
International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

DOI : 10.5121/ijasuc.2010.1401 1

INTEGRATION OF AN RFID READER TO A

WIRELESS SENSOR NETWORK AND ITS USE TO

IDENTIFY AN INDIVIDUAL CARRYING RFID TAGS

Bolivar Torres1, Qing Pang2, Gordon W. Skelton2, Scott Bridges2,
Natarajan Meghanathan2

1Polytechnic University of Puerto Rico, 2Jackson State University
2
natarajan.meghanathan@jsums.edu

ABSTRACT

The objective of this research is to integrate an RFID (Radio Frequency Identification) reader into a

Wireless Sensor Network (WSN) to authorize or keep track of people carrying RFID tags. The objective

was accomplished by integrating hardware and software. The hardware consisted of two WSN nodes –

the RFID node connected to one of the WSN nodes, and a computer connected to the other WSN node.

For the RFID equipment, we used the SM130-EK kit, which included the RFID reader and the RFID tags;

and for the WSN, we used the Synapse Network Evaluation kit, which included the two sensor nodes. The

software consisted of a program module developed in Python to control the microprocessors of the

nodes; and a database controlled by a simple program to manage the tag IDs of people wearing them.

The WSN and RFID nodes were connected through I
2
C interfacing. Also, the work of sending commands

to the RFID node, to make it read a tag and send it back to the computer, was accomplished by the

Python code developed which also controls the data signals. At the computer, the received tag ID is

evaluated with other existing tag IDs on the database, to check if that tag has authorization or not to be

in the covered area. Our research has the potential of being adapted for use with secure real-time access

control applications involving WSN and RFID technologies.

KEYWORDS

RFID, Wireless Sensor Network, Database, Security, Python, Access Control

1. INTRODUCTION

Today’s communication technologies promise wide possibilities including Wireless Sensor
Networks (WSN), which is a collection of nodes with sensors integrated to collect physical
information, such as temperature, pressure, or motion. The sensor nodes consist of processing
capabilities (one or more microcontrollers, CPU or DSP chips), may contain multiple types of
memory, (program, data and flash memory), and have a power source [1]. These nodes act
independently, transmitting the sensed data to a base station for further examination. Nodes can
also transmit data to other close nodes, if the base station is far away from that node. This is
called multi-hop communication and could improve the energy-cost [4]. Each node contains one
or more sensors attached. The type of sensors attached depends on the required application that
this node is assigned to do. The WSN technology has the potential of turning the Internet into a
physical network [3]. Therefore, WSNs provide a variety of uses for real-time potential
applications. Some types of these applications include military, medical, environmental,
entertainment and security.

Some of the most important and promising applications on WSNs are in the security field. For
example, if one goes to a building or place that requires constant security (bank, corporation,

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

2

college campus, etc.) it is likely that one will find an access control device, to monitor who
enters or goes out from that place, and/or to give them access, or deny it. Radio Frequency
Identification (RFID) is the technology of effective automatic identification of different types of
objects. The most important functionality of RFID is the ability to track the location of the
tagged item [2]. These objects contain attached an RFID tag, which contains the required
electronics to be detected by an RFID reader board. This kind of technology is normally seen on
places where constant access control and identification is required to get access to the place.
RFID is generally composed of three basic components: tags, readers, and PC readers [5]. The
tags are attached to any object, with the purpose of being detected by the readers, which will
then send the recollected data of the tag to a PC reader that evaluates the information of the tag.
The tags can be either active or passive. Active tags require power source to send and receive
data, while passive tags do not require power, because they are read-only. For this research, we
are using passive tags.

The research described in this paper involves integrating the RFID and WSN technologies, to
design a real-time access control application. The basic purpose of this application is to validate
the entry of a person entering a protected area to be monitored. A person will be carrying an
RFID tag, and when passing through the RFID field he/she will be identified, and will be
granted or denied access to the area after validating the read tag ID with the entries in a
database. The rest of the paper is organized as follows: Section 2 describes the hardware
components used in this research. Section 3 describes the software methods, components and
programs used to develop our application. Section 4 illustrates the results obtained from this
application software. Section 5 discusses the lessons learnt; Section 6 discusses related work on
integration of RFID and wireless sensor networks. Section 7 concludes the paper and presents
suggestions for future improvement to the application developed. The terms ‘RFID reader’ and
‘RFID node’ are used interchangeably throughout the paper. They mean the same.

2. HARDWARE DEVELOPMENT

The different types of hardware components that were used included the following:
(i) SNAP SN171 Proto Board – This board consists of an RF Engine, which is the core for the

radio technology that gives sense to a wireless communication. These boards have
input/output capabilities, and are also I2C (Inter-integrated Circuit) interfacing compatible.
Figure 1 shows the SNAP Proto Board. For this research, we are using two of these boards.
One will be used as the Polling node, and the other as the RFID node. The Polling node
works to make our system able to detect a tag automatically over a certain time period; the
RFID node sends and receives signals from the RFID node, each time it is told so by the
application software.

(ii) SNAP SN163 Bridge Board – This board also has the RF radio, to communicate with other
nodes. The special thing about this node is that on the WSN it acts as the sink, or as an
intermediary node communicating with the PC and the other sensor nodes. Thus, this board
is essential to transfer any data that reaches it from other nodes, to send them to the PC. We
will identify this node as the Bridge node. Figure 2 shows the SNAP Bridge Board. To
make things clear, the SNAP nodes, independent of the type, are already programmed from
factory, so they can work together. In other words, the connection between these devices is
already established and is a ready-to-use system.

(iii) SonMicro SM130 Mifare Read/Write Module – This is the RFID node that reads data from
tags close to the magnetic field created by the antenna of this device. It provides types of
interfacing such as UART (Universal Asynchronous Receiver/ Transmitter) and I2C (Inter-
integrated Circuit). Figure 3 shows the SonMicro SM130 Mifare Read/Write Module.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

3

Figure 1: SN171 Proto Board

Figure 2: SN163 Bridge Board

The interior, almost-flat, part is the antenna of the device. This antenna is capable of
detecting tags at least 3 inches away. This device is connected to the RFID reader of the
WSN created by the SNAP nodes. For the connection between the WSN node and the RFID
reader, we decided to use I2C interfacing. It was done this way, because both of these

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

4

devices were I2C compatible, and the SNAP nodes provide a very useful set of built-in
functions to manipulate this kind of interfacing efficiently, and in a simple way.

Figure 3: SM130 Mifare Read/ Write Module

I2C interfacing can send/receive parallel data through a serial data line (SDA) and another
bus line for the serial clock line (SCL) [6]. The two devices (SNAP node and RFID reader)
provide the necessary components and functions to support these two kinds of interfacing.
The SNAP node must sequentially send some commands to the RFID reader to control it.
The sequence of the data frame for I2C interfacing for the SM130 Mifare Read/Write
Module is specific and has been pre-programmed on the device by factory [7]. Table 1
shows the format of the command frame to be sent from the node through I2C interfacing.

 Table 1: Command Frame for I2C Interfacing

Length Command Data CSUM

1 Byte 1 Byte N Byte 1 Byte

Figure 4: I2C/SMBus Voltage Translator Figure 5: I2C/SMBus Voltage Translator
 (Front) (Back)

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

5

(iv) I2C/SMBus Voltage Translator (I2C Level Shifter) – This is a small integrated circuit that
allows to interface 3.3V I2C devices to 5V I2C devices. We realized that we required this,
when we measured the voltages levels at each two of the lines on each board (SCL and
SDA). This integrated circuit came very handy because it allowed us to shift the voltage
levels on each of the transmitting devices so that they could understand each other. Thus,
after installing this tiny circuit, we solved the problem of the connection between the WSN
node and the RFID node. Figures 4 and 5 show the front and back view of the voltage
translator. The back view helps to understand the logic of the connection of the boards. In
this case, the WSN node (SNAP Proto Board) is the one that has a voltage level of 3.3V;
while the RFID node (SonMicro SM130 Mifare Read/Write Module) is the one with 5V
level operation.

(v) Personal Computer (PC) – This is used to manage the data received and to update the scripts
that are running on each node’s microcontroller. Also, it serves as the connection to the
database part, where the tags are validated. The PC also acts as a node on the WSN and will
have a script running on it to manage the data and send it to the database.

3. SOFTWARE DEVELOPMENT

The program modules were developed using the Python language. Python is a general-purpose
high-level programming language whose design emphasizes code readability. Python is often
used as a scripting language for web applications. In our research, we use Python for two
potential reasons: to create script modules that will run on the SNAP nodes and to create a
program that supports database management [8].

The SNAP nodes can support only a limited number of functions and features from the
programming language, because of its limited memory capacity. Therefore, the designers of the
SNAP nodes created their own derivation of the Python language called Snappy. This
programming language provides the user with the basics of the Python language, such as the
usual conditional statements, functions, and logical operators. It also supports three types of
variables: Boolean, integers and strings. Also, Snappy provides some built-in functions that are
already integrated on the node microcontrollers [9]. These functions provide different
possibilities for use with the SNAP nodes, such as doing Remote Procedure Calls (RPC) from
one node to another or many nodes. The RPC function is the most relevant, because it is the one
that allowed us to communicate the nodes and transmit data, from one node to another. The
prototype of the RPC function is like: RPC (address, function, args…). The address field is a
unique hex value, for each SNAP node. The function argument is the function to be called on
the node of the specified address. The args argument corresponds to the arguments of the
function to be called, if there are any required. Also, some of the other important built-in
functions are the I2C interfacing functions. These functions are the following:

• i2cInit(enablePullups) – Initializes specific ports on the SNAP node, so that they can be
used for I2C interfacing. If the argument value for enablePullups is true, this will enable the
pull-up resistors required for the clock and data lines. Nevertheless, the value for this
argument is false, because the pullup resistors are already included on the RFID reader.

• i2cWrite(byteStr, retries, ignoreFirstAck) – Sends the necessary addressing for the device
to respond; and the data frame necessary to execute the desired command (byteStr).
Argument retries makes it possible to retry the number of times specified to make the
device to respond if not successful for the first time. Argument ignoreFirstAck is true for
devices that do not send an initial acknowledgement response. The function returns how
much data was sent to the device.

• i2cRead(byteStr, numToRead, retries, ignoreFirstAck) – Sends the necessary addressing
necessary for the device to respond (byteStr). Argument numToRead specifies how much

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

6

data the WSN node is supposed to read from the RFID reader. Argument retries makes it
possible to retry the number of times specified to make the device to respond if not
successful for the first time. Argument ignoreFirstAck is true for devices that do not send
initial acknowledgement response. The function returns a string with the resulting data,
depending on which the command was executed.

Although Snappy is enough to control the working of the SNAP nodes, a graphical interface
on the PC is required to write and update the scripts. Synapse Portal (Figure 6) is a
standalone program that can run on any PC with Windows 2000 or higher. It uses a USB or
RS-232 interface to connect to any of the RF Engines that each SNAP node contains. Thus,
this program is basically a user interface to control the network and the software on each of
its node. Also, Synapse Portal is the one that makes the PC to act as a node, and implicitly
includes it into the network. The SNAP nodes have been integrated with microcontrollers
and flash memory so that the scripts written using Snappy can be loaded on them through
the Portal and the nodes can have the desired behaviour.

Figure 6: Screenshot of Synapse Portal

With all of the above hardware and software components, we could connect and enable
communication between these equipment and software such that the tags detected on the RFID
node can reach the computer as data for further evaluation and validation with the database tag
values. Figure 7 demonstrates the schematic data flow (sequence of steps) in our application.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

7

Figure 7: Schematic of Data Management

The following are the sequence of steps that the software application takes to continuously
detect a tag ID and verify it with the database. Notice that each number in Figure 7 corresponds
to each one of these steps, and also indicating where they take place. Steps 1 to 5 can be
regarded for ‘Node Control’ and Step 6 can be regarded for ‘Database Control’.

1. The node that starts the procedure of continuously detecting a tag near the RFID node is the
Polling node. This node sends an RPC (Remote Procedure Call) for every 2 seconds to the
Bridge node and calls the ping function, located on the Bridge node. We were first using 5
seconds of poll delay, but after doing further testing, we found that it could be reduced to 2
seconds, for faster detection. Also, there are some additional functions on the script that
provide power efficiency and a non-interrupted operation [5]. The following code snippet
(Figure 8) is the function inside the Polling node that accomplishes the RPC:

Figure 8: Code Snippet for the RPC at the Polling Node

2. Once the ping function is called on the Bridge node, it consequently sends an RPC to the PC

node to trigger the function that prepares the command to be sent to the RFID node. The
ping function on the Bridge board is simple and consists of the code snippet shown in
Figure 9.

Figure 9: Code Snippet for the ping function at the Bridge Node

3. The PC node receives the signal from the RPC issued on the Bridge node and executes a

function that builds the command frame necessary for the RFID node to detect a tag. The
command frame is then sent to the RFID node through a RPC. The code snippet shown in

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

8

Figure 10 demonstrates how this is accomplished. Notice that one of the arguments for the
RPC issued from the PC node to the RFID node has a callback function argument (a built-in
function of Snappy) and it specifies that function to invoke with the return value of the
remote function. In other words, we use the callback to get back the result from the RFID
node into a function defined on the PC node.

Figure 10: Code Snippet for Building and Sending the Command Frame from the PC to the
RFID Node

4. After the RFID node receives the ping from the PC node, it executes a function that writes

to the RFID node the command, using the I2C functions. The result is then read from the
RFID node using the same function and returned to the PC node. This is accomplished
through the code snippet shown in Figure 11 function is the following code snippet
(Comments begin with ‘#’ and are shown here for readability):

Figure 11: Code Snippet for Using the I2C functions at the RFID Node

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

9

Figure 12: Synapse Portal Code Snippet Running at the PC Node to Process the Data Frame
returned from the RFID Node

5. After the data frame containing the tag has been retrieved from the RFID node, the data is

returned to the Synapse portal function (code snippet, with comments marked using #, is
shown in Figure 12) running on the PC that takes the data containing the tag and trims it of
the other unnecessary data. The ‘select tag’ command from the RFID node does not only
return the tag ID itself, but also data such as the length of the command and data, the
command itself and the checksum. After trimming the unnecessary data, we save the tag on
a log file; along with the date and time it was detected, to make sure that if the same tag is
constantly detected, we know how to differentiate them.

6. While the Polling node is constantly sending RPCs to continuously detect the tag IDs, our

application has another independent program (developed in Python) that runs and detects
new tag IDs written on the log file, with a delay of 2 seconds, to process and visualize the
results. This program reads the log file, and if there is an unchecked tag ID in the log, it will
be retrieved and validated with the entries in a database of tag IDs, created with Microsoft

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

10

Office Access (MS Access). We used the Pyocdb libraries for connecting the database to the
program. The various fields in the MS Access database are shown in Table 2.

Table 2: Fields in the MS Access Database of Tags

Tag Fields

Tag ID (Primary
Key)
Is Authorized
First Name

Figure 13: Code Snippet to Validate the Tag IDs with the Entries in the MS Access Database

After verifying the unchecked tag ID value with the database, the program will write on the
log either of these three values along the tag ID and the date: ‘Y’ (the person was found, and
is authorized), ‘N’ (the person was found, but is not authorized) or “NF” (tag ID not found
on database). Figure 13 is a code snippet that shows the relevant conditions of the program
and the query executed to retrieve data from the database.

The program to access the database was developed with a Graphical User Interface (GUI) to
enable the user to input the running time of the program, which should ideally run on an
infinite loop. For testing and research purposes, we adopted the approach of running the
validation program for specific time period (in seconds) that would be input through the
GUI, illustrated in Figure 14.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

11

Figure 14: Database Control Graphical User Interface

4. EXPERIMENT RESULTS

The data provided in this section was collected from a series of tests, conducted by running the
two parts of the software (Nodes Control & Database Control) simultaneously to prove that they
can run and write the log file at the same time. The Nodes Control software will always be
running during the tests, while the Database Control software will run for the specified quantity
of seconds. For these tests, we assume that a tag is always present in the RFID field. Figures 15
through 18 illustrate the observations from the two tests with a polling frequency of 5 seconds
in each case. While Figures 15 and 16 respectively show the output generated by the Synapse
Portal script for the data frame retrieved from the RFID device and Database Control for a time
period of 60 seconds; Figures 17 and 18 depict the results generated when the tests were run for
30 seconds.

Figure 15: Portal Log Output for 60 Seconds Figure 16: Database Control for 60 Seconds

Besides the tests shown in Figures 15 through 18, we also performed two other tests, with a
polling delay of 2 seconds (as shown in Table 3), to check whether our application provides a
reliable running time without stopping. Because of space constraints, the screenshots of the
running of these two 2-second polling delay tests are not shown. However, we summarize the
results – running time, number of tags detected, starting time and ending time – of all these four
tests in Table 3. Table 4 shows the percentage of error that the results in Table 3 incur,
compared to the theoretical values of the number of tags that were supposed to be detected with
the given time conditions (polling delay and run time). The theoretical value for the number of
tags that could be detected is calculated by dividing the run time by the polling delay.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

12

Figure 17: Portal Log Output for 30 Seconds Figure 18: Database Control for 30 Seconds

Table 3: Tests Performed on different conditions

Poll Delay

(s)

Run

Time

(s)

Tags

Detected
Starting Time Ending Time

5 60 13 2010-07-28 14:54:54 2010-07-28 14:55:54

5 30 7 2010-07-28 16:23:47 2010-07-28 16:24:17

2 120 59 2010-08-02 14:20:21 2010-08-02 14:22:21

2 3600 1712 2010-08-02 12:17:34 2010-08-02 13:17:34

Table 4: Percentage of Error Generated: Theoretical vs. Experimental Results

Theoretical Tags Detected Experimental Tags Detected Percentage of Error (%)

12 13 8.33

6 7 16.17

60 59 1.67

1800 1712 4.89

Average Percentage of

Error
7.77%

5. LESSONS LEARNT

The objectives established for this research were accomplished. Through the methods used on
the development of the access control application, we understood that integrating WSN and
RFID technologies can be more complicated than the expected, and especially when we are
trying to design a real-time application, which involves both hardware and software. Normally a
WSN integrates resistive-type sensors (accelerometers, thermistors, photocells, etc), but in this
case we are using an actual RFID device, which requires low-level programming knowledge to
adapt it to the WSN successfully. Through the process, we noticed that the hardware at first did
not present the requirements for the application to be done. Thus, we researched looking for
devices such as the RFID reader, and the I2C voltage translator, so that we could set up all the
hardware, before trying any fully testing with the software. In other words, we realized that
when dealing with hardware/software, the hardware part must be the first to be fully completed
before starting on writing any code or script modules for the SNAP nodes, or the PC. The
software part was very distributed, in a way that individual scripts were written to be then
uploaded to the SNAP nodes, and to also run them on the computer, using the portal, or simply
the Python terminal. Thus, integrating all this software to make it work as a single unit was a
work that required understanding every detail of the code. For example, the RPC functions were
basically the ones that made the SNAP nodes to communicate through each other. These RPC

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

13

functions required specific arguments, and especially on the address to which node it will be
doing the RPC, because not every SNAP node acted the same way, with each one of them
performed a different task.

6. RELATED WORK

The following works have been reported in the literature regarding integration of RFID to
wireless sensor networks:
(i) In [10], the authors propose a prototype for an in-home health care system to monitor the

medication in take of patients. The prototype comprised of two Mica2 motes [11] – a RFID
reader mote and a base station mote – used for radio communication, a RFID reader
simulator communicating via a serial port to the reader mote and a personal computer as the
base station, also connected to the base station mote via a serial port.

(ii) Intel, Inc., has developed a Wireless Identification and Sensing Platform (WISP) [12] that
comprises of passive RFID tags that gather their operating energy from Ultra High
Frequency (UHF) RFID reader transmissions and also include sensors (e.g., accelerometers)
that provide a very small-scale computing platform. WISPs are a viable alternative to motes
for smart dust applications owing to their small form factor and lack of battery. A pilot
study on efficiently using WISPs through a dense sensing approach for monitoring and
recognizing human indoor activities has been reported in [13].

(iii) A general-purpose RFID tag (referred to as S-tag) has been proposed in [14] for connecting
to a generic sensor and transmitting, when interrogated, the measured physical parameter. S-
tags are very cost-effective as they use UHF for communication. S-tags can be implemented
using either a “multi-chip” strategy – with RFID tags consisting of only one antenna and
many chips, each with its own ID code or a “multi-tag” strategy – with a different tag for
transmitting each ID, controlled by appropriate microwave circuits.

(iv) A RFID-based sensor, to alert firefighters within minutes of a fire ignition [15], has been
designed by Telepathx, a wireless and communications company based in Melbourne,
Australia. The proposed Variable Radio Frequency (VRF) sensor comprises of an active
RFID tag and wireless thermal sensors that activate the tag when the temperature of the
sensed region exceeds 2 degrees of a pre-determined setting. The RFID tag, when activated,
communicates its identity to a reader that in turn sends notification to the fire fighters to
respond quickly and efficiently.

(v) A prototype for a child localization system using RFID and wireless sensor network
technologies has been designed and implemented in [16]. The proposed system uses passive
RFID tags coupled with motion detection sensors to locate children in the park and convey
the information to a remote personal computer (base station) through UHF RFID readers.
The system can even identify multiple children visiting a site together.

(vi) In [17], the authors present a Non-deterministic Pushdown Automata (NPA) model to RFID
transceivers with wireless sensor networks for tracking and monitoring animals. Here, the
sensor nodes integrated with the RFID readers operate with two read distances: one read
distance for the RFID reader to gather data from the tags and another read distance for the
sensor node to communicate with the peer sensor nodes and form an ad hoc network that
can be used for aggregating the gathered data to a remote sink node.

(vii) In [18], the authors present taxonomy for the integration of RFID and wireless sensor
networks. Four classes of integration have been envisioned: integrating RFID tags with
sensors, integrating RFID tags with wireless sensor network nodes and other wireless
devices, integrating RFID readers with sensor nodes and other wireless devices, and a mix
of RFID tags, readers and wireless sensor nodes. The authors emphasize the potential
benefits in integrating the RFID technology that easily facilitates detection and
identification of objects with the wireless sensor network technology that provides

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

14

information about the condition of the objects, the environment as well as enables multi-hop
wireless communications.

7. CONCLUSIONS AND FUTURE WORK

Based on the results provided in this paper, we can make some relevant analysis and draw
conclusions. The runtime values for the application ranged from 30 seconds to 3600 seconds (1
hour). Each test was conducted to examine whether our application runs for different ranges of
time, and explore the constant detection of tags by the RFID reader. The results were fairly
accurate based on the average percentage of error analysis. We observe that the largest error
percentage generated was 16.17%, which corresponded to the test with polling delay of 5
seconds, and running time of 30 seconds. This value is high for a percentage error, and the
conclusion we can take from here is that not only it was the smaller value for the running time
that makes the reading inaccurate, but also the accuracy of the procedure to start the test,
because each program must be started independently by the user. The other percentages of error
were lower and less than 10%. We would also like to comment on the test with a polling delay
of 2 seconds and a running time of 3600 seconds (1 hour). Although, this result shows a lower
percentage of error, we can see a big difference on the number of experimental tags detected
and the theoretical tags detected. This difference may be happening because of the time error.
We must remember that although the Node Control and Database Control parts of the
application have time delays, they may not be necessarily accurate. Thus, we must also take in
consideration the time that each program takes on executing each its own instructions.

Some of the suggestions for future improvements for this application include the following: (i)
Make the two parts of the program to run as one, completely independent of the user; (ii)
Develop a multiprocessing interface, to make the Database Control program run, and have the
option to stop it, change the rate of detection, etc; (iii) Make the SNAP functions and scripts
more compatible with Python so that the nodes can work independent of the Synapse Portal; (iv)
Add more RFID nodes with its corresponding RFID devices integrated, so the Polling node can
do a multicast RPC to all nodes to detect a tag ID; (v) Add accelerometers to the nodes of the
WSN to detect movement, if there is no tag present.

ACKNOWLEDGMENTS

This research and publication are funded by the U.S. National Science Foundation (NSF)
through grants CNS-0851646 and DUE-0941959. The student author Bolivar Torres was one of
the participants of the Summer 2010 NSF-sponsored Research Experiences for Undergraduates
(REU) program on Wireless Ad hoc Networks and Sensor Networks, hosted by the Department
of Computer Science at Jackson State University (JSU), MS, USA. The authors also
acknowledge Dr. Loretta Moore, Mrs. Brenda Johnson and Ms. Ilin Dasari (all at JSU) for their
services to the REU 2010 program.

REFERENCES

[1] J. A. Stankovic, “Wireless Sensor Networks,” University of Virginia Technical Report,
Charlottesville VA, USA, June 2006.

[2] P. C. Jain and K. P. Vijaygopalan, “RFID and Wireless Sensor Networks,”
http://www.scribd.com/doc/32593709/RFID-and-Wireless-Sensor-Network; last retrieved: December
1, 2010.

[3] Wireless News Desk, “Wireless Sensor Network R&D Investment to Top $1 Billion in 2012,”
http://java.sys-con.com/node/823199; last retrieved: December 1, 2010.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010

15

[4] A. Rowe, R. Mangharam, and R. Rajkumar, “RT-Link: A Time-Synchronized Link Protocol for
Energy-Constrained Multi-hop Wireless Networks,” Proceedings of the 3

rd
 Annual IEEE Conference

on Sensor and Ad Hoc Communications and Networks, pp. 402-411, Reston, VA, USA, September
2006.

[5] N. Skinner, “Building an Active RFID People / Asset Tracking System with Mesh Networking,”
http://www.ns-tech.co.uk/blog/2010/02/active-rfid-tracking-system/; last retrieved: December 1,
2010.

[6] Phillips Semiconductors, The I2C-Bus Specification Version 2.1, January 2000,
http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf; last retrieved: December 1,
2010.

 [7] SonMicro Electronics SM130 13.56 MHz RFID Mifare® Read/Write Module Data Sheet,
http://www.sonmicro.com/en/downloads/Mifare/ds_SM130.pdf, last retrieved: December 1, 2010.

[8] Python Software Foundation, “What is Python? Executive Summary,” Python documentation, Python
Foundation, http://www.python.org/doc/essays/blurb/; last retrieved: December 1, 2010.

[9] SNAP Reference Manual, http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf;
last retrieved: December 1, 2010.

[10] L. Ho, M. Moh, Z. Walker, T. Hamada and C.-F. Su, “A Prototype on RFID and Sensor Networks
for Elder Healthcare: Progress Report,” Proceedings of the ACM SIGCOMM Workshops, pp. 70-75,
Philadelphia, USA, August 2005.

[11] Crossbow Inc., Home page, http://www.xbow.com, last retrieved: December 1, 2010.

[12] M. Buettner, R. Prasad, A. Sample, D. Yeager, B. Greenstein, J. R. Smith and D. Wetherall, “RFID
Sensor Networks with the Intel WISP,” Proceedings of the 6

th
 ACM Conference on Embedded

Network Sensor Systems,” pp. 393-394, 2008.

[13] M. Buettner, R. Prasad, M. Philipose and D. Wetherall, “Recognizing Daily Activities with RFID-
based Sensors,” Proceedings of the 11

th
 International Conference on Ubiquitous Computing, pp. 51-

60, 2009.

[14] L. Catarinucci, R. Colella and L. Tarricone, “Sensor Data Transmission through Passive RFID Tags
to Feed Wireless Sensor Networks,” Proceedings of the IEEE MIT-S International Microwave

Symposium, pp. 1772 – 1775, May 2010.

[15] B. Bacheldor, “Fighting Fires with RFID and Wireless Sensors,” RFID Journal, Available at
http://www.rfidjournal.com/article/articleview/2799, last retrieved: December 1, 2010.

[16] C. Chen, “Design of a Child Localization System on RFID and Wireless Sensor Networks,” Journal

of Software, http://www.hindawi.com/journals/js/2010/450392.html, last retrieved: December 1,
2010.

[17] D. P. Pereira, W. R. A. Dias, M. de Lima Braga, R. da Silva Barreto, C. M. S. Figueiredo and V.
Brilhante, “Model to Integration of RFID into Wireless Sensor Network for Tracking and Monitoring
Animals,” Proceedings of the 11

th
 IEEE International Conference on Computational Science and

Engineering, pp. 125 – 131, 2008.

[18] H. Liu, M. Bolic, A. Nayak and I. Stojmenovic, “Taxonomy and Challenges of the Integration of
RFID and Wireless Sensor Networks,” IEEE Network, vol. 22, no. 6, pp. 26-35, November-
December 2008.

