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ABSTRACT 
 

This article presents a probabilistic modeling method utilizing smart meter data and an innovative agent-

based simulator for electric vehicles (EVs). The aim is to assess the effects of different cost-driven EV 

charging strategies on the power distribution network (PDN). We investigate the effects of a 40% EV 

adoption on three parts of Frederiksberg's low voltage distribution network (LVDN), a densely urbanized 

municipality in Denmark. Our findings indicate that cable and transformer overloading especially pose a 

challenge. However, the impact of EVs varies significantly between each LVDN area and charging 

scenario. Across scenarios and LVDNs, the share of cables facing congestion ranges between 5% and 

60%. It is also revealed that time-of-use (ToU)-based and single-day cost-minimized charging could be 

beneficial for LVDNs with moderate EV adoption rates. In contrast, multiple-day optimization will likely 

lead to severe congestion, as such strategies concentrate demand on a single day that would otherwise be 

distributed over several days, thus raising concerns about how to prevent it. The broader implications of 

our research suggest that, despite initial worries primarily centered on congestion due to unregulated 

charging during peak hours, a transition to cost-based smart charging, propelled by an increasing 

awareness of time-dependent electricity prices, may lead to a significant rise in charging synchronization, 

bringing about undesirable consequences for the power distribution network (PDN). 
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1. INTRODUCTION 
 
The electrification of the transport sector is being driven forward to reduce carbon emissions [1]. 

As a result, a considerable amount of research has been devoted to tackling the challenges of 
large-scale EV adoption, including the optimal planning of public charging infrastructure [2] and 
the integration of EVs into existing PDNs [3]. While the planning of public charging 
infrastructure is important to meet the charging demand of those without access to home 
charging, given the large share of households with access to private parking and its inherent 
convenience, home charging will remain the most important source of EV charging in the future 
[4]. 
 

An important challenge faced by distribution system operators (DSOs) in this respect is the 
substantial uncertainty regarding the extent of home charging and the resulting consumption from 
the combined base load and additional EV demand. In contrast to installing public charging 
infrastructure, where DSOs can plan the required infrastructure (by) virtue of an approval 
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process), home chargers are typically installed without informing the DSO. This issue is further 
aggravated by the residential customers’ freedom to fully utilize the existing grid connection 
capacity and contribute to a coincidence factor (CF) that the grid was never built. In the case of 
Denmark, the grid connection of single-family houses is typically limited to 25 A per phase and 

thus can easily accommodate 11 kW chargers alongside normal household consumption [5]. 
 
Not surprisingly, these challenges have led to great interest in evaluating the potential impact of 
residential EV charging on PDNs [6–11]. Initial concerns have focused on the coincidence of 
uncontrolled charging events with peak hours, which has led to extensive research on smart 
charging strategies aimed at benefiting the PDN [12]. However, the present energy crises and 
surging electricity prices in Europe have raised awareness of possible savings from the time-
dependence of charging costs. This has stimulated the growth of smart charging services, targeted 

mainly at minimizing charging costs for the EV user. As demonstrated in [4], cost-based charging 
can lead to undesirable charging patterns in which many EVs charge simultaneously and thus 
cause stress to PDNs. This article is devoted to analyzing various charging strategies on the 
LVDN of the municipality of Frederiksberg (Denmark), with inspiration from the uncertainty 
surrounding home charging and the potential effects of the application of cost-based charging. 
This study builds upon our research on the medium voltage distribution network (MVDN) [6], 
where the impact of different degrees of charging synchronization was examined. 

 

1.1. Literature Review 
 
In the past years, many studies have been devoted to analyzing the impact of residential EV 
charging on LVDNs. Given the wide breadth of modeling approaches, we comprehensively 
analyze the most relevant publications [13–35] in Table 1. The literature is classified concerning 

(1) the case study, (2) the modeling approach, and (3) the impact analysis methodology. 
 
First, we classify the literature according to the type of LVDN, the geographical area under study, 
the EV penetration levels, and the charging power at home. Concerning the former, several 
papers use real LVDN topology data from different end countries [14–16,19–22,24,32]. 
However, many research papers lack data and use either synthesized or benchmark LVDNs 
[17,18,23,25–27,33] or only consider certain LVDN components [34,35]. Furthermore, a wide 

range of geographical areas are investigated in the existing literature. Whereas urban LVDNs are 
most widely covered in the reviewed publications, rural and suburban LVDNs also receive 
considerable attention. Other studies include the analysis of campestral [20] or particularly 
densely populated inner-city areas [22,33]. In addition, previous research varies about the 
analyzed EV penetration level and charging power, ranging from low charging powers of 1.44 up 
to 11 kW. Second, concerning the modeling approach, the literature can be distinguished 
concerning the charging strategy and the base load and EV load modeling methodology. 
Concerning the former, most studies focus on analyzing the impact of uncontrolled charging [15–

24, 26, 27, 32–35]. Furthermore, several papers address the topic of ToU-based charging [15, 17]. 
Finally, the impact of a variety of smart charging strategies is investigated. These are 
predominantly aimed at benefiting the LVDN or simultaneously serving both the EV user and the 
LVDN. Such strategies include static charge schedules [34], valley-filling [18], peak-shaving 
[26] and load-flattening [23] methods, transformer- [16] and voltage-dependent charging [15], the 
maximization of PV self-consumption [27] or cost- and CO2-minimised charging with grid 
constraints [18,33]. 
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Table 1: Literature review on the impact of residential EV charging on low voltage distribution 

networks, including this paper [*]. 

 

 

 
Abbreviations: ABS, Agent-Based Simulation; Ap., Approach; C, Cable; CS, Charging Station; 

EV-t, EV trial; L, Losses; NA, North America; O, Other; R, Rural; S, Suburban; SM, Smart meter; 

T, Transformer; TS, Travel Survey; U, Urban; V, Voltage deviation/unbalance; B, Benchmark 

LVDN; D, Deterministic; P, Probabilistic; S, Synthetic; Country codes follow ISO 3166 [36]. 

Charging strategies: 1, Real charging profiles; 2, Uncontrolled; 3, ToU; 4, Cost-minimization; 5, 

Voltage-based; 6, Transformer-based; 7, CO2-minimisation; 8, valley filling/load flattening/peak 

shaving; 9, PV self-consumption maximization; 10, phishing attacks; 11, static charge schedules. 

 
In [29,30,34,35], the results are obtained by one-shot simulation. However, this can lead to biased 
results, especially for LVDNs, which are often small in scale and thus can encompass significant 
variation in the location of EVs and the specific charging Behavior. Probabilistic power flow 
simulations are applied in [14,16,19,23]. These studies can capture the uncertainty of inputs and 
often provide better estimates of grid bottlenecks. Most studies assess the impact on system 
voltage in terms of voltage deviations or imbalance and the impact on the transformer or cables. 

Finally, only a small share of studies considers the impact of EV charging concerning grid losses 
or other aspects such as harmonic distortion [26]. 
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1.2. Research Gap and Contribution 
 
The literature review revealed several research gaps, which served as an inspiration for this 

paper. To begin with, access to LVDN data remains an issue. Contrary to a large share of existing 
documents, this study is based on real data from an urban LVDN of the municipality of 
Frederiksberg (Denmark). 
 

Moreover, detailed microscopic modeling of the EV charging demand still needs to be used in the 
reviewed grid impact literature. Within this work, we want to bridge this gap by using a novel 
agent-based simulator, GAIA [37]; that allows us to model EVs' daily natural charging rhythm, 

referred to throughout this paper as the genuine charging pattern. The technology in the GAIA 
model is based on a steady-state SoC distribution [38] and a probabilistic decision-to-charge 
model that uses information-sharing [39] to simulate and analyze different charging strategies. 

Furthermore, there needs to be more studies that try to capture the combined probabilistic nature 
of both residential base load and EV load while analyzing the resulting grid impact. In this work, 
we propose a probabilistic model that can address the variation in residential base load demand 
based on smart meter data and the uncertainties resulting from the additional demand for EV 

charging by accounting for home charging availability, charging location, and the decision to 
trust in space and time. 
 
Last, most papers address the initial concern of grid impacts arising from uncontrolled charging 
or analyze smart charging strategies considering grid constraints. However, as previously 
indicated, the recent increase in electricity prices might cause a considerable shift in charging 
behavior towards cost-based charging strategies already offered by multiple parties in Denmark. 
While shifting charging to periods of lower prices during the night might benefit the LVDN when 

EV penetration is common, synchronization effects of many EVs following the same objective 
could cause new concerns for LVDNs. Recently, there has been an increasing interest in 
multiple-day cost-minimization, where parties involved with EV charging have developed energy 
price forecasting tools for such optimization. Thus, we address this research gap within this work 
and analyze the impact of various cost-based charging strategies. 
 
The subsequent sections of this manuscript are structured as follows: 

 
The paper's methodology is explained in Section 2. The principal discoveries of this research are 
presented and discussed in Section 3. In conclusion, the paper concludes with the conclusions 
presented in Section 4. 
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2. METHODOLOGY 
 
The methodology of this paper is presented in Fig.1 and consists of four steps, to be discussed in 
more detail in the following. The four large boxes that range from light to dark green highlight 
the individual steps. 
 

 
 

Figure 1: Grid impact analysis methodology. Dark, grey-shaded rhomboids display the input data, and 

orange-shaded rectangles represent the external parameters. The light grey-shaded hexagon illustrates the 

input of the GAIA model. White-shaded rectangles represent the results obtained in each step. Purple 

shapes show the workflow of the Monte Carlo simulation (MCS). (For the reader's understanding of the 

color references in this figure legend, please consult the online version of the article.) [57] 
 

2.1. Low Voltage Power Distribution Network Modeling 
 
Traditionally, LVDNs have been planned and operated as passive PDNs based on the so-called 
’fit-and-forget’ premise. Following this approach, the operation was predominantly determined 

during the planning stage by adequately sizing transformers, conductors, and other equipment 
according to a power demand forecast assuming a certain CF, resulting in little need for 
monitoring and control [40]. As a result, DSOs typically do not have readily available electrical 
models of their LVDN, and open data is limited to Geographic Information Systems (GIS) for 
asset management purposes [41]. But when dispersed energy resources like electric vehicles 
(EVs) become more widely used, a more active LVDN will inevitably emerge. Thus, a significant 
task is to model LVDNs in order to analyze the time and magnitude of probable charging peaks 

[42]. 
 

Within this work, we analyze three parts of Frederiksberg’s urban LVDN, labeled LV1, LV2, and 
LV3. Data on the network topology is collected from the DSO Radius, a partner in the FUSE 
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project [43]. The data, extracted from Radius’ GIS system, encompasses information on the 
location and characteristics of its transformers, cable cabinets, and respective underground cables. 
 

Table2: Overview of transformer parameters for each LVDN. [57] 

 

 LV1 LV2 LV3 

Rated apparent power (kVA) 630 500  

Derated apparent power (kVA) 525.0 416.7  

Rated voltage (kV)  10.5/0.42  

Relative short-circuit voltage (%) 4.14 5.4  

Real part of rel. short-circuit voltage (%) 0.75 1.06  

Iron losses (kW) 0.717 0.697  

Angle shift (◦)          30  

 

The GIS data is converted into a suitable electrical model using the package Panda Power [44] in 
Python. We focus our analysis on the MV/LV transformer and the underground cables 
connecting the transformer and cable cabinets. The household connections, i.e., underground 
lines connecting the LVDN customer with the cable cabinet, need to be modeled due to a lack of 
data. 
 

2.1.1. Modelling of the Transformer and Cable Cabinets 

 
Each LVDN (Un=0.4 kV) is connected to the MVDN (Un=10 kV) through a typical Danish 
distribution transformer with a 10.5/0.42 kV nominal ratio. The nominal capacities of the MV/LV 
transformers vary between 500 and 630 kVA. To account for the impact of likely phase 
imbalances within the LVDNs, we assume a slightly unbalanced system of 40%, 30%, and 30% 
phase loading and reduce the nominal capacity by using a dating factor of 0.83. An overview of 
the transformer characteristics and parameters is provided in Table 2. 
 

The connection to the MVDN is modeled as the slack bus with the voltage angle set to 0◦. The 
voltage is set to 1.05 p.u. to align with the common practice of the DSO to operate the system at a 
slightly higher voltage level to ensure that voltage variations are within acceptable limits. As 
indicated in the GIS data, the cable cabinets are modeled through buses at their respective 
locations. 
 
2.1.2. Modelling of Underground Distribution Cables 

 
The LVDN cables are underground cables, of which the majorities are composed of different 
cable segments with often other parameters. Thus, each cable segment is modeled in cable muffs 
that connect individual and different cable segments. While the GIS data determines the location 
of the cables, the electrical parameters for each line are unknown. The GIS data only contains 
information about the phase material, the cross-section area, and the number of conductors, as 
shown in Table 6 found in Appendix A.1. Therefore, we derive the electrical parameters for each 

cable segment from the NKT product catalog [45] by selecting the relevant cable type that 
reflects the unique combinations of the characteristics of the cable mentioned above. As a 
common practice in Denmark, LVDN cables possess four conductors, including the neutral 
phase. As indicated in Table 6, lines either keep four conductors with equal conductor and 
unbiased cross-section or three conductors and a separate neutral with often smaller cross-section. 
This work considers the electrical parameters defined by the conductor characteristics since our 
analysis is based on a balanced power flow. Cross-sections range from 50 to 240 mm2, and the 
phase material varies between copper (Cu) and aluminum (Al). The maximum current capacity 

from the cable catalog is calibrated to average Danish conditions. This work does not account for 
potential local hotspots caused by proximity to heat pipes or narrow road sections. Assuming an 
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average ambient soil temperature of 15 ◦C and a thermal resistance of 1 K m/W with cables 
directly laid in the ground, the maximum current carrying capacity is multiplied with a correction 
factor of 1.43 and 1.05, respectively [45]. Furthermore, a reduction factor of 0.6 accounts for the 
mutual influence of several circuits laid directly in the ground with a free distance between cables 

of one cable diameter. Last, as already applied during the modeling of transformers, we set the 
derating factor of the nominal capacity of the cables to 0.83 to account for the overloading effect 

of potential phase imbalances. 
 

Table 3: Characteristics of each LVDN in Frederiksberg. [57] 

 

 LV1 LV2 LV3 

Number of cable cabinets 32 41 45 
Number of cable muffs 10 43 38 

Number of cables 44 87 89 
Total cable length (km) 1.65 2.58 2.98 
Number of apartments (Na

i ) 155 203 413 
Number of single-family houses (Nh

i ) 58 100 149 

 

2.1.3. Low Voltage Distribution Network Characteristics 

 
The final topology of the three modeled LVDNs is illustrated in Fig. 2. As can be seen, the 
LVDNs differ in size and do not exhibit the typical radial layout usually found in LVDNs. 
Rather, they are operated as weakly meshed LVDNs even in normal operation. Thus, compared 
to conventional radial LVDNs, most customers can be supplied through multiple pathways, 
allowing demand to be distributed across different components and thus reducing the loading on 

individual assets [42]. Furthermore, compared to the rest of Frederiksberg, the selected LVDNs 
are islanded grids not fed by multiple transformers. Thus, even though not fully representative of 
the overall LVDN, the chosen areas provide a good case study to assess the worst-case impact of 
EVs on Frederiksberg’s LVDN. An overview of the traits of the three LVDNs may be seen in 
Table 3. 
 

2.2. Base Load Modeling 
 
Following the modeling of the LVDN topology, the residential base load demand must be 
determined. The base load modeling approach can be separated into three steps, namely: 
 
           1. The Estimation of the number of residential customers, 
           2. The modeling of the base load based on smart meter data and 

           3. The calibration of the base load to match the measured transformer load. 
 
Each step is discussed in more detail in the following. 

 
2.2.1. Estimation of Residential Customers 

 
The given LVDNs supply two types of residential customers: single-family houses and 
apartments. However, the exact number of residential customers within each LVDN is still being 

determined. As a result, we follow a stepwise approach that enables us to identify the total 
number and location of single-family houses and apartments within each LVDN. 
 
First, we use the GIS data on the household cable connections, as illustrated by the green lines 
in Fig. 2, to select all cable cabinets and cable muffs that connect LVDN customers. Second, we 
use GIS data, Open Street, and Map [46] to identify and match dwelling addresses with 
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previously selected cable cabinets and muffs. Third, we leverage data from the Danish Address 
Register [47] to estimate the number of residential customers living in single-family houses (i.e., 
only one registered address) or apartments (i.e., multiple registered addresses) for each selected 
address. A summary of the number of residential customers who live in apartments and single-

family houses for each of the three LVDNs is presented in the last two columns of Table 3. 
 

 
 

a. Network topology of LV1 

 

 
 

b. Network topology of LV2 

 

 
 

c. Network topology of LV3 

 

Figure 2: Network topology of the three LVDNs. Red star illustrates transformers; cable cabinets and muffs 

are shown by blue rectangles and purple dots, respectively. The modeled cables are indicated by orange 

lines, while the un-modeled household connections are shown in green. Grey lines depict the road network; 

buildings are outlined with grey shapes. (The reader is directed to the online version of this article for an 

interpretation of the color references in this figure legend.) [57] 
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As can be seen, the total number of customers increases from LV1 to LV3. The share of single-
family houses ranges from 26%–33%, which is considerably higher than the share of roughly 3% 
for the entire Frederiksberg [48]. Thus, the selected areas do not fully represent the dwelling 
structure in the rest of Frederiksberg. However, the chosen LVDNs represent a good case study 

for analyzing the potential worst-case impact of EVs due to the higher share of households with 
home charging opportunities. 
 

 
 

Figure 3 Comparison of the measured and sampled base load for weekdays in January. Results for LV1–

LV3 are shown in 20-min resolution from left to right. Orange lines illustrate the estimated transformer 

loading for 2020. The initial and calibrated sampled base loads, based on 1000 simulations, are 

characterized by purple and green box-whisker plots, respectively. (The reader is directed to the online 

version of this article for an interpretation of the color references in this figure legend.) [57] 

 
2.2.2. Residential Base Load Modeling 

 
To model the base load consumption, we use a large smart meter data set encompassing 

electricity consumption measurements in hourly resolution covering January in the period 2019–
2022. The profiles originate from different anonymized locations within the service area of the 
DSO Radius. For each year, the raw data contains a minimum of 2269 and 2378 and a maximum 
of 2484 and 2493 records of individual apartments and single-family houses without electrical 
heating. The data is subjected to several post-processing steps to eliminate erroneous inputs and 
ensure proper formatting. The processing involves (1) the removal of incomplete and faulty data, 
(2) the up-sampling of the hourly measurements to 5 min resolution using linear interpolation, 
and (3) the generation of 24-hour load profiles, starting at noon on a given day. For each 

residential customer, a 24-hour load profile is randomly sampled and attributed to the respective 
bus, dependent on the type of dwelling (i.e., apartment or single-family household). As a result, 
the base load demand is stochastic and will differ between simulation runs. 
 

2.2.3. Calibration of Base Load 
 

While the LVDNs mainly supply residential customers, many non-residential loads, such as small 
shops or businesses, exist. However, the location and electricity demand of these non-residential 
customers are still being determined, and common consumption, such as street lighting, shared 
areas in apartment complexes, etc., is also not considered due to a lack of data. To address the 
mismatch between sampled and measured base load, we use linear least squares regression to 
calibrate the residential demand profiles to the average transformer loading, as described in more 
detail in Appendix A.2. 

 

2.3. EV Load Modeling 

 
The modeling of the EV charging demand is structured into three main steps, namely: 
 

1. The EV ownership modeling, 

2. The Simulation of home charging events, and 
 



International Journal on AdHoc Networking Systems (IJANS) Vol. 14, No. 1, January 2024 

10 

2.3.1. EV Ownership Modeling 

 
The number and location of EVs within each LVDN significantly affect the potential grid impact. 
Given that both factors are characterized by a large degree of uncertainty, we use a stepwise 

probabilistic approach to determine residential EV ownership. 
 

To begin with, we estimate the number of cars for each residential customer according to the type 
of dwelling, where we define single-family houses as detached and terraced, linked, or semi-
detached houses and apartments as multi-dwelling houses or blocks of flats. With no 
representative data available that indicates the car ownership for Frederiksberg concerning the 
type of dwelling, we apply iterative proportional fitting (IPF) [49] to account for the differences 

in car ownership between dwelling types [50] and between Frederiksberg and the national level 
[51]. We make use of the Python package IPFN to fit the car ownership per dwelling type as 
calculated from the Danish National Travel Survey (DNTS) [52] to the distribution of dwelling 
type (i.e., roughly 3% single-family and 97% apartment) [48] and the distribution of car 
ownership within Frederiksberg (approximately 61.9%, 33.6%, 4.0%, and 0.5% of families own 
no, one, two, or more than two cars) [51]. The distribution of car ownership obtained from IPF is 
illustrated in Fig. 4 and compared to the initial distributions calculated from the DNTS and for 
Denmark. For each apartment and single-family house, we sample the car ownership of the 

specific customers from the IPF distributions while considering a maximum number of three cars 
per household. 
 
Subsequently, we obtain the number and location of EVs dependent on the previously determined 
number and location of cars. We align our analysis with Frederiksberg's EV strategy [53], which 
aims to reach 40% of pure EVs by 2030. 
 

2.3.2. Simulation of Residential Charging Events 

 
The simulation of the charging demand is a complex task that we address using a purpose-built 
agent-based simulator [37]. This simulator combines precise and reliable trip diaries collected 
through the DNTS [52] with fine-grain origin-destination traffic flow data to generate detailed 
synthetic trip diaries for the simulation agents. The agents then track the consumption of their 
EVs and select when and where to charge based on a comprehensive representation of the public 

and private charging infrastructure. 
 

 
 

Figure 4: Comparison of car ownership for apartments (left) and single-family houses (right). The 

distribution for Denmark [51] and Frederiksberg, according to the DNTS [52], and after orange, purple, 

and green coolers indicate IPF. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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The choice of charging is based on a discrete choice model that considers the present SoC and the 
remaining trip diary requirements while accounting for detours, waiting time, and parking 
restrictions. The initialization of agents and the decision to search for a charging option are based 
on the models for steady-state SoC distributions and the decision to charge introduced in [38]. 

The simulator monitors the entire charging infrastructure, handles the queue process when 
required, and also simulates the charging events, taking into account the specifications of the 
vehicles and charging stations. Advanced features include information sharing in the public 
charging domain [39] to reduce waiting time. This indirectly influences the private charging 
demand, as the two systems are complementary. 
 
For each EV within the LVDN, we sample an agent for the given day in our simulation to infer 
the opportunity for home charging, the decision to charge, the charging location, and other 

relevant parameters such as the energy demand or the arrival and departure times at home. 
Agents living in detached or terraced houses are allocated to EVs in single-family dwellings, 
while agents residing in blocks of flats, student residences, or other types of dwellings are 
attributed to EVs in apartments. 
 
Next, by analyzing the sampled agents' home parking conditions, we determine the opportunity 
for home charging. For those agents with reliable access to parking at their premises (i.e., in the 

carport or the front yard) or next to the property (i.e., reserved, always, or normally space 
parking), we infer that home charging will be available. Furthermore, we define good workplace 
parking conditions as having a permanent parking space provided by the employer and free 
parking, defined as always or normally available, to allow agents with such parking conditions to 
opt to cover their charging demand at work. 
 
Subsequently, the decision to charge and the charging location are determined by analyzing the 

charging logs of the simulation day. If the charging logs do not encompass a charging event of 
the respective agent, the agent did not charge on the given day, and as a result, no home charging 
event is attributed to the EV. On the contrary, recorded capturing events for the given population 
are further analyzed according to the trip purpose to distinguish between home, workplace, and 
public charging events. While the latter two are accounted for in the agent-based simulation, they 
are not simulated in the LVDNs directly. However, they are modeled indirectly because such 
charging events reduce the use of private home charging. 
 

 
Figure 5: Overview of the Simulation Framework. The simulation day is shaded in dark grey. The 

corresponding window in which charging can take place for each agent is illustrated in green. The power 

flow simulation period is shown in orange. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) [57] 

 
Last, the steady-state energy demand δε of each EV and the arrival, stop-of-charging, and 
departure times are extracted from the charging logs. The charging logs lie within the window of 
charging opportunity, which encompasses duration longer than 24 hours, i.e., the time between 
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the arrival at home on the preceding day of the trip diary and the departure on the next day. Thus, 
as illustrated in Fig. 5, the start of charging could precede the simulation day. It could also fall 
outside our 24-hour power flow simulation period, which starts at noon, to cover the evening 
peak load periods and fully explore the long window of cheaper electricity prices during the 

night. However, our analysis of the GAIA results shows that EV demand is equivalent throughout 
the week, excluding special days. Hence, we can shift the charging demand preceding our power 
flow simulation period by 24 hours to the same time window on the next day. 
 
2.3.3. EV Charging Scenarios 

 
Having discussed EV ownership and residential charging event modeling, we will now focus on 
our five scenarios, consisting of our baseline (S0) and four EV charging scenarios (S1–S4). The 

charging scenarios will determine the charging time and the number of events. For each charging 
scenario, we consider the charging power to be 11 kW, regardless of the EV’s SoC and type of 
residential customer. In the following, we discuss the modeling of the selected scenarios in more 
detail. (S0) No EV charging: The baseline for evaluating the impact of the four EV charging 
scenarios is determined by assessing the state of the three LVDNs with no EVs present. (S1) 
Uncontrolled charging: Our first EV charging scenario models uncontrolled charging as modeled 
by GAIA, where no management is imposed on the charging process. All EVs that need to be set 

on the given day start charging upon plug-in and continue charging until their charging demand 
δε is met. (S2) ToU tariff-based charging: Our second charging scenario models the behavior of 
minimizing setting costs by postponing the start of charging to periods of lower ToU tariffs. No 
dynamic management is applied; thus, the EV charging continues until its initial charging 
demand δε is met. Upon arrival at home, the EV users determine the required charging time to 
fulfill their demand. They select the first continuous charging interval that minimizes the tariff 
costs while considering the departure time. EV users can schedule the start of charging in half-

hour intervals and are assumed to charge their EV at the lowest prices as early as possible while 
making ideal decisions. Charging is modeled according to Radius’ domestic ToU winter tariff 
[54], which is based on the new Danish tariff model 3.0 [55] and came into effect in January 
2023. The tariff costs at the time of writing, denominated in Danish krone (DKK), are  
illustrated in Figure 6. Itis seen, the tariff consists of a low load period (00:00–06:00), two high 
load periods (06:00–17:00 & 21:00–00:00), and one peak load period (17:00–21:00). Peak load 
periods are priced roughly nine times higher than low load periods, which introduce a strong 
incentive for EV users to shift their charging away from those periods. 

 
 
Figure 6: Price elements of S2-S4 (1 DKK 0.13 e). The ToU tariff (January 2023) is shown in purple. The 

electricity spot market price and combined price signal for Wednesday, 13-01-2021, 12:00 to Thursday, 

14-01-2021, 11:55 and Wednesday, 12-01-2022, 12:00 to Thursday, 13-01-2022, 11:55 are illustrated by 

orange and green, solid and dashed lines, respectively. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) [57] 
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While the tariff costs are regularly adjusted based on the forecasted level of electricity prices, the 
tariff scale factors of 1/3, 1, and 3 for low, high, and peak load periods will remain unchanged 
until the tariff model is revised. 
 

Fig. 6 illustrates the electricity spot market price and combined price signal. When comparing the 
spot market prices for 2021 and 2022, the difference between high and low electricity prices over 
24 hours has increased significantly due to the energy crises. However, when looking at the 
combined price signal, it becomes obvious that both price signals follow a similar pattern due to 
the influence of the ToU tariff. Thus, the charging behavior derived from the optimization is 
expected to be the same. Nonetheless, we selected the electricity price 2021 for our simulation, as 
current electricity prices should eventually converge to the historical trend. It is important to 
stress that our simulation of cost-minimized charging is to be seen as an example of charging 

behavior based on the current situation. ToU tariffs and market designs might change, and large-
scale EV penetration could potentially impact spot market prices, which is not considered. 
Furthermore, spot market prices vary daily and thus influence the charging behavior, even though 
the general pattern of lower prices during the night is expected to be the same. For the paper, we 
assume that EV users will also be able to exploit price variations in the future with similar price 
patterns as of today. 
 

The above minimization problem was solved in Promo [56]. This optimization problem is 
plagued with equivalent degenerate solutions when the minimum cost function is constant for 
periods longer than the required charging time. To break the degeneracy between configurations 
with equal cost, we introduce a small penalty that grows linearly for each time step within one 
hour, with a value of 10−7 DKK/kWh for each optimization step. By design, when the price is 
equivalent within one hour, this penalty forces charging to begin as early as possible. 
 

(S4) Synchronized cost-minimized charging: While the previous charging scenario mimics 
charging based on day-ahead electricity spot-market prices and assumes no influence on the 
natural charging patterns of EV users, multiple-day price forecasts might influence the charging 
pattern of EV users. Hence, it could cause charging synchronization challenges on days with 
hours of exceptionally low electricity prices. Such synchronization effects could also be caused 
by other reasons, such as public holidays, where everyone would want to charge their EV on the 
preceding day for an upcoming long-distance trip. To assess the impact of such events, we force 
all EVs to set on the same day rather than following their natural behavior. It is important to note 

that the steady-state SoC distribution still determines the initial SoC level, and this decision only 
anticipates the charging event. Hence, the majority of the EVs that are forced to charge will 
require a smaller amount of energy than what could be expected based on the vehicle’s battery 
capacity. 
 
Consequently, S4 is not a worst-case scenario but rather a lower bound for the potential impact of 
massive synchronization of charging demand. Estimates for the worst-case scenarios depend on 

many external factors, ranging from environmental conditions such as temperature, which affects 
the vehicle’s range; wind and precipitation, which can strongly impact electricity cost; and social 
events and holidays. Due to the complex interplay of such external factors, we opt to proceed 
with the proposed lower bound for the worst-case scenario rather than attempt to simulate a 
particular system. 
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Figure 7: Load modeling results for each LVDN. While the baseload is black, the three plots ordered from 

the left illustrate the EV load for S1, S2, and S3 in green, orange, and purple. Results for S4 are displayed 

in red on the right due to the considerably larger magnitude of the EV load. Shaded areas with different 

intensities indicate the 0%–100% (lighter), 5%–95% (medium), and 25%–75% (darker) percentiles. 

Colored dashed lines depict the 95% percentile for the aggregated loads. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) [57] 
 

3. RESULT 
 
Having discussed the methodology of this work, we now present the results, which we structure 
as follows. First, we dive into the load modeling results for both the base- and EV load. 
Subsequently, we analyze the conditions of the LVDNs with no EVs present. Last, we present the 
main findings of our work, the grid impact for each charging scenario. 
 

3.1. Load Modeling Results 
 
To begin with, we focus on the load modeling results, which serve as an input to the power flow 
simulations. The total power load variation along the day in each grid is shown in Fig. 7. Several 
observations stand out. First, it can be seen that the EV load exhibits more volatility than the base 
load due to the large variation introduced by the multistep sampling approach, as discussed in 
Sections 2.3.1 and 2.3.2. A summary of the sampling results for each step is presented 

in Table 8 of Appendix B.2. Second, the EV load in each grid is rising with the number of 
residential customers, and a comparable increase in the base load accompanies it. Third, the risk 
of secondary peaks triggered by cost-based charging is visible but will depend on the specific 
LVDN and charging pattern. In Table 4, we compare the peak load of S2–S4 to S0 and S1, 
respectively, and present the probability of introducing a new peak based on our 1000 
simulations. While for S2 and S3 the likelihood of causing a further rise is highest for LV2 and 
LV3 when compared to S0, the probability of secondary peaks induced by S2 and S3 being 

higher than the peak of S1 is small, thus offering a solution with a potentially smaller impact on 
the grid. On the contrary, S4 triggers a peak load increase in all simulations with a significant 
magnitude, as shown in Fig. 7. Those results, therefore, provide a first indication of the risks 
posed by synchronized cost-minimized charging, which could potentially yield massive 
secondary peaks by altering the natural charging patterns of EV users. 
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Table4 :Likelihood (%) of peak load increase in each LVDN for S2–S4 with respect to the peak load 

in S0 or S1, respectively. [57] 

 

 LV1    LV2    LV3   

 S2 S3 S4       S2 S3 S4 S2 S3 S4 

S0 16 8.2 100 52 36 100 53 32 100 

S1 0.3 0.1 100 1.4 0.5 100 0.9 0.2 100 

 
The discrepancy in peak load originates from the difference in the CF and base load levels in 
each charging scenario. The CF of charging, defined as the ratio of EVs charging at a given time 
to the total number of EVs, is illustrated in Fig. 8. While uncontrolled charging yields the lowest 
CF for each scenario with medians below 5%, S2 and S3 slightly increase the CF due to 
synchronization of setting during the nighttime. While the median of the peak period lies slightly 
above 10%, the CF can rise to 30% on rare occasions for LV1. In S4, we changed the charging 
pattern that forces all EVs to charge on the same day. Thus, the CF increases drastically, with a 

maximum median of more than 50%. In the following, if not indicated otherwise, results for LV1, 
LV2, and LV3 will be illustrated in green, orange, and purple, respectively. 
 

3.2. No EV Charging (S0) 
 
Next, we present the findings of our grid analysis with no additional EV load. The simulation 

results set the benchmark against which we will compare all results observed in charging 
scenarios S1–S4. Below, we discuss the findings for the transformer and cable loading and the 
voltage drop. 

 

 
 
Figure 8 Coincidence factor of charging, defined as the percentage of EVs charging at a given time relative 

to the total EV population throughout 24 h. For each hour, the distribution of CFs in each LVDN is 

illustrated. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) [57] 
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Figure 9: Transformer loading for each LVDN and scenario, where S0–S4 is ordered from the left to the 

right. Horizontal red lines indicate the dated nominal load (solid) and N-1 redundancy limit (dashed). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) [57] 
 

3.2.1. Transformer Loading 

 
First, we analyze the transformer loading, which provides a good indication of the utilization of 
the grid. For our analysis, we concentrate on congestion (>100% loading) and the DSO's 
operational limit of 66% to ensure N-1 security. While exceeding the critical operating load 
would not necessarily directly result in reinforcements, repeated violations would prompt Radius 
to investigate measures to reduce the demand, such as re-routing or reinforcing promptly to 
ensure sustainable operation under the failure of one grid component. 
 

The transformer's load throughout the simulation period is shown in Fig. 9. As seen in the left 
plot, the initial transformer loading conditions for each LVDN are distinct, caused by the 
interplay of the number of customers and the transformer's nominal power. LV1 not only has the 
lowest number of customers but also exhibits the highest transformer rating of 630 kVA and thus 
consistently operates below 40% loading. LV2 and LV3, on the other hand, possess the highest 
number of customers and equally rated transformers of 500 kVA. LV2 occasionally exceeds the 
66% threshold during the evening peak in outlier events, i.e., with a likelihood of less than 1%, as 

indicated in Table 5. LV3 shows the highest relative transformer load, where peak loading 
regularly exceeds the operational threshold of 66% for at least one hour. The transformer peak 
load of LV3 lies in the range of roughly 70%–90%. 
 
Consequently, as the EV penetration rate increases, LV1 is likely to be the most resilient grid, 
while LV3 is the most susceptible to congestion. The charging strategies will determine the 
magnitude of potential reinforcements for LV3. LV2, on the other hand, is a prime example of a 

well-utilized transformer to date but might also require transformer upgrades with increasing EV 
adoption to comply with the DSO's N-1 strategy. 
 

3.2.2. Cable Loading 

 
Turning our attention to the cables, we summaries the performance under base load conditions. 

The DSO does not monitor cord loading but relies on fuses installed at the transformer interface 
to detect faults and prevent excessive overload events. Given the large variety of cable types, 
overloading will most likely occur without tripping fuses for cables located farther from the 
transformer, which tends to have a lower current-carrying capacity. With the unknown fuse 
limits, we define overloading as cable loading above 100%. While cables can withstand overload 
situations dependent on a wide range of external factors, it will accelerate the aging of wires. 
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The distribution of peak loading is shown in Figure 10. The results for the baseline scenario S0 
(upper left plot) indicate that most cables possess a significant amount of spare. 

 

 
 

Figure 10: Cable peak loading for each LVDN in S0 (upper left), S1 (upper central), S2 (lower left), S3 

(more down main), and S4 (right). For illustrative purposes, we only display the highest-loaded cables, i.e., 
cables 36–89 for S1–S3 and 26–89 for S4. Solid red lines indicate the overload threshold. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) [57] 

 
Table 5: Probability of transformer pt (%) and cable overloading pc (%) in each LVDN and charging 

scenario. For transformers, both congestion (L ≥100) and violations of the N-1 operational limit (L ≥66) are 

evaluated. Results are presented for two durations ∆, t (min) and a fraction of 

cables fc, with Ni representing the total number of wires in LVi. [57] 

 

  pt (L ≥ 100)  pt (L ≥ 66)  pc (L ≥ 100)    

 ∆t 5 60  5 60  5   60  

 fc       1/Ni 1/10  1/Ni 1/10 

LV1 S0       0.2     

 S1       59.5   31.6  

 S2       5.7   0.9  

 S3       3.3   0.8  

 S4 0.9   90.2 35.3  100 83.6  98.3 35.1 

LV2 S0    0.8 0.1  98.7   95.6  

 S1    90.1 69.2  100 71.2  99.9 37.4 

 S2    24.4 4.2  99.5 15.9  97.5 3.7 
 S3    15.1 3.7  99.5 11.8  97.1 3.7 

 S4 100 99.7  100 100  100 100  100 100 

LV3 S0    100 100  100   100  

 S1 59.7 24.4  100 100  100 1.9  100  

 S2 5 0.2  100 100  100 0.1  100  

 S3 2.1 0.1  100 100  100   100  

 S4 100 100  100 100  100 100  100 100 

 

4. CONCLUSION 
 

This paper analyses the impact of residential EV charging on three parts of the urban LVDN of 
Frederiksberg (Denmark). The research employs a probabilistic approach incorporating smart 
meter data and a novel agent-based EV simulator (GAIA). The study models the fluctuations in 
base load and projected residential EV charging demand when 40% of vehicles are electric. To 
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address the current energy crisis and the increasing concern over fluctuating electricity prices, we 
propose three cost-based charging methods (S2-S4) and compare their effect on the LVDN to a 
scenario with no EVs (S0) and one with uncontrolled charging (S1). For each LVDN and 
charging system, we perform 1000 power flow simulations at a 5-minute resolution for 24 hours 

on a typical weekday. We also analyze the implications for transformers, cables, and bus 
voltages. 
 
Likely due to the meshed nature of the grids, the results show that cable and transformer 
overloading is the primary concern. Still, the expected impact varies greatly between each 
LVDN. This underlines the importance of performing detailed case studies and monitoring 
LVDNs. While LV1 seems highly resilient about the upcoming EV adoption, LV2, and LV3, in 
particular, might require significant reinforcements in the near future. However, the need for such 

measures is highly dependent on the future charging behavior of EV users. Implementing ToU-
based charging can reduce congestion in LV2 and LV3 compared to uncontrolled EV charging. 
However, the effect of cost-based smart charging will depend on its design. Adopting a cost-
based charging strategy that aligns with the natural charging pattern of EV users can further 
minimize the impact on the LVDN in the short term. It may delay the need for infrastructure 
upgrades. On the contrary, cost-based smart charging that disrupts the natural charging patterns 
of EVs, particularly when utilizing multi-day optimization combined with periods of 

exceptionally low electricity prices, greatly increases the likelihood of significant congestion 
within the LVDN. Such a shift in charging behavior would lead to a pronounced increase in 
investment costs, raising questions on how to prevent it. 
 
The findings presented in this paper lay the foundation for future research targeting the following 
three areas. First, our scenarios depict cases where all EV users adhere to the same charging 
strategy and level of control and should be viewed as exemplary upper and lower bounds. In 

practice, the observed behaviors will be a mixture of the scenarios outlined in this paper. Thus, 
the grid impact is expected to lie within the boundaries of our charging scenarios. Therefore, 
given the significant impact of S4, future studies should examine the composition of charging 
strategies and discuss the probability of widespread implementation of multi-day optimizations 
and the possibility of coordinated charging events. Second, future work should address the 
uncertainties associated with charging at apartments. While our study assumes the same charging 
behaviors for all EV users and infers home charging based on the parking conditions, the 
conditions for different dwelling types may vary. Thus, a more detailed modeling of the charging 

behaviors at apartment complexes is needed. Future research should consider the uncertainties 
related to the installation of charging equipment, the possibility of smart charging, and the 
constraints concerning load sharing to fully understand the impact of home charging at such 
locations. Lastly, future work should also explore practical, short-term solutions for EV 
flexibility to mitigate potential congestion and focus on developing appropriate mechanisms to 
avoid events of extreme synchronization. 
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