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ABSTRACT 

Time synchronization for wireless sensor networks (WSNs) has been studied in recent years as a 

fundamental and significant research issue. Many applications based on these WSNs assume local clocks 

at each sensor node that need to be synchronized to a common notion of time. Time synchronization in a 

WSN is critical for accurate time stamping of events and fine-tuned coordination among the sensor nodes 

to reduce power consumption. This paper proposes a bidirectional, reference based, tree structured time 

synchronization service for WSNs along with network evaluation phase. This offers a push mechanism for 

(i) accurate and (ii) low overhead for global time synchronization. Analysis study of proposed approach 

shows that it is lightweight as the number of required broadcasting messages is constant in one 

broadcasting domain. 
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1. INTRODUCTION 

Wireless sensor networks (WSNs) can be applied to a wide range of applications in domains as 

diverse as medical, industrial, military, environmental, scientific, and home networks [5].  Since 

the sensors in a WSN operate independently, their local clocks may not be synchronized with 

one another. This can cause difficulties when trying to integrate and interpret information 

sensed at different nodes. For instance, if a moving car is detected at two different times along a 

road, before we can even tell in what direction the car is going, the detection times have to be 

compared meaningfully. In addition, we must be able to transform the two time readings into a 

common frame of reference before estimating the speed of the vehicle. Estimating time 

differences across nodes accurately is also important in node localization. For example, many 

localization algorithms use ranging technologies to estimate inter-nodes distances; in these 

technologies, synchronization is needed for time-of-flight measurements that are then 

transformed into distances by multiplying with the medium propagation speed for the type of 

signal used such as radio frequency or ultrasonic. There are additional examples where 

cooperative sensing requires the nodes involved to agree on a common time frame such as 

configuring a beam-forming array and setting a TDMA (Time Division Multiple Access) radio 

schedule [6]. These situations mandate the necessity of one common notion of time in WSNs. 

Therefore, currently there is a huge research interest towards developing efficient clock 

synchronization protocols to provide a common notion of time.  

Time synchronization of WSNs is crucial to maintain data consistency, coordination, and 

perform other fundamental operations. Further, synchronization is considered a critical problem  
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for wireless ad hoc networks due to its de-centralized nature and the timing uncertainties 

introduced by the imperfections in hardware oscillators and message de-lays in both physical 

and medium access control (MAC) layers. All these uncertainties cause the local clocks of 

different nodes to drift away from each other over the course of a time interval.  

 

The primary functionality of wireless sensor networks is to sense the environment and transmit 

the acquired information to base stations for further processing with secure time information 

[3]. The clock synchronization problem has been studied thoroughly in the areas of Internet and 

local area networks (LANs) for the last several decades. Many existing synchronization 

algorithms rely on the clock information from Global Positioning System (GPS). However, 

GPS-based clock acquisition schemes exhibit some weaknesses: GPS is not ubiquitously 

available and requires a relatively high-power receiver, which is not possible in tiny and cheap 

sensor nodes. This is the motivation for developing software-based approaches to achieve in-

network time synchronization. Among many protocols that have been devised for maintaining 

synchronization, Network Time Protocol (NTP) [7] is outstanding owing to its ubiquitous 

deployment, scalability, robustness related to failures, and self-configuration in large multi-hop 

networks. Moreover, the combination of NTP and GPS has shown that it is able to achieve high 

accuracy on the order of a few microseconds [8]. However, NTP is not suitable for a wireless 

sensor environment, since WSNs pose numerous challenges of their own; to name a few, 

limited energy and bandwidth, limited hardware, latency, and unstable network conditions 

caused by mobility of sensors, dynamic topology, and multi-hopping. The most of the time 

synchronization protocols differ broadly in terms of their computational requirements, energy 

consumption, precision of synchronization results, and communication requirements [1]. 

In the paper, we propose a more effective, lightweight multi-hop tree structured referencing 

time synchronization (TSRT) approach with the goal of achieving a long-term network-wide 

synchronization with minimal Message Exchanges and exhibits a number of attractive features 

such as highly scalable and lightweight.  

The whole paper is organized in six Sections. In Section 2, existing synchronization schemes 

are reviewed. Proposed reference based tree structured time synchronization scheme is 

explained in Section 3. Section 4 contains the network evaluation phase, followed by the 

comparison of proposed scheme with existing work in Section 5. Finally, Section 6 contains the 

conclusion of the paper. 

2. EXISTING APPROACHES TO TIME SYNCHRONIZATION 

Time synchronization algorithms providing a mechanism to synchronize the local clocks of the 

nodes in the network have been extensively studied in the past. The most widely adapted 

protocol used in the internet domain is the NTP devised by Mills [7]. The NTP clients 

synchronize their clocks to the time servers with accuracy in the order of milliseconds by 

statistical analysis of the round-trip time. The time servers are synchronized by external time 

sources, typically using GPS. The NTP has been widely deployed and proved to be effective, 

secure and robust in the internet. In WSNs, however, non-determinism in transmission time 

caused by the Media Access Channel (MAC) layer of the radio stack can introduce several 

hundreds of milliseconds delay at each hop. Therefore, without further adaptation, NTP is 

suitable only for WSN applications with low precision demands.  

Two of the most prominent examples of existing time synchronization protocols developed for 

the WSN domain are the Reference Broadcast Synchronization (RBS) algorithm [9] and the 

Timing-sync Protocol for Sensor Networks (TPSN) [10].  

In RBS, a reference message is broadcasted. The receivers record their local time when 

receiving the reference broadcast and exchange the recorded times with each other. The main  
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advantage of RBS is that it eliminates transmitter-side non-determinism. The disadvantage of 

the approach is that additional message exchange is necessary to communicate the local time-

stamps between the nodes. In the case of multi hop synchronization, the RBS protocol would 

lose its accuracy. Santashil PalChaudhuri et al [15] extended the RBS protocol to handle multi 

hop clock synchronization in which all nodes need not be within single-hop range of a clock 

synchronization sender. 

 

 The TPSN algorithm first creates a spanning tree of the network and then performs pair wise 

synchronization along the edges. Each node gets synchronized by exchanging two 

synchronization messages with its reference node one level higher in the hierarchy. The TPSN 

achieves two times better performance than RBS by time-stamping the radio messages in the 

MAC layer of the radio stack and by relying on a two-way message exchange. The shortcoming 

of TPSN is that it does not estimate the clock drift of nodes, which limits its accuracy, and does 

not handle dynamic topology changes. 

TinySeRSync [16] protocol works with the ad hoc deployments of sensor networks. This 

protocol proposed two asynchronous phases: Phase I –secure single-hop pair wise 

synchronization, and Phase II–secure andresilient global synchronization to achieve global time 

synchronization in a sensor network.  

Van Greunen et al [18] Lightweight Tree-based Synchronization (LTS) protocol is a slight 

variation of the network-wide synchronization protocol of Ganeriwal et al. [17]. Similar to 

network-wide synchronization the main goal of the LTS protocol is to achieve reasonable 

accuracy while using modest computational resources. As with network-wide synchronization, 

the LTS protocol seeks to build a tree structure within the network. Adjacent tree nodes 

exchange synchronization information with each other. A disadvantage is that the accuracy of 

synchronization decreases linearly in the depth of the synchronization tree (i.e., the longest path 

from the node that initiates synchronization to a leaf node). Authors discuss various ideas for 

limiting the depth of tree; the performance of protocol is analyzed with simulations. 

A survey study of Abolfazl Akbari et al [4] suggested as data communication and various 

network operations cause energy depletion in sensor nodes and therefore, it is common for 

sensor nodes to exhaust its energy completely and stop operating. This may cause connectivity 

and data loss. Therefore, it is necessary that network failures are detected in advance and 

appropriate measures are taken to sustain network operation. The clock synchronization 

protocols significantly differ from the conventional protocols in dealing the challenges specific 

to WSNs. It is quite likely that the choice of a protocol will be driven by the characteristics and 

requirements of each application.  

3. TREE STRUCTURED REFERENCING TIME SYNCHRONIZATION 

APPROACH  

In this Section we proposed Tree Structured Referencing Time Synchronization (TSRT) 

scheme, which is based on the protocol, proposed by [2], that the aim is to minimize the 

complexity of the synchronization. Thus the needed synchronization accuracy is assumed to be 

given as a constraint, and the target is to devise a synchronization algorithm with minimal 

complexity to achieve given precision. TSRT works on two phases. First phase used to 

construct an ad hoc tree structure and second phase used to synchronize the local clocks of 

sensor nodes followed by network evaluation phase.  

The goal of the TSRT is to achieve a network wide synchronization of the local clocks of the 

participating nodes. We assume that each node has a local clock exhibiting the typical timing 

errors of crystals and can communicate over an unreliable but error corrected wireless link to its 

neighbors. The TSRT synchronizes the time of a sender to possibly multiple receivers utilizing a  
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single radio message time-stamped at both the sender and the receiver sides. MAC layer time-

stamping can eliminate many of the errors, as observed in [11]. However, accurate time-

synchronization at discrete points in time is a partial solution only. Compensation for the clock 

drift of the nodes is inevitable to achieve high precision in-between synchronization points and 

to keep the communication overhead low. Linear regression is used in TSRT to compensate for 

clock drift as suggested in [9].  

 

3.1. Main Ideas 

The proposed synchronization approach is flexible and self-organized. A physical broadcast 

channel is required, which is automatically satisfied by the wireless medium. A connected 

network is also required in order to spread the synchronization ripple to nodes network wide. 

The proposed approach assumes the coexistence of reference nodes and normal sensor nodes in 

a WSN. A “reference node” periodically transmits beacon messages to its neighbors. These 

beacon messages initiate the synchronization waves. Multiple reference nodes are allowed to 

operate in the system simultaneously. A sensor node in this approach will dynamically select the 

nearest reference node as its reference for clock synchronization. 

This approach exploits the usage of multi-channel radios to improve precision, minimize the 

communication overhead and low energy consumption. A common control channel is shared by 

all the sensor nodes for delivery of beacon messages and control packets. This control channel 

can be the same one as is used for general data traffic. Each sensor node is also assigned a 

unique clock channel different from all its neighbors’ clock channels. Usage of a dedicated 

clock channel reduces the variation in propagation delay caused by packet collisions and 

retransmissions, thereby improving the accuracy of clock estimation. 

This proposed protocol used for multi-hop synchronization of the network based on pair wise 

synchronization scheme suggested by [10].  This requires nodes to synchronize to some 

reference point(s) such as a sink node in the sensor network and needs a tree to be constructed 

first. Then pair wise synchronization is done along the n - 1 edges of the tree. In such 

algorithms, the reference node is the root of the tree and has the responsibility of initiating a 

“resynchronization” when required. Using the assumption that the clock drifts are bounded, and 

given the required precision, the reference node calculates the time period that a single 

synchronization step will be valid. Since the depth of the tree affects the time to synchronize the 

whole network, and also the precision error at the leaf nodes, the depth of the tree is 

communicated back to the root node so that it can use this information in its resynchronization 

time decision.   

An explanation of a standard two-way message exchange between a pair of nodes [13] 

employing for Synchronization is helpful to understand proposed synchronization design. The 

basic building block of the synchronization process is the two-way message exchange between a 

pair of nodes Here we assume that the clock drift between a pair of nodes is constant in the 

small time period during a single message exchange. The propagation delay is also assumed to 

be constant in both directions. Consider a two-way message exchange between nodes A and B 

as shown in Fig. 1. Node A initiates the synchronization by sending a synchronization message 

at time t
1
 as per node’s local clock. This Message includes A's identity, and the value of t

1
. B 

receives this message at t
2
 which can be calculated as    

t
2 
= t

1
 + ∆ + d   (1) 

Where ∆ is the relative clock drift between the nodes, and d is the propagation delay of the 

pulse.    

B responds at time t
3
 with an acknowledgement, which includes the identity of B and the values  
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t
1
, t

2
, and t

3
. Then, node A can calculate the clock drift and propagation delay as below, and 

synchronize itself with respect to node B.   

 

∆ = ((t
2 
– t

1 
) – (t

4 
– t

3 
))/2 (2) 

d = ((t
2 
– t

1 
) + (t

4 
– t

3 
))/2 (3) 

The synchronization phase is initiated by the root node's syn_begin message. On receiving this 

message, nodes of level 1 initiate a two-way message exchange with the root node. Before 

initiating the message exchange, each node waits for some random time, in order to minimize 

collisions on the wireless channel. Once they get back a reply from the root node, they adjust 

their clocks to the root node. Level 2 nodes, overhearing some level 1 node's communication 

with the root, initiate a two-way message exchange with a level 1 node, again after waiting for 

some random time to ensure that level 1 nodes have completed their synchronization. This 

procedure eventually gets all nodes synchronized with reference to the root node, the 

synchronization process described in detail in Subsection 3.3.   

 

Figure 1. Two way message exchange between a pair of nodes. 

3.2. Ad Hoc Tree Construction Phase: 

Before the sensors can be synchronized, a tree structure based network topology must be 

created.  The proposed Algorithm 1 is used by each sensor node to efficiently flood the network 

to form a logical hierarchical structure from a designated source point. Each sensor is initially 

set to accept fd_pckt (flood packets) for first time, but will ignore subsequent ones in order not 

to be continuously reassigned as the flood broadcast propagates. When a node receives or 

accepts the fd_pckt then first it set to its parent as source of broadcast after that level of current 

receiver node will be assigned one more than the level of parent node and then it broadcast the 

fd_pckt along with node identifier and level. If a node receives the ack_pckt, the variable 

no_receiver increments to keep track of the node’s receivers.  

Algorithm 1. Tree Structure Construction 

Begin  

Accept (fd_pckts)  

Initialize : no_reciever = 0;  

Node_Level(Root)=0; 

If (current_reciever = = root)  

          Broadcast (fd_pckts)   

      Else if (current_reciever != root)  

          Begin  

               Accept (fd_pckts);  

               Parent(curent_reciever) = Source(broadcast_msg);  

               Node_Level(curent_reciever)=Node_Level(Parent)+1;  

               Broadcast (ack_pckt, node_id);  
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               Ignore (fd_pckts);  

          End  

            Else if (current_node receives ack_pckt) 

                 no_ receiver++;  

End  

3.3. Hierarchical Time Synchronization Phase 

The first component of TSRT’s bidirectional time synchronization service is the push-based 

[12] Hierarchy Time Synchronization (HTS) Scheme. The goal of HTS is to enable central 

authorities to synchronize the vast majority of a WSN in a lightweight manner. This approach 

particularly based on pair wise synchronization with allusion to single reference node is 

discussed in Subsection 3.1. 

3.3.1. Single Reference Node 

As shown in Fig. 2, HTS consists of three simple steps that are repeated at each level in the 

hierarchy. First, a Reference Node (RN) broadcasts a beacon on the control channel (Fig. 2A). 

One child node specified by the reference node will jump to the specified clock channel, and 

will send a reply on the clock channel (Fig. 2B). The RN will then calculate the clock offset and 

broadcast it to all child nodes, synchronizing the first ripple of child nodes around the reference 

node (Fig. 2C). This process can be repeated at subsequent levels in the hierarchy further from 

the reference node (Fig. 2D). The HTS scheme is explained in more detail as follows: 

Step 1: RN initiates the synchronization by broadcasting 

the syn_begin message with time t1 using the control 

channel and then jumps to the clock channel. All concerned 

nodes record the received time of the message 

announcement. RN randomly specifies one of its children, 

e.g. SN2, in the announcement. The node SN2 jumps to the 

specified clock channel.  

Step 2: At time t3, SN2 replies to the RN with its 

received times t2 and t3.  

Step 3.1: RN now contains all time stamps from t1 to t4. 

It calculates clock drift ∆ and propagation delay d, as 

per equation (2) and (3), and calculate t2 = t1 + ∆ + d, 

and then broadcasts it on the control channel. 

Step 3.2: All involved neighbor nodes, (SN2, SN3, SN4 and 

SN5) compare the time t2 with their received timestamp 

t2’. 

 i.e. SN3 calculates the offset d’ as: 

d’ = t2 - t2’ 

Finally, the time on SN3 is corrected as: 

  T = t + d +d’ 

Where t is the local clock reading. 

Step 4: SN2, SN3, SN4 and SN5 initiate the syn_begin to 

their downstream nodes. 

We assume that each sensor node knows about its neighbors when it initiates the 

synchronization process. In Step 1, the response node is specified in the announcement. It’s the 

only node that jumps to the clock channel specified by the RN. The other nodes are not 

disturbed by the synchronization conversation between RN and SN2 and can conduct normal 

data communication while waiting for the second update from the RN. A timer is set in the RN 

when the syn_begin message is transmitted. In case the message is lost on its way to SN2, the  
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RN goes back to the normal control channel after the timer expires and thus avoids indefinite 

waiting. 

 

As the synchronization ripple spreads from the reference node to the rest of the network, a 

multi-level hierarchy is dynamically constructed. Levels are assigned to each node based on its 

distance to reference node, i.e. number of hops to the central reference point. Initiated from the 

reference nodes, the synchronization steps described above are repeated by the nodes on each 

level from the root to the leaves. 

 

Figure 2. (A) Reference node broadcasts (B) A neighbor replies (C) All neighbors are 

synchronized (D) Repeat at lower layers 

4. NETWORK EVALUATION PHASE 

In this phase, the network examines the total amount of message exchanges for synchronization 

during the last synchronization period, and then adjusts the duration of the next synchronization 

period to minimize the overall energy consumption for synchronization. As per [14] when the 

network traffic occurs rarely and synchronization delay is not a critical problem, applying the 

sensor initiated (SI) mode is a better choice to save network resources instead of using the 

always on (AO) mode. In addition, for some applications, the sensor clocks might be allowed to 

go out of synchronization unless sensing events happen. Another critical problem is to 

determine the required number of timing message exchanges (beacons) per pair wise 

synchronization. To fulfill higher requirement of synchronization accuracy, a larger number of 

message transfers and corresponding signal processing is needed for pair wise synchronization. 

However, as the number of required timing messages per pair wise synchronization increases, 

the overall number of timing messages in a synchronization period increases. Hence, there is a 

tradeoff between accuracy and energy consumption.  

To address these design challenges, we consider various factors to deter-mine network 

parameters such as the synchronization mode, the re-sync period τ, and the number of beacons 

per pair wise synchronization N. Indeed, it is aiming at efficient usage of network resources 

(message exchanges) in synchronization. The network parameters are summarized as follows:  

B: number of branches in a Ad hoc tree of the network.  

τ: re-sync period  

h: average number of hops per unit time  

δ: latency factor reflecting the amount of allowed delay in data transmission  

N: number of beacons per pair wise synchronization  

The number of branches in the network B can be obtained after the Ad hoc Tree Construction 

phase. The latency factor δ should be fixed according to the type of a sensor network and its 

range is from 0 to 1. The higher latency factor means higher concern for network delays. In 

every sensing event, its destination node adds the number of hops that have occurred in that  
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particular transmission to its storage. During the synchronization phase, the reference node 

collects the information of the total number of hops occurred in the last synchronization period 

and determines the average number of hops per unit time (h) in the network. This information 

can be included in timing messages with a small overhead. As mentioned, the goal of this phase 

is to minimize the number of required timing messages. In [14] suggested that the number of 

timing messages per unit time is given by M=2BN/ τ  in AO mode, while in the SI mode, 

M=2hN. To minimize the number of timing messages per unit time M, the synchronization 

mode should be selected as follows: 

2BNδ/τ <> 2hN (4) 

Where the latency factor δ varies from 0 to 1 such that more delay dependant networks assumes 

a larger value of δ and vise versa (0 ≤δ≤1). For example, δ is set to be 0 for sensor networks 

requiring network synchronization all the time. On the other extreme, for delay-independent 

networks, δ should be close to 1. As the clock synchronization period τ increases, the network 

becomes more power efficient. Thus, τ should be chosen as large as possible. However, a too 

large value of τ induces a critical synchronization problem since the clock difference (offset) 

between nodes keeps generally increasing with time. Hence, there exists a maximum timing 

synchronization period (τmax) which is determined by the oscillator regulations (hardware 

specifications) and the accuracy of estimators. Notice that sensing data transmission is not 

available during the synchronization phase (τsync), so the re-sync period τ = τmax + τsync. In 

continuation, (4) can be rewritten as  

τ < Bδ/h    (5) 

From (5), the synchronization mode changes from AO into SI when τ is smaller than Bδ/h and 

vise versa. In the SI mode, the reference node periodically asks the number of hops that 

occurred during the past time interval, and then make a decision whether or not to switch to the 

AO mode. Actually, τ is also dependent on N since it strongly depends on the accuracy of 

timing offset estimators. A more detailed analysis of τ is provided in next Subsection.  

4.1. Optimum Number of Beacons (N) and Resynchronization Period (τ) 

The number of timing messages (beacons) per pair wise synchronization (N) is a critical 

parameter to determine both the synchronization accuracy and power efficiency. Suppose that 

the clock timing mismatch ε between the two nodes is modeled as follows: ε = εo + εst, where t 

denotes the reference time, εo and εs stand for the clock offset and skew errors, respectively. Let 

εo,i and εs,i denote the clock offset and skew estimation errors when i message exchanges occur 

between the two nodes. In general, it is difficult to determine any specific mathematical model 

for either clock offset or skew errors. In this paper, we model both clock offset and skew errors 

by normal distributions based on the experimental results reported in [9], [10]:  

εo,i  = N (0, σ2

εo,i
)     1 ≤ i ≤ N, 

εs,i  = N (0, σ2

εs,i
)     1 ≤ i ≤ N, 

where εs,1 stands for the clock skew error when no skew estimation occurred. Then, the 

maximum clock mismatch can be modeled another normal distribution ε  = N(0,σ
ε 

2

), where σε
2 

= σ2
εo,n + σ2

εs,n
 
 τ

max
, (t= τ

max
). Imposing the upper-limit εmax for the clock error via the 

probabilistic measure:  

Ps= Pr (|ε|≤ εmax) = erfc (εmax / √2σ
ε
) 

where erfc(x) ≡ (2/√ π) ∫
x 

∞ 

e
−t2 

dt and Ps denotes the network wide sync error probability. Thus, 

σε can be determined when εmax and the limit of sync error probability are fixed. For instance,  
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when Ps is limited to 0.1% and εmax is 10 ms, σε becomes 3.04 m.  

The maximum timing sync period with N beacons can be written as  

τ 

max 

 
= √ ((σ2

ε 
- σ2

εo,N 
)/ σ2

εs,i,N
)  (6) 

Based on the lower bounds and asymptotic performance of the estimators, one can easily infer 

closed-form expressions of the variances εo,N and εs,N  in terms of the variances εo,1 and εs,2 

respectively. 

5. ANALYSIS OF TSRT 

The TSRT protocol exploits the broadcast nature of the wireless medium to establish a single 

common point of reference, i.e. the arrival time of the broadcast message is the same on all 

neighbor peers. This common reference point can be used to achieve synchronization in Step 4 

of the Subsection 3.3, i.e. t2 at node SN2 occurred at the same instant as t2’ at node SN3. As the 

RN is synchronizing itself with SN2, the other neighboring nodes can overhear the RN’s initial 

broadcast to SN2 as well as the RN’s final update informing SN2 of its offset d2. If in addition 

the RN includes the time t2 in the update sent to SN2 (redundant for SN2), then that allows all 

neighbors to synchronize. 

The intuition is that, since t2 and t2’ occurred at the same instant, then overhearing t2 gives SN3 

its offset from SN2’s local clock and overhearing d2 gives SN3 the offset from SN2’s local 

clock to the RN reference clock. Thus, SN3 and all children of the RN can calculate their own 

offsets to the RN reference clock with only three messages (2 control broadcasts and 1 clock 

channel reply) TSRT is highly scalable and lightweight, since there is only one lightweight 

overhead exchange per hop between a parent node and all of its children. In contrast, 

synchronization in RBS happens between a pair of neighbors, which is called pair verification, 

rather than between a central node and all of its neighbors. 

As a result, RBS is susceptible to high overhead as the number of peers increases [1]. The TSRT 

approach eliminates the potential broadcast storm that arises from pair wise verification, while 

at the same time preserving the advantage of reference broadcasting, namely the common 

reference point. Also, since the TSRT parent provides the reference broadcast that is heard by 

all children, then TSRT avoids the problem in RBS when two neighbors of an initiating peer are 

“hidden” from each other. The parameters used in the protocol dynamically assign the hierarchy 

level to each node during the spread of the synchronization ripple and no additional routing 

protocol is required. TSRT is lightweight since the number of required broadcasting messages is 

constant in one broadcasting domain. 

Only three broadcast messages are necessary for one broadcasting domain, no matter how dense 

the sensor nodes are. In TSRT, the sender error is eliminated by comparing the received time on 

each node.  

TSRT’ current policy for selecting the child node to respond to the sync begin message is a 

random selection. However, it is possible to incorporate historical knowledge from previous 

TSRT cycles in the selection of the next child responder. Moreover, previous TSRT responses 

may be combined to broadcast a composite value in Step 3. This may be useful to account for 

propagation delay differences between neighbors within a local broadcast domain, which we 

can assumed to be small, but which may become more relevant when the distances between 

neighbors becomes very large in a highly distributed WSN. 

The performance comparison of TSRT and TPSN in terms of the average number of message 

exchanges M with respect to the number of beacons N is shown in fig. 3 and fig. 4 when Ps is 

assumed as 0.01% and 1% respectively. This simulation is based on the linear network model 

where the depth of the network B = 5, εmax =10ms, σ
εo

 = 16.67µ, d = 10ms, t = 400ms, and σεs  
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=1.58µ have assumed.  

 
It can be observed that TSRT requires a less number of timing messages than TPSN when there 

multiple numbers of beacon transmissions are required. Moreover, the gap of the average 

number of required timing messages between TSRT and TPSN significantly increases as N 

increases, and thus TSTP is by far more efficient than TPSN for large value of N. It can be also 

seen that a few number of beacons is enough to minimize M for TSRT. Besides, as expected, a 

larger number of beacons required to meet a more strict constraint of the network-wide error 

probability Ps. In practice, a lower number of N is highly preferable since it is proportional to 

the synchronization time, i.e., a lower N induces better latency performance. Although, it may 

not be optimal in terms of energy consumption.  

  

Figure 3.  Average Number of Messages (M)  Figure 4.  Average Number of Messages (M) 

for Ps=0.01%      for Ps=1% 

6. CONCLUSION 

WSN have tremendous advantages for monitoring object movement and environmental 

properties but require some degree of synchronization to achieve the best results. The proposed 

TSRT synchronization approach is able to produce deterministic synchronization with only few 

pair wise message exchanges.   

While the proposed approach is especially useful in WSN which are typically, extremely 

constrained on the available computational power, bandwidth and have some of the most exotic 

needs for high precision synchronization. The proposed approach was designed to switch 

between TPSN and RBS. These two algorithms allow all the sensors in a network to 

synchronize themselves within a few microseconds of each other, while at the same time using 

the least amount of resources possible. In this work two varieties of the algorithm are presented 

and their performance is verified theoretically with the existing results and compared with 

existing protocols.  The comparison with RBS and TPSN shows that the proposed 

synchronization approach is lightweight since the number of required broadcasting messages is 

constant in one broadcasting domain. 
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