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ABSTRACT 

 In wireless sensor network (WSN) there are two main problems in employing conventional compression 

techniques. The compression performance depends on the organization of the routes for a larger extent. 

The efficiency of an in-network data compression scheme is not solely determined by the compression 

ratio, but also depends on the computational and communication overheads. In Compressive Data 

Aggregation technique, data is gathered at some intermediate node where its size is reduced by applying 

compression technique without losing any information of complete data. In our previous work, we have 

developed an adaptive traffic aware aggregation technique in which the aggregation technique can be 

changed into structured and structure-free adaptively, depending on the load status of the traffic. In this 

paper, as an extension to our previous work, we provide a cost effective compressive data gathering 

technique to enhance the traffic load, by using structured data aggregation scheme. We also design a 

technique that effectively reduces the computation and communication costs involved in the compressive 

data gathering process. The use of compressive data gathering process provides a compressed sensor 

reading to reduce global data traffic and distributes energy consumption evenly to prolong the network 

lifetime. By simulation results, we show that our proposed technique improves the delivery ratio while 

reducing the energy and delay. 

KEYWORDS 

Wireless Sensor Network, Data Aggregation And Data Gathering, Compressive Data 

Gathering 

 
 

1. INTRODUCTION 

 

1.1 Wireless Sensor Networks 
 

Wireless sensor networks include the emerging technologies which have received major 
attention from the research community. The sensor network which is self organizing ad hoc 

system comprises of several small and low cost devices. It observes the physical environment, 

collect the information and transmit it to one or more sink nodes. Generally, the radio 

transmission range of the sensor nodes are in the orders of magnitude which is smaller than the 

geographical extent of the entire network. Therefore, data should be transmitted towards the sink 
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node hop-by-hop in a multi-hop manner. By reducing the amount of data which is to be 

transmitted, the energy consumption of the network can also be reduced [1]. A large number of 

small electromechanical devices with sensing, computing and communication capabilities are 

included in the wireless sensor networks. It can be used for collecting sensory information, such 

as temperature measurements, from an extended geographic area [2].  

 
The possible uses of the sensor networks have been researched actively. Due to the 

characteristics of the wireless sensor network several challenging issues are created. The 

following characteristics are mainly focused: 

• Sensor nodes tend to fail. 

• Sensor nodes utilize a broadcast communication paradigm and have severe bandwidth 

constraints. 

• Sensor nodes have limited resources [3]. 
 

1.2 Data Aggregation and Data Gathering 
 

A common function of sensor networks is data gathering. In data gathering the information 

sampled at sensor nodes has to be transported to the central base station for further processing 

and analysis. An important topic mentioned by the wireless sensor network community is the in-

network data aggregation while focusing on the severe energy constraints of the sensor nodes 

and the limited transport capacity of multi-hop wireless networks. The basic idea for minimizing 

the expense of data transmission is to pre-process the sensor data in the network by the sensor 
nodes [4]. 

 

One of the basic distributed data processing procedures in the wireless sensor networks is data 

aggregation. It is used to save the energy and to reduce the medium access layer contention [5]. 

The idea is to combine the data coming from different sources, eliminating the redundancy and 

reduce the number of transmissions, thus saving the energy [6]. By using the in-network data 

aggregation, the natural redundancy in the raw data collected from the sensors can be eliminated. 

Moreover, such operations are useful for extracting the specific information from the data. 

Supporting high frequency of in-network data aggregation is severe for the network in order to 

conserve energy for a longer network lifetime.  
 

1. 3 Need of Compressive Data Aggregation technique in WSN 
 

In wireless sensor network (WSN) there are two main problems with conventional compression 

techniques.  

• The compression performance relies heavily on how the routes are organized. In order to 

achieve the highest compression ratio, compression and routing algorithms need to be 

jointly optimized. 

• The efficiency of an in-network data compression scheme is not solely determined by 

the compression ratio, but also depends on the computational and communication 

overheads [7].  

 

In this situation, Compressive Data Aggregation technique helps to cope up with these issues. In 

this technique, data is gathered at some intermediate node where the data size size is reduced by 

applying compression technique without losing any information of complete data.  Compressive 

Data Aggregation technique requires each node in the WSN to send exactly k packets 

irrespective of what it has received, which means, compared with traditional techniques , more 

work/load for the nodes which are far away from the sink and less work/load for the nodes that 

are close to the sink. Data compression and aggregation technique have the potential to improve 

WSN energy efficiency and minimize communication [8]. 
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1.4 Adaptive Traffic Aware Data Aggregation Technique  
 

In our previous work [9], we have proposed an adaptive traffic aware aggregation technique for 

wireless sensor networks. In this work, a multi path structured tree is constructed in which nodes 

are selected based on their residual energy level. A traffic monitoring agent is used to monitor 

the load status of the event traffic and each node estimates its traffic load during the data 

reception. At the sink, it estimates the total traffic load in the system and sends an 

OVERLOADED packet to the sources if it is greater than a threshold level T. Then the 

aggregation technique is changed to structure-free lossy aggregation by the sources. If the traffic 

load is less than the threshold value T, the sink sends UNDERLOADED packet to the sources 

and then sources change the aggregation mode to the structured lossless aggregation. This 

technique eventually provides a reliable transmission environment with low energy 

consumption, by efficiently utilizing the energy availability of the forwarding nodes to gather 

and distribute the data to sink, according to its requirements.  

As an extension of our previous work, we provide a compressive data gathering technique to 

enhance the traffic load, when structured data aggregation is used. The use of compressive data 

gathering provides a compressed sensor reading to reduce global data traffic and distributes 

energy consumption evenly to prolong network lifetime. We can also increase the efficiency 

level if the correlated sensor readings are transmitted jointly rather than separately. 

 

2. RELATED WORK 
 

Marco F. Duarte et al [11] have introduced a new theory for distributed compressed sensing 

(DCS) that enables new distributed coding algorithms for multi-signal ensembles that exploit 

both intra- and inter-signal correlation structures. They also proposed algorithms for joint 

recovery of multiple signals from incoherent projections. 

 

Zainul Charbiwala et al [12] have proposed that if CS is employed for source compression, then 
Compressive Sensing (CS) can further be exploited as an application layer erasure coding 

strategy for recovering missing data. They showed that CS erasure encoding (CSEC) with 

random sampling is efficient for handling missing data in erasure channels, paralleling the 

performance of BCH codes, with the added benefit of graceful degradation of the reconstruction 

error even when the amount of missing data far exceeds the designed redundancy. 

 

Wenbo He et al [13] proposed a two privacy-preserving data aggregation schemes for additive 

aggregation functions. The first scheme – Cluster-based Private Data Aggregation (CPDA) – 

leverages clustering protocol and algebraic properties of polynomials. The second scheme – 

Slice-Mix AggRegaTe (SMART) – builds on slicing techniques and the associative property of 

addition. The goal of this work is to bridge the gap between collaborative data collection by wireless 

sensor networks and data privacy. 

 

Maarten Ditzel et al [14] presented the results of a study on the effects of data aggregation for 

multi-target tracking in wireless sensor networks. Wireless sensor networks are normally limited 

in communication bandwidth. The nodes implementing the wireless sensor network are 
themselves limited in computing power and usually have a limited battery life. These 

observations are recognized and combined to come to efficient target tracking approaches. 

      

Steffen Peter et al [15] described and evaluated three algorithms that were reported to suit to the 

WSN scenario. As result of the evaluation, where emphasize is on the awareness to potential 

attack scenarios, a brief overview of strengths and weaknesses of the algorithms is presented. 

Since no algorithm provides all desirable goals, two approaches to cope with the problems are 
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proposed. The first is the successive combination of two algorithms. It increases security, while 

the additional efforts can be minimized by carefully selected parameters. For the second 

approach, specific weaknesses are faced and so mechanisms are engineered that solve the 

particular issues. 
 

3. STRUCTURED TREE CONSTRUCTION 
 

Initially we will describe the structured tree construction algorithm presented in our previous 

paper.  

 

We consider the wireless sensor network M as a directed graph G (N, E). Let the set of nodes N 

consists of sensors and (a, b) ∈E if a and b are residing inside the transmission range of each 

other. The fundamental idea of the proposed algorithm is, when a data gathering request is 

arrived, then using the greedy algorithm a data gathering tree for the request is constructed. The 

greedy algorithm maximizes the minimum residual energy among the nodes. Then the nodes are 

included in the tree one by one but in the beginning only the sink node is included. A node b is 

selected to be included into the tree if the causes to maximize the minimum residual energy 

among the trees are included.        

In our algorithm, we use the following notations 

• N is the total number of nodes 

• NT is the set of nodes in the tree,  

• stop is a Boolean variable,  

• newnode is the node that will be added to the tree.  

• q is the size of the sensed data by newnode.  

• w
α

a,b is the weight assigned to the edge. 

• R is the set of nodes that are not in the tree.  

• RE is the residual energy. 

• s is the sink node 

• mremax is the maximum value of  minimum residual energy at each node of  the tree.  

• tp is the temporary parent node.  

• Pa,s is the unique path in T from node a to node s 

• p(a) is the parent of a in T 

• Let node v ∈ N - NT be the considered node. 

 

3. 1. 1. Tree Construction Algorithm 
 

Algorithm.1 

1.  NT = {s} 

2. Stop = “false” 

3. R = N - NT 

4. RE(s) = ∞ 

5. mremax = 0 

6. for each i ∈  R  

6.1 Compute mremax (i) and tp 

6.2. If mremax (i) > mremax, then 

6.2.1. mremax = mremax(i) 

6.2.2. Newnode = i 

 6.3 End if 

 7. End for 

 8 If mremax > 0, then 

8.1. P (newnode) = tp(newnode) 
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8.2. For each j ∈  Pnewnode, s do 

8.2.1. RE (j) = RE (j) - qwα
j,p(j) 

       8.3 End for    

8.4. NT = NT ∪ {newnode} 

8.5 R = R - newnode 

9 Else  
9.1 stop = “True” 

10. End if 

11. If (R ≠φ ) or stop=”false” then 

 11.1 repeat from 5 

12. End if 

13. End 
 

 

4. ADAPTIVE COMPRESSIVE DATA GATHERING AND RECOVERY 

4. 1. Compressive Data Gathering 

      

 The intuition behind CDG is that higher efficiency can be achieved if correlated sensor readings 

are transmitted jointly rather than separately. We have given a simple example in Section I, 

showing how sensor readings are combined while being relayed along a chain-type topology to 

the sink. In practice, sensors usually spread in a two-dimensional area, and the ensemble of 
routing paths presents a tree structure. Fig. 4(a) shows a typical routing tree in which the sink 

has four children. Each of them leads a sub tree delimited by the dotted lines. Data gathering and 

reconstruction of CDG are performed on the sub tree basis.  

        

The perception behind CDG is that joint transmission of the correlated sensor readings instead of 

transmission of the readings separately will increase the efficiency to a higher level. The 
combining of the sensor readings when it is being transmitted to the sink along the chain type 

topology is shown as an example in section 1. Generally sensors spread in the two dimensional 

area and the structure represented by the routing paths is a tree structure. A routing tree with four 

children at the sink is shown in the Fig. 4(a). A sub tree delimited by the dotted lines is lead by 

each of them. On the sub tree basis data gathering and reconstruction of the CDG are performed. 

 

In order to combine sensor readings while relaying them, every node needs to know its local routing 

structure. That is, whether or not a given node is a leaf node in the routing tree or how many 
children the node has if it is an inner node. To facilitate efficient aggregation, we have made a 

small modification to standard ad-hoc routing protocol: when a node chooses a parent node, it 

sends a “subscribe notification” to that node; when a node changes parent, it sends an 

“unsubscribe notification” to the old parent.  

 

Each node should know its local routing structure so as to combine the sensor readings when it is 

being transmitted. That is, if the given node in the routing tree is a leaf node or not or if the node 

is an inner node then how many children does it have. To the standard routing protocol, a small 

modification is  
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                                                  fig. 1 

 

done so as to facilitate proficient aggregation: when a parent node is chosen by the node, it 

transmits a “subscribe notification” to that node and an “unsubscribe notification” is sent to the 

old parent, when the node changes the parent.  

 

The data gathering process of CDG is illustrated through an example shown in Fig. 4(b). It is the 

detailed view of a small fraction of the routing tree marked in Fig. 4(a). After all nodes acquire 

their readings, leaf nodes initiate the transmission.  

 

The example shown in fig. 1 illustrates the data gathering process of CDG. The leaf nodes will 
initiate the transmission only after all nodes receive their readings. 

 

In this example, S2 generates a random number αi2, computes αi2v2, and transmits the value to S1. 

The index i denote the i
th
 weighted sum ranging from 1 to M. Similarly, S4, S5 and S6 transmit 

αi4v4, αi5v5, and αi6v6 to S3. Once S3 receives the three values, it computes αi3v3, adds it to the 

sum of relayed values and transmits ∑
=

6

3

ij

j

jvα to S1. Then S1 computes αi1v1 and 

transmits∑
=

8

1

1j

j

jvα . Finally, the message containing the weighted sum of all readings in a sub 

tree is forwarded to the sink. 

 

In this example, a random number αi2  is generated  by S2 and it computes αi2v2 and then the 

value is sent to S1. The ith weighted sum is denoted by the index i which ranges from 1 to M. 

Likewise αi4v4, αi5v5, and αi6v6 is transmitted to S3 by S4, S5 and S6. After the three values are 

received by S3 it will compute the value αi3v3 and then it adds to the sum of the relayed value. 

It then transmits to S1 the value ∑
=

6

3

ij

j

jvα .  Next αi1v1 is computed by the node S1 and 

S1 

S2 S3 

S6 

S7 

S8 

S5 
S4 
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∑
=

8

1

1j

j

jvα is transmitted. Lastly, to the sink, the message which contains the weighted sum of all 

readings in a sub tree is forwarded. 

 

Assume that there are N nodes in a particular tree, and the sink intends to collect M 

measurements. Then all nodes send the same number of O (M) messages regardless of their hop 

distance to the sink. The overall message complexity is O (NM). When M << N, CDG transmits 

less messages than the baseline data collection whose worst case message complexity is O (N2). 

More importantly, the transmission load is spread out uniformly so that the lifetime of bottleneck 

sensors and the entire network is greatly extended.  

 

In a specific tree, if it is assumed to have N nodes and M measurements are intended to be 

collected by the sink. Then regardless of the hop distance of the node to the sink, all nodes will 

send the same number of O (M). O (NM) will be the overall message complexity. If  M << N, 
then less messages are transmitted by CDG when compared with the baseline data collection 

when O (N2) is the worst case  message complexity. More importantly,  for the extension of the 

lifetime of the bottleneck sensors as well as the entire network, the transmission load is spread 

uniformly. 

 

The i
th
 weighted sum can be represented by:  

∑
=

=

N

j

ji vA

1

ijα                    (1) 

The sink obtains M weighted sums {Ai}, i = 1, 2 ...M. 

Mathematically, we have: 
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In this equation, each column of {αij} contains the series of random numbers generated at a 

corresponding node. In order to avoid transmitting this random matrix from sensors to the sink, 

we can adopt a simple strategy: before data transmission, the sink broadcasts a random seed to 

the entire network. Then each sensor generates its own seed using this global seed and its unique 

identification. With a pre-installed pseudo random number generator, each sensor is able to 

generate the corresponding series of coefficients. These coefficients can be reproduced at the 

sink given that the sink knows the identifications of all sensors. 

In the above equation, series of random numbers are placed in each column of {αij} which is 

produced at the corresponding node. A simple strategy is used for preventing the transmission of 

the random matrix from sensors to the sink: a random seed is broadcasted to the entire network 

before transmission. Using this global seed and its unique identification, each sensor will 

generate its own seed. Each sensor generates a corresponding series of coefficients from a pre-

installed pseudo random number generator. Given that the sink knows the identifications of all 

sensors, the coefficients can be reproduced at the sink. 

In (2), vi (i = 1, 2 ...N) is a scalar value. In a practical sensor network, each node is possibly 

attached with a few sensors of different type, e.g. a temperature sensor and a humidity sensor. 

Then sensor readings from each node become a multi-dimensional vector. In this case, we may 
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separate readings of each dimension and process them respectively. Alternatively, since the 

random coefficients αij are irrelevant to sensor readings, we may treat vi as a vector. The 

weighted sums Ai become vectors of the same dimension too.  

In (2), vi (i = 1, 2 ...N) is a scalar value. Each node is possibly attached with a few sensors of 

different type, e.g., temperature sensor and a humidity sensor in a practical sensor network. Then 

from each node, the sensor readings become a multi dimensional vector. In this case, in each 
dimension we may separate the readings and process them. Alternatively, since for the sensor 

readings, the random coefficients αij are irrelevant, vi is treated as a vector. Ai which is a 

weighted sum become vectors of the same dimension too. 

When M < N, solving a set of M linear equations with N unknown variables is an ill-posed 

problem. However, sensor readings are not independent variables. In most cases, the sensor field 

follows a certain structure because of the spatial or temporal correlations. Hence, there exists a 

transform domain in which the signal is sparse. Under this assumption, we will explain in the 

following subsection whether the set of linear equations are solvable, what requirements M 

should meet to solve them, and how these equations can be solved. 

When M < N, with N unknown variables, solving a set of M linear equations is an ill-posed 

problem. But sensor readings are no where independent variables. In most cases, a certain 

structure is followed by the sensor field due to the spatial or temporal correlations. So, a 

transform domain is used wherever the signal is sparse. Based on this assumption in the 

following subsections we explain: whether linear equation set is solvable, to meet them what are 

the requirements M and these equations can be solved. 
 

4.2 Data recovery 
 

According to compressive sampling theory, a K-sparse signal can be reconstructed from a small 

number of measurements with a probability close to one. The weighted sums obtained in (2) are 

a typical type of measurements. Signal sparsity characterizes the correlations within a signal. An 

N-dimensional signal is considered as a K-sparse signal if there exists a domain in which this 

signal can be represented by K (K _ N) non-zero coefficients. Fig. 5(a) shows a 100-dimensional 

signal in its original time domain. Obviously, it is not sparse at all in this domain. Because of the 
signal correlation, it can be described more compactly in transform domains such as wavelet and 

DCT.  

A K-sampling signal according to the compressive sampling theory can be reconstructed based 

on the small number of measurements having a probability nearly one. The weighted sum from 

(2) is measurements of typical type. Within a signal, signal sparsity characterizes the 

correlations. An N-dimensional signal is called as a K-sparse signal when there is a domain 
where signal can be presented as K(K_N) non zero coefficients. Fig.5(a) represents a 100-

dimensional signal  in its real time domain. Due to signal correlation, in transform domains such 

as wavelet and DCT, it can be described more compactly. 

In a densely deployed sensor network, sensors have spatial correlations in their readings.  

Sensors have spatial correlations in its readings in a densely deployed sensor networks. 

Let N sensor readings form a vector v = [v1 v2 ... vN]
 T

, then v is a K-sparse signal in a particular 

domain λ. Denote λ = [λ 1 λ 2 ... λ N] as the representation basis with vectors {λ i} as columns, 

and X = [X1, X2 ...XN] T are the corresponding coefficients. Then, 

v can be represented in the λ domain as: 

i

N

i

iXv λ∑
=

=
1

  Or v = λX         (3)  

Compressive sampling theory tells that a K-sparse signal can be reconstructed from M 
measurements if M satisfies the following conditions [6]: 

M ≥ β. ∆2 (α, λ). K.log N        (4) 
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where β is a positive constant, α is the sampling matrix as defined in (2), and ∆ (α, λ) is the 

coherence between sampling basis α and representation basis λ. The coherence metric measures 

the largest correlation between any two elements of α and λ, and is defined as: 

∆ (α, λ) = √N.        Max | < αi, λj> |, 1≤ i, j ≥N       (5) 

From (5), we can see that the smaller the coherence between α and λ is, the lesser measurements 

are needed to reconstruct the signal. In practice, using random measurement matrix is a 
convenient choice, since a random basis has been shown to be largely incoherent with any fixed 

basis and M = 3K ~ 4K is usually sufficient to satisfy (4).  

From eq. (5), we get to know that lesser is the coherence in between α and λ, reduced 

measurements are required for the signal reconstruction. In practice, a convenient choice is to 

use random measurement matrix, since with any fixed basis a random basis is shown to be 

largely incoherent and M = 3K – 4K is sufficient to satisfy eq. (4). 

With sufficient number of measurements, the sink is able to reconstruct sensor readings by 

solving an l1-minimization problem: 

1

min

l
XNX ℜ∈

   s.t.   A = αv, v = λX        (6) 

In addition, for sparse signals whose random projections are contaminated with noise, 

reconstruction can be achieved by solving a relaxed l1-minimization problem, where is a 

predefined error threshold: 

1

min

l
XNX ℜ∈

 s.t. ||A – αv|| 
2

l  < ε, v = λX      (7) 

Suppose Ỹ is the solution to this convex optimization problem, then the proposed reconstruction 

of the original signal is ũ = λ Ỹ. It has been shown that the above l1-minimization problem can 

be solved with linear programming (LP) techniques. Although the reconstruction complexity of 

LP based decoder is polynomial, it goes pretty high when N is too large. While there is a large 
body of on-going work looking for low-complexity reconstruction techniques, this topic is 

beyond the scope of our paper. With the current LP based decoder, we would suggest that the 

size of N does not exceed one thousand.  

Suppose for the convex optimization problem if Ỹ is the solution, then for the original signal the 

proposed reconstruction is ũ = λ Ỹ. The linear programming (LP) techniques can be used for 

solving the above mentioned l1-minimization problem. When N is too large the reconstruction 

complexity of LP based decoder goes pretty high even though initially it is a polynomial 

function. This topic is beyond the scope of our paper, when there is a large body of on going 

work looking for low complexity reconstruction technique. We would suggest, for the current 

LP based decoder that the size of N does not exceed one thousand.  

In (6) and (7), the λ matrix describes the correlation pattern among sensor readings. It is utilized 

only in data recovery process, and is not required to be known to sensors. In this way, most of 

the computations are shifted from sensors to the sink. Such asymmetry of computation 
complexity makes CDG an appealing choice for WSNs. 

In (6) and (7) the correlation pattern among the sensor reading is described by the λ matrix. It is 

not required to be known to the sensors since it is utilized in data recovery process. Likewise, 

most of the calculations are transferred from the sensors to the sink. As a result of the 

asymmetry of computation complexity, CDG is an appealing choice for WSN’s. 
 

5. MINIMIZING COMPRESSION COST 
 

Our objective is to minimize both the computation and communication costs rather than 

minimizing communication cost only, as done in the prior works. To perform the compression 

over the data gathering tree (given in the last section), we propose a flow based technique where 

data from each source is compressed and transmitted as a traffic flow over the corresponding 

path from the source to the sink. 
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5. 1.  Network Model 
 

The underlying wireless network is modeled as a connected weighted graph  

G = < N, L, W >, 

Where the vertex set N represents the set of n sensor nodes; the edge (link) set L represents the 

wireless connection between nodes and associated with each edge li Є L, its weight Wli is the 
energy cost of sending a data packet of unit size over li. The link weight is determined by the 

distance between the two adjacent nodes, the radio device, and the communication environment. 

We also use (u, v) to denote an edge connecting u and v. 

Let si Є N denote the sink node and S ⊂  N, denote the set of source nodes. In each period, each 

source node generates a raw data of one unit size that needs to be transported to the sink, 

possibly via multi-hop communication. 

A data gathering tree is a sub-tree of G rooted at sink and containing S, denoted as  

T = < N’, L’ >, 

where S ⊂  N’ ⊂  N and L’ ⊂  L. Let Mn denote the number of source nodes in the sub-tree 

rooted at n Є N. Given a data gathering tree, let Ps denote the path in the tree that connects s to si. 

Also, for two edges l1, l2 on the same path, let l1 ≺ l2 denote the fact that l1 is a predecessor of l2.                                                          

We define a pre-defined system parameter, costcomp ≥ 0, to represent the energy cost of 

compressing one unit of data (using (1) and (2) in section 4) normalized by the cost of 

communicating one unit of data. The energy cost of compressing source information of size z to 

an output of size o is represented as a function 

F (o) = Costcomp * z * CR   (8) 

Where CR = 
o

z  is the compression ratio. 

From (1), it can be seen that the energy cost is  

• Proportional to the input size z since it has to process the whole input at least once,  

• Proportional to the compression ratio CR.  

If.  l = (u, v) denote  a one-hop link, where u generates a data packet of one unit size that needs 

to be transmitted to v after appropriate compression by u, then z=1 and Eq. (1) can be modified 

as.  

F (o) = 
o

Costcomp
 

Let Wl denote the cost of transmitting one unit of data over the link l. The overall energy costs, 

denoted as Costenergy(o) can then be modeled as follows 

Costenergy(o) =  
o

Costcomp
 + o. Wl  (9) 

 

5. 2. Cost Effective Data Gathering 
 

Given a data gathering tree (as described in section 3) over a sensor network, we model data 

transmission over the tree as a composition of different data flows from each source node to si. 

That is, each path from a source node to si in the tree corresponds to a data flow over the path. 

The flow size may change along its corresponding path due to data compression performed by 

intermediate nodes. Also, the energy cost of the system is the sum of the computation and 

communication costs of all paths in the tree. 

Consider an arbitrary path Ps in the tree from a source node n to si. Let fl
n denote the flow over l 

Є Ps and qs denote the last edge in Ps, i.e., the edge incident on si in Ps. We assume that the total 

energy spent on data compression over the path Ps is determined by the flow on qs, i.e., the total 

energy cost for data compression over Ps is calculated as 
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Ps = 
s

q

comp

s
f

Cost
   (10) 

Given a node in the tree, the number of incoming flows equals the number of source nodes in its 
sub-tree. The output size required for compressing each incoming packet is lower bounded by 

the joint entropy of these source nodes. We assume that the joint entropy of any i source nodes, 

Ei is a non-decreasing and concave function of i with E1 = ED, where ED Є (0, 1) is the entropy of 

one unit of data. We assume that the compression of i incoming data flows at node n can be 

performed in such a way that the lower bound for compressing each data flow equals LBi =
i

Ei , 

with LB1 = E1 = ED. In other words, we assume that when maximal compression is performed on 

i pieces of source information, the fraction of compressible data of each piece is the same. 

Thus, for any l = (a, b) Є Ps, we impose the constraint on fl
n
 such that  

l
nf  ≥ 

nMLB  = 
nM

nME
           (11) 

Let  λi = nMLB , where Mn is the number of source nodes in the sub-tree rooted at n∈N. Also, we 

have λi ≥λi+1, for i = 1. . . k − 1. 

Given a data gathering tree and an arbitrary source node s Є S, consider the path from s to si. Let 
Ps = {s1, s2. . . sk} denote the path, where s1 = s, sk = si, and k is the number of nodes along Ps. 

We need to compress and transmit a packet of unit size from s1 to si with the minimal 

computation and communication energy costs. 

 Let f denote a vector with flow along Ps, i.e., f  = { l
n

f
1
, …., l

nk
f

1−
}.  

For any optimal flow f over a path Ps, if fi+1 < fi, we have fi = λi. 

 

6. SIMULATION RESULTS 
 

6. 1. Simulation Setup 

 
The performance of our cost effective compressive data aggregation (CECDA) technique is 

evaluated through NS2 [13] simulation.  A random network deployed in an area of 500 X 500 m 

is considered. We vary the number of nodes as 20, 40….100. Initially the nodes are placed 
randomly in the specified area. The base station is assumed to be situated 100 meters away from 

the above specified area. The initial energy of all the nodes is assumed as 3.1 joules. In the 

simulation, the channel capacity of mobile hosts is set to the same value: 2 Mbps. The 

distributed coordination function (DCF) of IEEE 802.11 is used for wireless LANs as the MAC 

layer protocol. The simulated traffic is CBR with UDP source and sink. The number of sources 

is varied from 1 to 5. 

Table 1 summarizes the simulation parameters used 

 

TABLE 1: SIMULATION PARAMETERS 

No. of Nodes   20,40,….100 

Area Size  500 X 500 

Mac  802.11 

Simulation Time  50 sec 

Traffic Source CBR 

Packet Size 512 

Transmit Power 0.660 w 



International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December 2010 

 

127 

Receiving Power 0.395 w 

Idle Power 0.335 w 

Initial Energy 3.1 J 

Transmission 

Range 

75m 

 

6. 2. Performance Metrics 
 

The performance of CECDA technique is compared with our previous ATAA [9] protocol. The 

performance is evaluated mainly, according to the following metrics. 

Average end-to-end Delay: The end-to-end-delay is averaged over all surviving data packets 
from the sources to the destinations. 

Average Packet Delivery Ratio: It is the ratio of the number of packets received successfully 

and the total number of packets transmitted. 

Energy Consumption:  It is the average energy consumed by all the nodes in sending, receiving 

and forwarding operations 

The simulation results are presented in the next section. 

 

6. 3. Simulation Results 
 

A. Dense 
In our initial experiment, we vary the number of nodes as 20, 40, 60, 80 and 10 in which the 

sources are densely deployed.  
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Fig 1: Nodes Vs Delay 
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Fig 2: Nodes Vs DelRatio 
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Fig 3: Nodes Vs Energy 

 

Since the aggregation involves compressed data, the delay incurred in sending the data from 

sensors to the sink, will be significantly reduced. Fig 1 gives the average end-to-end delay when 

the number of nodes is increased. From the figure, it can be seen that the average end-to-end 

delay of the proposed CECDA technique is less when compared with ATAA.  

Fig 2 presents the packet delivery ratio when the number of nodes is increased. The compressed 

data aggregation eliminates the packet drops at the intermediate nodes and hence increases the 

packet delivery ratio. So CECDA achieves good delivery ratio, compared to ATAA. 

 

         Compressing the data during data aggregation reduces the number of data packets to be 

aggregated at the aggregator nodes. Hence the total energy consumption involved in the 

aggregation process will also be reduced. Fig 3 shows the results of energy consumption when 
the number of nodes is increased. From the results, we can see that CECDA technique has less 

energy consumption when compared with ATAA, since it has the energy efficient tree.  

 

B. Sparse 
In our second experiment, we vary the number of nodes as 20, 40, 60, 80 and 10 in which the 

sources are sparsely deployed. 
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Fig 4: Nodes Vs Delay 
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Fig 5: Nodes Vs DelRatio 
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Fig 6: Nodes Vs Energy 

 

Since the aggregation involves compressed data, the delay incurred in sending the data from 

sensors to the sink, will be significantly reduced. Fig 4 gives the average end-to-end delay when 
the number of nodes is increased. From the figure, it can be seen that the average end-to-end 

delay of the proposed CECDA technique is less when compared with ATAA. 

Fig 5 presents the packet delivery ratio when the number of nodes is increased. CECDA 

achieves good delivery ratio, compared to ATAA. The compressed data aggregation eliminates 

the packet drops at the intermediate nodes and hence increases the packet delivery ratio. 

Fig 6 shows the results of energy consumption when the number of nodes is increased. 

Compressing the data during data aggregation reduces the number of data packets to be 
aggregated at the aggregator nodes. Hence the total energy consumption involved in the 

aggregation process will also be reduced. From the results, we can see that CECDA technique 

has less energy consumption when compared with ATAA, since it has the energy efficient tree.  
 

7. CONCLUSION 
 

Compressive Data Aggregation technique helps to solve the issues of traditional compression 

techniques. In this technique data is gathered at some intermediate node where size of the data 

need to be sent is reduced by applying compression technique without losing any knowledge of 

complete data.  In our previous work, we have developed an adaptive traffic aware aggregation 

technique in which the aggregation technique is adaptively changed to structured and structure-

free, depending on the load status of the traffic. In this paper, as an extension of our previous 

work, we have provided a compressive data gathering technique to enhance the traffic load, 

when structured data aggregation is used. We have also designed a technique that effectively 

reduces the computation and communication costs involved in the compressive data gathering 

process. The use of compressive data gathering provides a compressed sensor reading to reduce 
global data traffic and distributes the energy consumption evenly to prolong network lifetime. 
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By simulation results, we have shown that our proposed technique improves the delivery ratio 

while reducing the energy and delay. 
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