and the corresponding client.

This is a management approach for those instances of ServerIOs.

ServerListener The class acts as the listener to wait for a client's connection. To be more

efficient, it involves a thread pool and the concurrency control mechanism

in its internal mechanism.

SyncRemoteEvent

er

The eventer sends notifications to remote servers in a synchronous

manner without waiting for responses. The sending methods are blocking.

4.2. Resource Reusing

Resource reusing is a critical topic since a distributed system consists of some critical resources to

be saved. In Java SE, it claims that memory is maintained by the underlying platform. However,

other resources have to be taken care by developers themselves. GreatFree includes a bunch of

APIs in 16 classes to ease the task, as listed in Table 2. They are roughly divided into three

categories, i.e., pooling, caching and relevant interfaces.

Table 2. GreatFree Resource Reusing.

API Description

Creatable This is an interface to define a resource creator that initiates an

instance of the resource in the resource pool, such as

RetrievablePool. The resource derives from FreeObject.

Disposable The interface defines a method for the disposer that collects the

resource in the resource pool, such as RetrievablePool. The resource

derives from FreeObject.

FreeReaderIdleChecker The class is used to call back the method of checkIdle of the instance

of FreeReaderPool.

FreeReaderPool This class is similar to RetrievablePool. In fact, it is a specific

version of RetrievablePool. First, the resource managed by the pool

is FreeClient. Second, it aims to initialize instances of FreeClient for

not only output but also for input.

HashCreatable The interface defines the method to create instances that extend

HashFreeObject.

HashDisposable The interface defines the method to dispose the objects that are

derived from HashFreeObject.

IdleChecker The idle checker works with the ResourcePool to check the idle

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

10

states of resources.

MulticastMessageDispo

ser

This is an implementation of the MessageBindable interface. It is

usually used by threads that share the same multicast messages.

QueuedIdleChecker The class aims to check periodically whether a resource is idle for a

long enough period. If so, the resource needs to be disposed.

QueuedPool The pool aims to manage resources that are scheduled by their idle

lengths. The one that is idle longer has the higher probability to be

reused than the one that is idle for a shorter period.

ResourceCache This class is a cache to save the resources that are used in a high

probability. It is designed since the total amount of data is too large

to be loaded into the memory. Therefore, only the ones that are used

frequently are loaded into the cache. It is possible that some loaded

ones are obsolete. It is necessary to load new ones that are used

frequently into the cached and save the ones that are out of date into

the database or the file system persistently.

ResourcePool The pool aims to manage resources that are scheduled by their idle

lengths. The one that is idle longer has the higher probability to be

reused than the one that is idle for a shorter period. Different from

QueuedPool, this pool does not care about the type of resources. It

assumes that all of resources in the pool are classified in the same

type.

RetrievableIdleChecker The class runs periodically to check whether a resource being

managed in a resource pool, such as RetrievablePool, is idle enough

time. If so, it collects the resource.

RetrievablePool The class is a resource pool that aims to utilize the resources

sufficiently with a lower cost. The pool is usually used for the

resource of FreeClient. For each remote end, multiple FreeClients are

initialized and managed by the pool. When it is necessary to interact

with one remote end, it is convenient to obtain a FreeClient by the

key or the initial values, i.e., the IP address and the port, which

represent the remote end uniquely. That is why the pool is named the

RetrievablePool.

4.3. Concurrency Implementation and Control

The issue of concurrency implementation and control is particularly critical to a distributed

system since it is required to deal with potential accessing from a huge number of users and other

remote clients. GreatFree contains rich solutions to the problem. 35 classes are designed to

provide developers with a convenient environment to program a high concurrency and low cost

distributed system. Table 3 lists the APIs and simple descriptions of them.

To implement the concurrency, two primary situations need to be dealt with. The first one is to

receive concurrent notifications and the second one is to receive concurrent requests and then

generate responses concurrently. In details, each of them needs to take into account the issue of

multicasting. That is, the notifications and requests/responses are performed within a large-scale

environment, which consists of numerous nodes, rather than between two nodes. It proposes a

couple of threading queues that encloses incoming messages and dispatchers to manage those

threads for specific cases.

For the issue of concurrency control, first of all, it is embedded into the concurrency APIs.

Moreover, a new class, Collaborator, which encloses locking and waiting/notifying mechanisms

of Java SE, is proposed for developers to use conveniently.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

11

Table 3. GreatFree Concurrency Implementation and Control.

API Description

AnycastRequestDispatcher This is a class that enqueues requests and creates anycast

queue threads to respond concurrently. If the current host does

not contain the requested data, it is necessary to forward the

request to the host's children.

AnycastRequestQueue This is a thread that possesses a request queue and other

remote communication resources. It is the base one to support

implementing anycast requests in a concurrent way.

AnycastRequestThreadCreata

ble

This is an interface to define the method to create a thread for

processing anycast requests concurrently.

BoundBroadcastRequestDispa

tcher

This is a dispatcher to manage broadcast request threads that

need to share requests. The threads must be synchronized by a

binder.

BoundBroadcastRequestQueu

e

When processing broadcast requests, no matter whether the

current host contains the matched data, it is required to

forward the request to its children. That is the difference

between the anycast and the broadcast. However, it is

suggested that the retrieval and data forwarding can be done

concurrently and they do not affect with one another. The

thread is designed for the goal since they are synchronized

once after both of them finish their critical tasks. Therefore,

they do not affect each other.

BoundBroadcastRequestThrea

dCreatable

The interface defines the method to create the bound broadcast

request thread.

BoundNotificationDispatcher This is a dispatcher to manage threads that need to share

notifications.

BoundNotificationQueue The thread is different from NotificationQueue in the sense

that it deals with the case when a notification is shared by

multiple threads rather than just one. Therefore, it is necessary

to implement a synchronization mechanism among those

threads.

BoundNotificationThreadCrea

table

The interface defines the method to create the instance of

BoundNotificationQueue. It is managed by

BoundNotificationDispatcher.

BroadcastRequestDispatcher This is a class that enqueues requests and creates broadcast

queue threads to respond them concurrently. If the current host

does not contain the requested data, it is necessary to forward

the request to the host's children.

BroadcastRequestQueue This is a thread that possesses a request queue and other

remote communication resources. It is the base one to support

implementing broadcast requests in a concurrent way.

BroadcastRequestThreadCreat

able

This is an interface to define the method to create a thread for

processing broadcast requests concurrently.

CheckIdleable This is an interface to define the signatures of two methods for

a thread's idle checking.

Collaborator The class encloses locking and notify/wait APIs to help

developers control concurrency.

Consumable The interface defines the method for a consumer in the

producer/consumer pattern.

ConsumerThread This is an implementation of the pattern of

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

12

producer/consumer.

Dispatchable It defines some interfaces that are needed in

ServerMessageDispatcher.

Interactable The interface defines a few method signatures for the

interaction between a caller and a callee in a concurrent

environment. The caller notifies the callee by calling the

methods provided by the callee such that the callee can

respond to the caller. The caller does that when its running

circumstance is changed in a certain situation.

InteractiveDispatcher This is a task dispatcher that schedules tasks to the special type

of threads derived from InteractiveQueue. For the distinct

designs, instances of managed threads can interact with the

dispatcher for high quality management.

InteractiveQueue This is the base class that must be derived to implement a

thread that holds the methods that can be called to notify the

interactive dispatcher.

InteractiveThreadCreatable In general, a pool needs to have the ability to create instances

of managed resources. The Creatable interface is responsible

for that. The interface defines the method to create instances of

InteractiveThread, which is derived from InteractiveQueue.

MapReduce This is a high concurrency processing class. Numerous threads

that take task queues are the input of the class. It is able to

execute those threads concurrently and merge the results from

them together.

MapReduceQueue This is a thread to implement the mechanism of map/reduce.

MessageBindable Some behaviors, such as disposing, on the messages must be

synchronized among threads. If no synchronization, it is

possible that a message is disposed while it is consumed in

another one. The interface defines the relevant method

signatures.

MessageProducer This is a producer/consumer pattern class to input received

messages into a concurrency mechanism, the server

dispatcher, smoothly.

NotificationDispatcher This is a class that enqueues notifications and creates threads

to process them concurrently. It works in the way like a

dispatcher. That is why it is named.

NotificationObjectQueue This is a fundamental thread that receives and processes

notifications as an object concurrently. Notifications are put

into a queue and prepare for further processing. It must be

derived by sub classes to process specific notifications.

NotificationQueue This is a fundamental thread that receives and processes

notifications in the form of messages concurrently.

Notifications are put into a queue and prepare for further

processing. It must be derived by sub classes to process

specific notifications.

NotificationThreadCreatable This is an interface defines the method signature to create the

instances of NotificationQueue.

RequestDispatcher This is a class that enqueues requests and creates threads to

respond them concurrently. It works in the way like a

dispatcher. That is why it is named.

RequestQueue This is a thread that receives requests from a client, puts those

messages into a queue and prepares for further processing. It

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

13

must be derived by sub classes to provide the real responses

for the requests.

RequestThreadCreatable This is the interface to define a method signature that creates a

thread to respond users' requests.

Runner This is a class to simplify the procedure to invoke a single

thread that implements the interface of Runnable of Java SE.

ServerMessageDispatcher This is the base of a server message dispatcher. All of the

messages sent to the server are dispatched by the class

concurrently.

Threader This is a class to simplify the procedure to invoke a single

thread that is derived from the class of Thread of Java SE.

ThreadIdleChecker This is a callback thread that runs periodically to call the idle

checking method of the thread being monitored.

4.4. GreatFree Multicasting

To implement a large-scale distributed system, it is indispensible to employ high efficient

multicasting mechanisms. GreatFree provides developers with 23 classes to achieve the goals.

Table 4 lists all of the APIs. In the current status, GreatFree supports a tree-based multicasting.

All of the nodes are organized as a tree to transmit data as messages or objects. The multicasting

is divided into the notification one and the request/response one. For the later case, it is further

categorized into the one of broadcast request/response and the one of anycast request/response.

Table 4. GreatFree Concurrency Implementation and Control.

API Description

AnycastRequest The request is a multicast one that is sent to all of the nodes in a

cluster. However, once if one node at least responds the request

positively, the multicast requesting is terminated. That is the

difference from the broadcast requesting.

AnycastResponse The message is an anycast response to be responded to the

initial requester after retrieving the required data.

BroadcastRequest The message is a broadcast request to be sent through all of the

distributed nodes to retrieve required data. For multicasting is

required, it extends ServerMulticastMessage.

BroadcastResponse The message is a broadcast response to be responded to the

initial requester after retrieving the required data.

ChildMessageCreatable The interface defines the method that returns the message

creator to generate multicast messages to children nodes in the

multicasting topology. It is used to define the instance of

children multicastor source.

ChildMulticastMessageCreat

able

The interface defines the method to create a multicast message

on a child node rather than the root one.

ChildMulticastor This is the multicasting class to run on a child node in the

multicasting topology.

ChildMulticastorSource The class contains all of the initial values to create an instance

of ChildMulticastor. That is why it is named

ChildMulticastorSource. It is used by the resource pool to

manage resources efficiently.

ObjectMulticastCreatable The interface defines the methods to create multicast messages

to be sent.

RootAnycastReaderSource This class assists the resource pool to create instances of anycast

readers. Thus, it contains all of required arguments to do that.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

14

RootAnycastRequestCreatab

le

The interface defines the methods to create requests in the

anycastor.

RootAnyRequestCreatable The interface returns an instance of the anycast request creator.

It is employed by the instance of RootAnycastReaderSource to

provide the method for the resource pool to manage anycastors.

RootBroadcastReaderSource This class provides the resource pool with initial values to create

instances of broadcast readers. That is, it is a class that contains

all of required arguments to do that.

RootBroadcastRequestCreat

able

The interface defines the methods to create requests in the

broadcast requestor.

RootBroadRequestCreatable The interface returns the broadcast request creator. It is

employed by the instance of RootBroadcastReaderSource to

provide the method for the resource pool to manage

broadcastors.

RootMessageCreatable The interface defines the method that returns the message

creator to generate multicast messages. It is used to define the

instance of multicastor source.

RootMulticastorSource The class contains all of the initial values that are required to

create an instance of RootObjectMulticastor. The source is

needed in the multicastor pool.

RootObjectMulticastor The code is a core component to achieve the multicasting

among a bunch of nodes. The nodes are usually organized into a

particular topology to raise the multicast efficiency. In the case,

a tree is constructed for the nodes. For different situations, a

more appropriate topology can be selected by programmers.

RootRequestAnycastor This class is the implementation to send an anycast request to all

of the nodes in a particular cluster to retrieve data on each of

them. It is also required to collect the results and then form a

response to return the root. However, only one response is good

enough for anycast.

RootRequestBroadcastor This class is the implementation to send a broadcast request to

all of the nodes in a particular cluster to retrieve data on each of

them. It is also required to collect the results and then form a

response to return the root.

ServerMessage The class is the base for all messages transmitted between

remote clients/servers.

ServerMulticastMessage This is the base class to implement the message that can be

multicast among a bunch of nodes.

Tree It aims to construct a tree to raise the quality of multicasting.

The tree in the case is simple, such as each node having an equal

number of children. It is acceptable when all of the nodes have

the similar computing capacity and most of them run within a

stable computing environment. For a heterogeneous

environment, a more complicated tree or other topologies must

be applied.

4.4. GreatFree Utilities

GreatFree provides some utilities to assist the programming for sorting, file input/output, timing,

XML and so forth. Although those APIs do not contribute to the distributed programming

directly, it is useful in their specific cases, as shown in Table 5.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

15

Table 5. GreatFree Utilities.

API Description

CollectionSorter The class aims to sort a collection, a list or a map, in the ascending or

descending manner. It is also able to select the maximum or minimum value

from the collection.

FileManager The class provides some fundamental file operations based on the API from

File of JDK.

FreeObject The class is designed in the system to fit object reusing, caching and so on.

HashFreeObject This is another general object that defines some fundamental information

that is required to manage in a pool. Different from the one, FreeObject, this

object is managed by the hash key rather than the object key.

NodeID This singleton is used to save a node's unique ID only.

NullObject The class represents nothing. It is used when an object needs to fill the

placeholder of generics, but it does not matter what should be put there.

Prompts It contains prompting messages on screen.

Rand This code is used to generate different types of random number in integer,

float and double by enclosing the one, Random, in JDK.

StringObj This is an object that can be compared by its key in String.

Symbols The class defines some frequently-used symbols.

TerminateSignal The class is a flag that represents whether the node process is set to be

terminated or not. For some long running threads, they can check the flag to

stop their tasks immediately.

Time The class consists of some common constants and methods to process timing

values.

Tools The class contains some methods that provide other classes with some

generic services.

UtilConfig The class keeps relevant configurations and constants of the solution.

5. THE GREATFREE IDIOMS

Another portion of GreatFree is the design patterns as idioms. The design patterns help

developers compose those APIs together in a certain structure to handle specific problems. In

essence, they are regarded as the sample code for developers to follow. Because of the maturity of

idioms, programming distributed systems become a lower cost task than doing that from scratch.

5.1. Terminator

The idiom of Terminator, which is implemented by a singleton, encloses a flag that represents

whether an entire process is terminated or not. It is usually embedded into a long running thread,

which detects the flag within a loop or periodically. When the flag is set to the state of being

terminated, the thread is ended before the next step of the loop.

At the entry of the entire process, a while loop is designed in the way similar to the above

manner. The loop does nothing but sleeps for a certain period in each step. The loop exits after the

flag is set to the state of being terminated. The primary API the idiom uses is the TerminateSignal

in the GreatFree utility.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

16

5.2. Coordinator

For a large-scale distributed system, a centralized Coordinator is required to manage the entire

system for the system initialization, the resource registry, the task and memory distribution, the

message bus, the resource disposal and so forth. It is also implemented in a singleton. It contains

two primary methods, start() and stop(). Thus, the coordinator is the entry and the exit of a

distributed node.

5.3. Server Listener

The idiom of Server Listener is a component that plays the role the remote connection listener as

the TCP (Transmission Control Protocol) [1] and accomplishes relevant initialization tasks. For

the various goals, it contains the TCP ServerSocket [1], an instance of ThreadPool, ServerIO and

its registry, ServerIORegistry. The ServerSocket is used to accept remote TCP connections. When

a new connection is constructed and the upper limit is not reached, an instance of ServerIO is

created and kept in the registry. Then, the ThreadPool starts a thread to run the newly created

ServerIO such that the remote client is served with a concurrency mechanism. In addition, if a

peer-to-peer distributed model needs to be implemented, a remote client pool, FreeClientPool, is

also taken into account to put in the listener. It needs to initialize an instance of FreeClient for the

incoming remote node. For a large-scale distributed system, a peer-to-peer architecture is flexible

in terms of implementing highly efficient interactions. Incidentally, each listener maps to one

particular port number uniquely. To raise the performance, multiple threads are required to

monitor the port. It is initialized and disposed in the Coordinator.

5.4. Remote Eventer

The idiom of Remote Eventer is responsible for sending notifications to a remote node at any

moment. As a general eventing mechanism, the notification processes are performed in either a

synchronous or an asynchronous manner such that both of the APIs, SyncRemoteEventer and

AsyncRemoteEventer, need to be enclosed. In a specific application, all of the eventers are

collected in a singleton for convenience. An instance of ThreadPool is also required in the

singleton to initialize the asynchronous eventers. It is initialized and disposed in the Coordinator.

5.5. Remote Reader

The idiom of Remote Reader supports another manner to interact with a remote node. It sends a

request and waits until a response is received. As a generic module, a singleton API,

RemoteReader, is implemented in GreatFree APIs to accomplish the task. For a specific

distributed node, it is suggested to enclose all of requests and their calls into a singleton for

convenience. It is initialized and disposed in the Coordinator.

5.6. Server IO

Each distributed node needs to derive the API of ServerIO to establish the fundamental

input/output streams as a server. A while-loop is needed in the derived idiom and the loop is

exited until the remote node closes the connection. In the loop, remote messages are received and

then they are assembled with the output stream and the locking for further processing. In the

procedure, it employs the API of OutMessageStream.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

17

5.7. Message Producer

The idiom of Message Producer is responsible for delivering messages to the idiom of Server

Message Dispatcher for concurrently processing. It is derived from general class,

MessageProducer, in GreatFree APIs. Additionally, it needs to be implemented with an instance

of ServerMessageDispatcher. To keep concurrent, an instance of Threader is also needed to start

the idiom. As required by the Threader, a disposer is defined for the instance of

ServerMessageDispatcher. For any distributed applications, only one message producer is needed

to dispatch received message for further processing. Thus, a singleton is required to wrap the

instance of MessageProducer. When a message is received by the Server IO, it is forwarded to the

Message Producer after being assembled with the output stream and the locking using

OutMessageStream. The idiom is initialized and disposed in the Coordinator.

5.8. Server Message Dispatcher

Derived from the API, ServerMessageDispatcher, the idiom of Server Message Dispatcher

consists of all of the thread management pools to deal with incoming messages concurrently.

According to the types of those messages, the thread management pools are divided into different

groups for notifications, requests, multicast notifications, anycast requests, broadcast requests and

so forth. For each type of messages, it is possible to define some exactly specific sub types of

messages, such as the request for sign-in or the notification for online. If the sub types of

incoming messages are rich, it is allowed to define multiple Server Message Dispatchers and

initialized in the Message Producer. Furthermore, it needs to create a specific thread management

idiom for each sub type message. All of them are enclosed, initialized and shutdown in one

particular Server Message Dispatcher. The typical structure for the idiom is a switch statement

that dispatches incoming messages to each of the thread management idiom according to the

message identifications.

5.9. Notification Queue

The idiom of Notification Queue is derived from the API, NotificationQueue, with a specific

notification message. In the idiom, one two-level nested while-loop is needed to enclose the

operations, which are executed immediately after receiving one notification. The outer while-loop

detects whether the thread is shutdown. The inner while-loop detects whether the queue to keep

notifications in the idiom is empty or not. If the queue is empty, the thread does not terminate

immediately. It needs to be waiting for a period such that it avoids high CPU usages for the long-

running loop and it also reduces the cost to create a thread when new notifications are received.

Usually, it is a high cost solution to collect the thread immediately when the queue is empty. To

save memory, it is also suggested to dispose notifications after it is processed. For that,

developers are required to invoke the disposing method.

5.10. Notification Object Queue

The idiom of Notification Object Queue is derived from the API, NotificationObjectQueue. Its

structure is identical to that of the Notification Queue. The only difference is that data in the

queue is derived from the Java base class, object, whereas the queue in the Notification Queue

keeps data derived from ServerMessage of GreatFree. For that, the Notification Object Queue is

usually not used as remote concurrent processing unless the object implements the interface of

serializable of Java.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

18

5.11. Bound Notification Queue

When a notification needs to be handled by multiple threads concurrently after it is received, it

needs to use the idiom of Bound Notification Queue to define them if the notification is probably

updated in any one of them. The idiom is derived from the API, BoundNotificationQueue, in

which an interface, MessageBindable, should be implemented to enclose the operations to be

synchronized.

5.12. Request Queue

As a child of the API, RequestQueue, the idiom of Request Queue has the similar structure to that

of Notification Queue, such as the two-level nested while-loop, the message queue, the waiting

control to save resources and the message disposing methods. Besides those, a responding method

needs to be invoked in the inner loop immediately after the response is created.

5.13. Bound Broadcast Request Queue

The idiom of Bound Broadcast Request Queue is another case to send a request and receive a

response from a remote system that is made up with a numerous distributed nodes. It is derived

from the API, BoundBroadcastRequestQueue. Different from that of the Request Queue, the

request is transmitted to each node in the system rather than to a single one. Additionally, since

the request is handled by two concurrent threads, i.e., one for generating the response and another

for forwarding it continually, and both of them might change it in some cases if applicable, such

as disposing the request, it is necessary to synchronize the relevant operations. That is why the

idiom is named Bound. The synchronized operations are enclosed in the unique instance of a class

implementing the interface of MessageBindable.

5.14. Anycast Request Queue

Different from that of Bound Broadcast Request Queue, it is not required to get responses from

each of them when a request is sent to a large number of potential distributed nodes. If anyone of

them responds, the entire procedure is terminated. Derived from the API, AnycastRequestQueue,

the idiom of Anycast Request Queue takes the task. It notes that it is impossible that the request is

handled by the two operations concurrently, i.e., the one forwarding it and the one responding it.

Because the forwarding is probably terminated in anycast, it is not necessary to synchronize the

above two threads since the two operations are performed in a sequential order in the idiom. Thus,

the idiom is not named as Bound as what it does on that of Bound Broadcast Request Queue.

5.15. Root Multicastor

Being situated at the coordinator node of a distributed system, the Root Multicastor is an idiom

for multicasting in the system that consists of numerous distributed nodes. By default, the

multicasting is performed within a tree topology and the coordinator plays the role of the root. It

is a singleton that includes a bunch of multicastor resource pools, which are implemented by the

API of ResourcePool. Each of the pools is able to create instances of specific multicastors derived

from RootObjectMulticastor. They send data to all of the nodes in the tree. Each of the methods

of the Root Multicastor contains four components, i.e., data to be transmitted, the initialization of

a multicastor, the transmission invocation and the collection of the multicastor for reuse. The

idiom is responsible for sending notifications only.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

19

5.16. Child Multicastor

The partner of the Root Multicastor is the Child Multicastor, which is located at the children

nodes of the multicasting tree. Each of the child multicastors is derived from ChildMulticastor to

send data its immediate children to keep the multicasting go ahead. Except that, the structure of

the Child Multicastor is identical to the root one. The multicastors are also managed by the

instances of ResourcePool.

5.17. Root Anycast Eventer

Sometimes it is necessary to send notifications to some of the nodes in a system instead of all of

them. In this case, the Root Anycast Eventer takes the responsibility. It is also situated at the root

of the multicasting tree. There are no any differences from the structure of the Root Multicastor.

The RootObjectMulticastor is the parent API of each multicastor. It only needs to send

notifications to its immediate children.

5.18. Child Anycast Eventer

As the partner of the Root Anycast Eventer, the Child Anycast Eventer keeps sending

notifications to its immediate children. But the operation is terminated if the notification is needed

by the local node. The judgment is carried out by the idiom of Notification Queue, which receives

the notification. The structure of the idiom is identical to that of the Child Multicastor. Each

multicastor is also derived from ChildMulticastor and managed by the instances of ResourcePool.

5.19. Root Broadcast Reader

Sometimes, it is required to query all of the distributed nodes in a system. In the case, the idiom

of Root Broadcast Reader is competent with the task. Different from those in the Root

Multicastor, the multicastors are derived from RootRequestBroadcastor. Besides the multicastor

pools implemented by ResourcePool, the idiom needs to implement a mechanism to collect the

responses. That is, until the number of responses reaches to that of the total of the distributed

nodes, the method of the broadcast requesting is blocked.

5.20. Child Broadcast Reader

As the partner of the Root Broadcast Reader, the Child Broadcast Reader is easier to be

implemented since it is unnecessary to take into account any additional issues. Its primary task is

the same as the Child Multicastor. The change happens in the relevant threads, i.e., the Bound

Notification Queue and the Bound Broadcast Request Queue, to process the broadcast requests.

The first queue forwards the requests to its immediate children and the second one creates the

relevant response to send it back to the root.

5.21. Root Anycast Reader

Different from the Root Broadcast Reader, another multicast requesting is accomplished by the

idiom of Root Anycast Reader if one response at least is received by the root. It is unnecessary to

send the request to all of the nodes in the distributed environment if one response at least is

received. Similar to the Root Broadcast Reader, the idiom needs to implement a response

collecting mechanism besides the multicastor pools. But it only needs to obtain one response and

then returns it to the requestor instead of waiting for all of the requests from each node in the

system.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

20

5.22. Child Anycast Reader

The partner of the Root Anycast Reader is the Child Anycast Reader. The request from the root

needs to be forwarded to the children of the current local node if the local node cannot generate

the required response. The implementation of the idiom is identical to the Child Multicastor. The

difference happens in the threads that invoke the methods of the idiom. In the case, the

corresponding thread idiom is the Anycast Request Queue.

5.23. Interactive Queue

Different from traditional threads, the idiom of Interactive Queue contains a number of callback

methods such that the running threads are able to interact with the pool that manages them. The

interactions are realized through invoking the callbacks. According to the interactions, it is

possible for the pool to notice the status of those threads such that it can make a proper decision

to manage those threads effectively and efficiently.

5.24. Map Reducer

The idiom of Map Reducer is an important idiom to implement the high concurrency mechanism.

When a large number of parallel tasks are available to be processed and their results need to be

merged, it is highly efficient to put them into the Map Reducer if they do not need to synchronize

during the procedure to accomplish each of them. The Map Reducer is made up with the pools to

manage the resources of MapReduce. Each of its public methods takes numerous tasks as input

and the merged results as return values. Inside the methods, it needs to specify the reducer,

initialize the algorithm object and invoke the concurrent mapping and reducing.

6. THE EXPERIMENTAL ENVIRONMENT

GreatFree APIs and idioms were proposed during the procedure to implement a new

infrastructure of World Wide Web [11][2]. It believes the social capital [36] is the driver to

associate the human capital [37] over the Web. For the understanding, it needs to take a heavy

load to program from scratch, including the issues of routing, multicasting, persisting, presenting

and so forth. It attempts to build a brand new large-scale heterogeneous information system such

that users are able to perform various information accessing behaviors, such as publishing,

forwarding, commenting, browsing, navigating, searching and following.

The current version is implemented with Java SE 7. It reaches the total lines of code, 373,181, at

the server side. In addition, its client side has 11,662 lines of code, which are implemented on

Android 5.0. All of APIs and idioms were proposed during the procedure to implement the server

side.

The server side is made up with the coordinator, the crawlers, the data rankers, the publisher

rankers, the memory nodes and the interactive nodes. In the current version, except that the

coordinator is implemented with a single computer, other types nodes are comprised of multiple

computers without the upper limit. As the center of the system, the coordinator is responsible for

integrating all of the nodes together, such as distributing tasks, disseminating data, forwarding

queries and so forth. Each of the crawlers receives tasks from the coordinator, collects Web pages

from the Web and then injects them into the system for sharing in a concurrent manner. The data

rankers evaluate and sort data in a certain order such that it can be presented to users in a high

quality form. The node rankers are responsible for sorting publishers of data and the

consequences are useful to construct the graphs between publishing organizations and

individuals. The memory nodes achieve the goal to keep important data in memory as cache and

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

21

the rest data on disk for persistence with a distributed cluster. The interactive nodes connect with

users’ devices directly and respond to users’ requests. Each of the above nodes is implemented

from scratch with Java SE initially for the proposals of new distributed models and data

transmission protocols. For that, the relevant APIs and idioms are proposed after a long-term

accumulation. Nowadays the backend of the system is accomplished, but its clients are still under

construction. It will be launched as a commercial system in one or two years.

7. FUTURE WORK

As a comprehensive solution to the large-scale distributed system, it can hardly claim the APIs

and idioms discussed in the paper cover all of the issues. With the progress of the development of

the system, more APIs and idioms must be put forward. In accordance with the domain of the

social computing, it is expected to invent some patterns that fit in the unstable environment. In

addition, it needs to improve the thread management approaches in the current version since it

notes that the number of raised threads is high. One reason for that is due to that each dispatcher

has a parent thread that is always alive. For such dispatchers are numerously utilized, it leads to

the growth of the number of threads. It can be solved through the lazy initialization and the parent

thread is killed after a certain period. Finally, all of the algorithms in each APIs and idioms need

to be improved. For the limited time, the algorithms are still rough. For example, the caching and

pooling algorithms are to be optimized. Potential developers are able to strengthen those

algorithms with the open source.

REFERENCES

[1] Elliotte Rusty Harold. 2014. Java Network Programming. O’Reilly Media, ISBN: 978-1-449-35767-

2.

[2] Doug Lea. 1999. Concurrent Programming in Java: Design Principles and Patterns, Second Edition.

Addison Wesley, ISBN: 0-201-31009-0.

[3] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes and Doug Lea. 2006. Java

Concurrency in Practice. Addison-Wesley, ISBN: 978-0-321-34960-6.

[4] Joshua Bloch. 2008. Creating and Destroying Objects, Chapter 2, Effective Java. Addison-Wesley,

ISBN: 978-0-321-35668-0.

[5] George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. 2011. Architectures, Chapter 2,

Distributed Systems: Concepts and Design, the Fifth Edition. Addison-Wesley, ISBN: 0-13-239227-5.

[6] George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. 2011. Consistency and

Replication, Chapter 7, Distributed Systems: Concepts and Design, the Fifth Edition. Addison-

Wesley, ISBN: 0-13-239227-5.

[7] Jim Farley. 2001. Message-Passing Systems, Chapter 6, Java Distributed Computing. O’Reilly Media,

ISBN: 1-56592-206-9E.

[8] George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. 2011. Communication, Chapter

4, Distributed Systems: Concepts and Design, the Fifth Edition. Addison-Wesley, ISBN: 0-13-

239227-5.

[9] Ken Arnold, James Gosling and David Holmes. 2005. The Java Programming Language. Addison-

Wesley, ISBN: 0-321-34980-6.

[10] George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. 2011. Processes, Chapter 3,

Distributed Systems: Concepts and Design, the Fifth Edition. Addison-Wesley, ISBN: 0-13-239227-5.

[11] Bing Li. 2015. DOI: https://github.com/greatfree/Programming-Clouds.

[12] Tomcat. 2015. Apache Tomcat. DOI: http://tomcat.apache.org/.

[13] Danny Coward. 2015. Java EE 7: The Big Picture. McGraw-Hill Education, ISBN: 978-0-07-183734-

7.

[14] Chuck Lam. 2011. Hadoop In Action. Manning Publications, ISBN: 978-1-93518-219-1.

[15] Dan Radez. 2015. OpenStack Essentials. Packt Publishing, ISBN: 978-1-78398-708-5.

[16] Juval Lowy and Michael Montgomery. 2015. Programming WCF Services: Design and Build

Maintainable Service-Oriented Systems. O’Reilly Media, ISBN: 978-1-491-94483-7.

[17] Steven John Metsker. 2002. Design Patterns Java Workbook. Addison Wesley, ISBN: 0-201-74397-3.

International Journal of Advanced Information Technology (IJAIT) Vol. 6, No. 1, February 2016

22

[18] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal. 1996. Pattern-

Oriented Software Architecture, A System of Patterns, Volume 1. John Wiley & Sons Ltd., ISBN: 0-

471-95869-7.

[19] Douglas Schmidt, Michael Stal, Hand Rohnert and Frank Buschmann. 2000. Pattern-Oriented

Software Architecture, Patterns for Concurrent and Networked Objects, Volume 2. John Wiley &

Sons Ltd., ISBN: 0-471-60695-2.

[20] Michael Kircher and Prashant Jain. 2004. Pattern-Oriented Software Architecture, Patterns for

Resource Management, Volume 3. John Wiley & Sons Ltd., ISBN: 0-470-84525-2.

[21] Frank Buschmann, Kevlin Henney and Douglas Schmidt. 2007. Pattern-Oriented Software

Architecture, A Pattern Language for Distributed Computing, Volume 4. John Wiley & Sons Ltd.,

ISBN: 978-0-470-05902-9.

[22] Frank Buschmann, Kevlin Henney and Douglas Schmidt. 2007. Pattern-Oriented Software

Architecture, On Patterns and Pattern Languages, Volume 5. John Wiley & Sons Ltd., ISBN: 978-0-

471-05902-9.

[23] Paul Whitehead, Ernest Friedman-Hill and Emily Vander Veer. 2002. Java and XML. Wiley

Publishing, ISBN: 0-7645-3683-4.

[24] Solr. 2015. DOI: http://lucene.apache.org/solr/.

[25] JBoss. 2015. DOI: http://www.jboss.org/.

[26] WebSphere. 2015. DOI: http://www.ibm.com/software/websphere.

[27] FlashGet. 2015. DOI: http://www.flashget.com/index_en.html.

[28] Skype. 2015. DOI: http://www.skype.com.

[29] Twitter. 2015. DOI: http://www.twitter.com.

[30] HTTP. 1996. HTTP – Hypertext Transfer Protocol Overview. DOI: .http://www.w3.org/Protocols/.

[31] JavaServer Pages. 2015. DOI: http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

[32] Ian Clarke, Oskar Sandberg, Brandon Wiley and Theodore W. Hong. 2001. Freenet: A Distributed

Anonymous Information Storage and Retrieval System. International Workshop on Designing Privacy

Enhancing Technologies: Design Issues in Anonymity and Unobservability, 2001.

[33] Matei Ripeanu. 2001. Peer-to-Peer Architecture Case Study: Gnutella Network. Proceedings of 1st

International Conference on Peer-to-Peer Computing, 2001, pp. 99-100.

[34] Time-Berners Lee. 1989. The Original Proposal of WWW and HTML. DOI:

http://www.w3.org/History/1989/proposal.html.

[35] Bing Li. 2015. The New Infrastructure of WWW. DOI: http://greatfree.blog.163.com/.

[36] Nan Lin. 2001. Social Capital: Capital Captured Through Social Relations, Chapter 2. Social Capital

– A Theory of Social Structure and Action, Cambridge University Press, ISBN: 0-521-47431-0.

[37] Nan Lin. 2001. Theories of Capital: The Historical Foundation, Chapter 1. Social Capital – A Theory

of Social Structure and Action, Cambridge University Press 2001, ISBN: 0-521-47431-0.

