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Abstract: 
 

There is a vast amount of researched literature available on Route Finding and Link Establishment in 

MANET protocols based on various concepts such as “pro-active”, “reactive”, “power awareness”, 

“cross-layering” etc. Most of these techniques are rather restrictive, taking into account a few of the 

several aspects that go into effective route establishment. When we look at practical implementations of 

MANETs, we have to take into account various factors in totality, not in isolation. The several factors that 

decide and influence the routing have to be considered as a whole in the difficult task of finding the best 

solution in route finding and optimization. The inputs to the system are manifold and apparently unrelated. 

Most of the parameters are imprecise or non-crisp in nature. The uncertainty and imprecision lead to think 

that intelligent routing techniques are essential and important in evolving robust and dependable solutions 

to route finding. The obvious method by which this can be achieved is the deployment of soft computing 

techniques such as Neural Nets, Fuzzy Logic and Genetic algorithms. Neural Networks help us to solve the 

complex problem of transforming the inputs to outputs without apriori knowledge of what the relationship 

is between inputs and outputs. Fuzzy Logic helps us to deal with imprecise and ill-conditioned data. 

Genetic Algorithms help us to select the best possible solution from the solution space in an optimal sense.  

Our paper presented here below seeks to explore new horizons in this direction. The results of our 

experimentation have been very satisfactory and we have achieved the goal of optimal route finding to a 

large extent. There is of course considerable room for further refinements. 
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1.  Introduction: 

Wireless Ad Hoc Networks are capable of communication through wireless medium without the 

need for a pre-existing infrastructure. Wireless Ad Hoc Networks (MANETs for short) are 

characterized by their mobility, ease of deployment, self-configuration without a centralized 

administration and ability of nodes to communicate with each other even in out-of-range 

conditions with intermediate nodes performing the routing functions. MANETs are also flexible 

enough to get connected to cellular as well as wired networks. The features that delineate them 

from traditional networks are the mobility of the nodes, the absence of need for an infrastructure/ 

centralized administration and the ability to configure on the fly as the situation demands. These 

unique features impose additional overheads in protocol implementations. Compared to Cellular 

Networks, MANETs are adaptable to changing traffic demands and other physical conditions. 

Since the attenuation characteristics of wireless media are non-linear, energy efficiency will be 

superior and increased spatial reuse will guarantee superior capacity and spectral efficiency. 

These characteristics make Ad Hoc Networks highly attractive for pervasive communications, a 

fact this is tightly coupled with heterogeneous networks and 4G architectures. 

Since MANETs are generally deployed in disaster management and critical situations, there is a 

substantial amount of real-time content in their operation. Time plays a crucial role in the 

communication activities, be it a protocol transfer session or a plain routing operation. In view of 

these facts, efficient protocol implementation assumes the highest level of importance in practical 

implementations. It therefore no surprise that a huge amount of time and effort has gone into 

inventing various kinds protocols to suit different needs and varying conditions. The efficiency of 

a routing protocol (at the outermost level) is directly related to numerous factors such as node 

mobility, dynamic topology, the communication capabilities of the nodes, power consumption 

issues, bandwidth constraints, traffic congestion, security and a host of other related parameters, 

all of which have to be well orchestrated to achieve an optimal performance that is adequate at 

the minimum level.  

When we take all these factors into consideration, evolution of an optimal routing strategy is an 

indomitable task. These factors are mutually exclusive and there is no explicit relationship of 

these factors amongst themselves and more importantly we do not see how these are related to an 

optimal routing strategy. Herein lies a highly complex non-linear problem to solve, a problem that 

is not amenable to any classical solution. Artificial Neural Network (ANN for short) steps in at 

this juncture as our savior. An ANN is akin to a biological network, capable of thinking, 

reasoning, decision making and a high degree of parallelism. It draws inferences from a vast 

storehouse of knowledge and experience gained over a period of time in solving problems. It can 

work with imprecise and ill-defined parameters in arriving at solutions. Fuzzy Logic and Genetic 

Algorithms are additional ingredients that can make an ANN more powerful and aggressive in 

solving unsolvable problems by analytical methods. Fuzzy Logic helps us to work with ill-

defined parameters and Genetic Algorithms represent a powerful paradigm in searching for 

optimal solutions in a solution space. A judicious admixture of ANN with Fuzzy Logic and 

Genetic Algorithms personifies a powerful mechanism in protocol development and routing 

strategies in Ad Hoc Networks. Given this scenario, it will not be out of place to make a brief 

digression and talk about these ingredients albeit briefly. 
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1.1. Artificial Neural Networks: 

According to a simplified account, the human brain consists of about ten billion neurons and a 

neuron is, on average, connected to several thousand other neurons. By way of these connections, 

neurons both send and receive varying quantities of energy. One very important feature of 

neurons is that they don't react immediately to the reception of energy. Instead, they sum their 

received energies, and they send their own quantities of energy to other neurons only when this 

sum has reached a certain critical threshold. The brain learns by adjusting the number and 

strength of these connections. Even though this picture is a simplification of the biological facts, 

it is sufficiently powerful to serve as a model for the neural net. The first step toward 

understanding neural nets is to abstract from the biological neuron, and to focus on its character 

as a threshold logic unit (TLU). A TLU is an object that inputs an array of weighted quantities, 

sums them, and if this sum meets or surpasses some threshold, outputs a quantity. Let's label 

these features. First, there are the inputs and their respective weights:  and 

. Then, there are the  that are summed, which yields the activation level a, 

in other words: 

 
The threshold is called theta. Lastly, there is the output: . When , , else 

. 

Notice that the output doesn't need to be discontinuous, since it could also be determined by a 

squashing function,  (or sigma), whose argument is , and whose value is between 0 and 1. 

Then, . 

 

Figure 1 . Threshold logic unit, with sigma function (top) and cutoff function (bottom) 

A TLU can classify. Imagine a TLU that has two inputs, whose weights equal 1, and whose theta 

equals 1.5. When this TLU inputs <0,0>, <0,1>, <1,0>, and <1,1>, it outputs 0, 0, 0, and 1 

respectively. This TLU classifies these inputs into two groups: the 1 group and the 0 group.  
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Insofar as a human brain that knows about logical conjunction (Boolean AND) would similarly 

classify logically conjoined sentences, this TLU knows something like logical conjunction. This 

TLU has a geometric interpretation that clarifies what is happening. Its four possible inputs 

corresponding to four points on a Cartesian graph. From , in 

other words, the point at which the TLU switches its classificatory behavior, it follows that 

. The graph of this equation cuts the four possible inputs into two spaces that 

correspond to the TLU's classifications. This is an instance of a more general principle about 

TLUs. In the case of a TLU with an arbitrary number of inputs, N, the set of possible inputs 

corresponds to a set of points in N-dimensional space. If these points can be cut by a hyperplane -

- in other words, an N-dimensional geometric figure corresponding to the line in the above 

example -- then there is a set of weights and a threshold that define a TLU whose classifications 

match this cut. 

1.1.1. How a TLU learns 

It is obvious that TLUs can classify. Neural nets are also supposed to learn. Their learning 

mechanism is modeled on the brain's adjustments of its neural connections. A TLU learns by 

changing its weights and threshold. Actually, the weight-threshold distinction is somewhat 

arbitrary from a mathematical point of view. The critical point at which a TLU outputs 1 instead 

of 0 is when . This is equivalent to saying that the critical point is 

when the . So, it is possible to treat -1 as a constant 

input whose weight, theta, is adjusted in learning, or, to use the technical term, training. In this 

case,  when , else . 

 

During training, a neural net inputs: 

1. A series of examples of the items to be classified 

2. Their proper classifications or targets 

 

Such input can be viewed as a vector: , where t is the target or true 

classification. The neural net uses these to modify its weights, and it aims to match its 

classifications with the targets in the training set. More precisely, this is supervised training, as 

opposed to unsupervised training. The former is based on examples accompanied by targets, 

whereas the latter is based on statistical analysis. 

A neural network with a feedback mechanism is called a back-propagation network, where the 

feedback is used to correct the inferences drawn from the previous cycle. This mechanism is 

essentially the backbone in the neural network training. 

1.2.  Fuzzy Logic (FL): 

FL was conceived by Prof.Lotfi Zadeh as a simple but powerful methodology in logic building. It 

was originally conceived in the context of building control systems based on micro-controllers. 

FL incorporates a simple, rule-based  approach to a solving control  
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problem rather than attempting to model a system mathematically. The FL model is empirically-

based, relying on an operator's experience rather than their technical understanding of the system. 

For example, rather than dealing with temperature control in terms such as "SP =500F", "T 

<1000F", or "210C <TEMP <220C", terms like "IF (process is too cool) AND (process is getting 

colder) THEN (add heat to the process)" or "IF (process is too hot) AND (process is heating 

rapidly) THEN (cool the process quickly)" are used. These terms are imprecise and yet very 

descriptive of what must actually happen. Consider what one would do in the shower if the 

temperature is too cold: one would make the water comfortable very quickly with little trouble. 

FL is capable of mimicking this type of behavior but at very high rate. 

 

FL requires some numerical parameters in order to operate such as what is considered significant 

error and significant rate-of-change-of-error, but exact values of these numbers are usually not 

critical unless very responsive performance is required in which case empirical tuning would 

determine them. For example, a simple temperature control system could use a single temperature 

feedback sensor whose data is subtracted from the command signal to compute "error" and then 

time-differentiated to yield the error slope or rate-of-change-of-error, hereafter called "error-dot". 

Error might have units of degs F and a small error considered to be 2F while a large error is 5F. 

The "error-dot" might then have units of degs/min with a small error-dot being 5F/min and a large 

one being 15F/min. These values don't have to be symmetrical and can be "tweaked" once the 

system is operating in order to optimize performance. Generally, FL is so forgiving that the 

system will probably work the first time without any tweaking. 

In the context of modeling protocol for an Ad Hoc Network, most of the parameters are imprecise 

or not so-well defined. For example, mobility can be expressed in vague terms by means of a 

motion vector (precise values will never be known and not essential either). Similarly, distance 

limitations, power available at the nodes, traffic density etc. are parameters where determination 

of precise values are not practical and not important either. A fuzzy model helps us to work with 

imprecise values in a very predictable way. 

1.3.  Genetic Algorithm (GA): 

The basic purpose of genetic algorithms (GAs) is optimization. Since optimization problems arise 

frequently, this makes GAs quite useful for a great variety of tasks. As in all optimization 

problems, we are faced with the problem of maximizing/minimizing an objective function  

over a given space  of arbitrary dimension. A brute force which would consist in examining 

every possible  in  in order to determine the element for which  is optimal is clearly 

infeasible. GAs give a heuristic way of searching the input space for optimal  that approximates 

brute force without enumerating all the elements and therefore bypasses performance issues 

specific to exhaustive search. 

We will first select a certain number of inputs, say,  belonging to the input space . 

In the GA terminology, each input is called an organism or chromosome. The set of 

chromosomes is designated as a colony or population. Computation is done over epochs. In each 

epoch the colony will grow and evolve according to specific rules reminiscent of biological 

evolution. 
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To each chromosome , we assign a fitness value which is nothing but . Stronger 

individuals, that is those chromosomes with fitness values closer to the colony optimal will have 

greater chance to survive across epochs and to reproduce than weaker individuals which will tend 

to perish. In other words, the algorithm will tend to keep inputs that are close to the optimal in the 

set of inputs being considered (the colony) and discard those that under-perform the rest. 

The crucial step in the algorithm is reproduction or breeding that occurs once per epoch. The 

content of the two chromosomes participating in reproduction are literally merged together to 

form a new chromosome that we call a child. This heuristic allows us to possibly combine the 

best of both individuals to yield a better one (evolution). 

Moreover during each epoch, a given fraction of the organisms is allowed to mutate. This 

provides a degree of randomness which allows us to span the whole input space by generating 

individuals with partly random genes. 

Each epoch ends with the deaths of inapt organisms. We eliminate inputs exhibiting bad 

performance compared to the overall group. This is based on the assumption that they're less 

inclined to give birth to  strong individuals since they have poor quality genes and that therefore 

we can safely disregard them (selection). 

2.  The Algorithm: 

Let's examine in further detail how this whole process is accomplished and how the algorithm 

works in practice. Let's take the example of optimizing a function  over a space  contained in 

. Every input  in  is an integer vector . For the sake of simplicity, 

assume . In order to implement our genetic algorithm for 

optimizing , we first need to encode each input into a chromosome. We can do it by having 

 bits per component and directly encoding the value . Each bit will be termed gene. Of 

course, we may choose any other encoding based on our requirements and the problem at hand.  

 

At epoch 0, we generate (possibly randomly) an initial set of inputs in . Then at each epoch , 

we perform fitness evaluation, reproduction, mutation and selection. The algorithm stops when a 

specified criterion providing an estimate of convergence is reached. 

 

 



International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.2, No.2, June 2011 

84 

 

2.1. Neuro-Fuzzy-Genetic Based Network: 

Based on the previous discussion of the three essential ingredients, our ANN acts like a powerful 

inference engine, drawing all the inference rules from an extensive knowledge base. Our hybrid 

Neural Network functions with the cooperation of Fuzzy Logic, operating on inputs (which are 

fuzzy in nature) and generating a set of solutions in the solution space with minimal searching 

using Genetic algorithms. A representative schema of the proposed network would look like: 

 

 

 

 

Figure 2 . Neuro – Fuzz – Genetic Based Network 

Table 1.  Layer Organization of our Neuro-Fuzzy-Genetic Network 

Genetically 

modified 

outputs 

Fuzzified 

Inputs 
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3.  Implementation of the Neuro-Fuzzy-Genetic Network: 

Some amount of introduction on the design of our routing protocol will be in order at this point. 

The design of our protocol is not based on the conventional classifications such as “pro-active”, 

“reactive” and similar attributes. The aim of the protocol is to establish the best possible route 

within the minimum time possible and the appropriate approach to this problem is the use of soft-

computing technologies such as Neural Nets to reduce the dimensionality of the problem, Fuzzy 

Logic to deal with imprecise inputs and Genetic Algorithms to find an optimum solution in the 

solution space by search and related heuristic techniques.  

The problem therefore reduces to finding an acceptable solution in an optimal sense. There are 

well established techniques such as Linear Programming to find optimal solutions through 

various cycles of iteration using a cost/ objective function. However, Linear Programming is not 

appropriate when the inputs to the system are not crisp. A judicious combination of Neural 

Network with Fuzzy Logic and Genetic Algorithms appears to be the ideal solution. 

By examining the input layers of the Neural Network (there are many of them), it is obvious that 

the proposed NFG Network has many input layers as opposed to conventional Neural Networks. 

The input to output relationship depends on various parameters enumerated in the above table and 

this fact makes the network much more complex than the traditional ones.  

Associated with each input parameter, there is a set of connection weights. In our case there are 

11 input parameters  The associated connection weights are: 

  is the set of weights associated with 

layer  and  is the  weight in the set . The weighted sum of the layer  is: 

. We propose a Neural Back Propagation Network with several input layers 

instead of just one. The input layers to the system are enumerated in the table mentioned above. 

Corresponding to each input layer with a set of connection weights, the weighted sum is 

computed: . This weighted sum, we will designate as: , where k is the index 

corresponding to the set of input layers. Assuming a set of N input layers, we have a set of N 

weighted sums: with  Normal squashing functions used in Neural Networks have 

either sharp cutoff or exponential cutoff boundaries. Extensive experimentation and empirical 

studies have shown that the best form of squashing is achieved through the function:  

 

Where the x and y values are chosen initially as 0.1 and updated through the training phase. 

Ultimately we have a set of N squashed values that are further processed in the route finding 

mechanism.  

A Bayesian estimator is pressed into service at this stage to find the optimal solution. This 

estimator is an essential ingredient of the Fuzzy-Genetic component of the system. 
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3.1. Bayesian Estimator: 

A Bayes estimator derived through the empirical Bayes method is called an empirical Bayes 

estimator. Empirical Bayes methods enable the use of auxiliary empirical data, from observations 

of related parameters, in the development of a Bayes estimator. This is done under the assumption 

that the estimated parameters are obtained from a common prior. For example, if independent 

observations of different parameters are performed, then the estimation performance of a 

particular parameter can sometimes be improved by using data from other observations. 

There are parametric and non-parametric approaches to empirical Bayes estimation. Parametric 

empirical Bayes is usually preferable since it is more applicable and more accurate on small 

amounts of data.  

The following is an example of parametric empirical Bayes estimation. Given past observations 

having conditional distribution f(xi | θi), one is interested in estimating θn + 1 based 

on xn + 1. Assume that the θi's have a common prior π which depends on unknown parameters. For 

example, suppose that π is normal with unknown mean and variance We can then use the 

past observations to determine the mean and variance of π in the following way. 

First, we estimate the mean and variance of the marginal distribution of 

using the maximum likelihood approach: 

 

 

Next, we use the relation  

 

 

Where  µf(θ) and σf(θ)  are the moments of the conditional distribution  f(xi | θi), which are 

assumed to be known. In particular, suppose that µf(θ) = θ and that ;  

we then have 
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Finally, we obtain the estimated moments of the prior, 

 

 

 

For example, if xi | θi˜N(θi,1), and if we assume a normal prior (which is a conjugate prior in this 

case), we conclude that , from which the Bayes estimator of θn + 1 based 

on xn + 1 can be calculated. 

While the Neural Network gives a number of feasible solutions, the Bayesian Estimator picks up 

the best possible solution out of the solution space. 

4.   Results 

It is important to observe that the objective function of any protocol is to establish a link as 

quickly as possible, taking into account the various input constraints. Our goal has been to solve 

the objective function and establish a route within the shortest possible time. Our implementation 

surpasses traditional routing algorithms by implicitly taking into account all the network input 

parameters at the same time in reaching an optimal solution. These include: 

1. Varying number of nodes in the network 

2. The mobility of the nodes across a geographical region 

3. Limitations in the communication capabilities of the nodes 

4. Congested and blocked routes 

5. Nodes that are currently active 

6. Link failure history 

7. And other unknown parameters that may subtly influence the routing 

8. Facility for peer-to-peer communication across protocol stacks 

 

The results generated from the network are independent of the protocol philosophy that one 

chooses to follow. The chief merit in our implementation is the independency of our simulator to 

traditional protocol paradigms such ‘pro-active’, ‘reactive’, ‘power-aware’ and similar such 

principles. 
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Table 2.  The performance measure rated on a scale of 1 to 10 with 10 being the best and 1 the 

worst. 

Protocol Aspect Performance of 

HyperNet 

Performance of 

NS2 

Max Number of nodes that simulator can handle  9 6 

Peer to peer communication across protocol stacks 9 4 

Route finding and link establishment 8 2 

Ability to handle dead connections (timeout conditions) 8 3 

Detecting nodes going out of range due to mobility 9 3 

Dynamic switching of routing strategies 8 1 

Hunting facility of nodes based on instantaneous status 9 1 

 

4.1. Trials: 

Extensive trials have been conducted with 60, 140 and 250 nodes in the simulated 

environment and the results show a remarkable superiority in performance as opposed to 

NS2 simulator. The results have shown here below both for HyperNet and NS2. 

 

Figure 3.   Result of HyperNet with 60 Active Nodes 
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Figure4.   Result of NS2 with 60 Active Nodes 

 

Figure 5.  Result of HyperNet with 140 Active Nodes 
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  Figure 6.  Result of NS2 with 140 Active Nodes 

 

  Figure 7.  Result of Hyper Net with 250 Active Nodes 
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Figure 8.   Result of NS2 with 250 Active Nodes 

 

5. Conclusions: 

A careful study of the above graphs shows a superior performance of HyperNet over NS2 in 

establishing route over shorter periods of time. The results are encouraging enough to allow us to 

study the possibility of refining the NFG Simulator in a larger environment.  

The shape of the graphs shows a remarkable profile both for HyperNet and NS2. In fact the shape 

of the graphs can be approximated by a quadratic polynomial:  where p and q are 

constants for a given environment. Further investigation on this polynomial pattern should 

probably lead us to interesting outcomes. 
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