
International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

DOI:10.5121/ijasuc.2018.9202 15

MOBILE PHONE SENSORS META-MODEL

Mohamed LACHGAR
1,*

, Khalid LAMHADDAB
2
, Abdelmounaim ABDALI

1

1, 2

Cadi Ayyad University Marrakesh, Morocco
1
LAMAI Laboratory, FSTG
2
TIM Laboratory, ENSA

ABSTRACT

In the last decade, the use of wireless electronic communication technology, such as mobile phones, is

fundamental to the private and professional lives of most citizens. In fact, it has become an inseparable part

of their daily lives. Nowadays, most cell phones are provided with different implanted sensors, which

measure motion, orientation, and environmental conditions such as ambient light or temperature.

Therefore, several functionalities in mobile applications need to use these sensors, as in the case of

logistics applications, social network applications or travel information applications. Hence, the primary

contribution of this work is to establish a generic meta-model, in order to show the different embedded

sensors in the smartphones, and then generate mobile applications that use various features offered by

these sensors for the case of Android OS. So as to achieve this, our approach is based on a model driven

architecture (MDA) suggested by Object Management Group (OMG), which is a variant of Model-Driven

Engineering (MDE). The MDA approach can contribute in the insurance of the sustainability of expertise,

as well as the improvement of the gain in productivity while dealing with the challenges of mobile platform

fragmentation.

KEYWORDS

Model Driven Architecture, Embedded Sensors, Domain Specific Language, Mobile development, Android

1. INTRODUCTION

Recently, the industry of mobile application development is increasing due to the strong use of

smartphones that have become nowadays more accessible. Most of these applications run on

mobile operating systems such as Android, iOS and Windows. These devices are equipped with a

set of embedded sensors such as motion sensors (e.g. accelerometers, gyroscopes), environmental

sensors (e.g. temperature, light) and position sensors (e.g. orientations, magnetometers, etc.) (see

Fig. 1 for more details) [1].

Applications use these sensors to support their new features, like Spirit Level in some

applications related to the camera. These sensors can measured and collected various data. The

most common measured data are temperature, humidity, pressure, acceleration (vibration), light,

infrared magnetic fields, sound, radiation, location (GPS), mechanical stress and chemical

composition. As a consequence of extensive possibilities, the envisaged applications for the

embedded sensors are multiple. The most typical areas of application that use these sensors are:

traffic control, security, military, health care, industrial sensing, home automation and

environmental monitoring.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

16

Figure 1. Sensors in Mobile Phones [1]

The type of collected data and the nature of processing depend on the application. Despite the

variety of applications and domains, four essential tasks that are independent of application

domain can be listed as follows:

 Event Detection: Detection of the occurrence of events of interest and their parameters.

 Object classification: Identification of an object or event. Broadly, this task involves the

combination of data from many sources and a collaborative processing to obtain the

result.

 Object tracking: Tracking the movements and position of a mobile object within the

coverage area of the network.

 Monitoring: Detection of the value of a parameter in a given location or the coverage

area of the network. Classically, the task is completed using periodic measurements.

However, the development of such applications is constrained by several concerns, such as: code

efficiency, interaction with devices, and enhanced competitiveness at the application stores.

Due to the large variety of mobile technologies (e.g. Android, iOS, Windows Phone, etc.),

developing the same application for these different platforms become an exhausting task. The

model-driven engineering (MDE), a term proposed by Kent [2], proposes to provide an effective

solution to this problem. The MDE is a development approach that proposes to bring-up the

models in the rank of concept the first-class [3]. This is a form of generative engineering, which is

characterized by a rigorous process from which everything is generated from a model. Thereby,

allowing put the model status contemplative than productive.

This paper is organized as follows. The first section provides a brief description of embedded

sensors, followed by the MDA approach. Some related works are presented in the second section,

jointly with a comparative study. The adopted approach is described in the third part. The fourth

section presents the proposed meta-model and different template for code generation. The fifth

section shows the applicability of the proposed approach through an illustrating example. The

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

17

sixth section concludes the paper. The last section sheds the light on some perspectives and future

work.

2. BACKGROUND

This background section is divided into four parts: (1) the sensors in Android mobile devices, (2)

the architecture of the Android sensor Framework, and (3) the model-driven engineering.

2.1 The Sensors in Android Mobile Devices

Android smartphones are equipped with an embedded sensors assembly. These sensors are used

to monitor the motion of the equipment, position, or other surrounding environmental conditions.

Android systems support many types of sensors [4-5] (see Table 1 below for more details).

Table 1. Sensor types provided by the Android platform [5]

Sensor Type Description Common Uses
Unit of

measure

ACCELEROMETER Hardware

Get the acceleration force that is

applied to a device on all three

physical axes (x, y, and z),

including the force of gravity.

Motion detection

(tilt, shake, etc.).

m/s2

AMBIENT

TEMPERATURE

Hardware Get the ambient room temperature.
Monitoring air

temperatures.

°C

GRAVITY

Hardware

or

Software

Get the force of gravity that is

applied to a device on all three

physical axes (x, y, and z).

Motion detection

(shake, tilt, etc.).

m/s2

GYROSCOPE Hardware

Get a device's rate of rotation

around each of the three physical

axes (x, y, and z).

Rotation detection

(turn, spin, etc.).

rad/s

LIGHT Hardware Measures the light illuminance.
Controlling screen

brightness.

lx

LINEAR

ACCELERATION

Hardware

or

Software

Get the acceleration force that is

applied to a device on all three

physical axes (x, y, and z),

excluding the force of gravity.

Observing

acceleration along a

single axis.

m/s2

MAGNETIC FIELD Hardware

Get the ambient geomagnetic field

for all three physical axes (x, y, and

z).

Constructing a

compass.

μT

ORIENTATION Software

Get degrees of rotation that a

device makes around all three

physical axes (x, y, and z).

Determining device

position.

Degrees

PRESSURE Hardware Get the ambient air pressure.
Observing air

pressure changes.

hPa or

mbar

PROXIMITY Hardware

Get the proximity of an object in

cm relative to the view screen of a

device. This sensor is typically

used to determine whether a

handset is being held up to a

person's ear.

Phone location

during a call.

cm

RELATIVE

HUMIDITY

Hardware
Get the relative ambient air

humidity.

Observing dew-

point, absolute, and

relative humidity.

%

ROTATION

VECTOR

Hardware

or

Software

Get the orientation of a device by

providing the three elements of the

device's rotation vector.

Motion detection

and rotation

detection.

Unitless

TEMPERATURE Hardware Get the temperature of the device.
Observing

temperatures.

°C

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GRAVITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LIGHT
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PRESSURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_TEMPERATURE

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

18

Some sensors are hardware-based, which means that the sensor data is read directly from the

physical components integrated into the smartphone. Other sensors are software-based, which

means that the sensor data is read from one or more hardware sensors. The integrated sensors are

widely used in third-part applications. For example, a navigation application can use the magnetic

field sensor to determine the scope of the compass.

2.2 Architecture of the Android Sensor Framework

The main blocks of the Android sensor framework architecture are:

 SDK: Applications access sensors via the Sensors SDK (Software Development Kit) API.

The SDK provides functions so as to list available sensors and to register to a sensor.

 Framework: The framework allows linking the several applications to the Hardware

Abstraction Layer (HAL). The HAL itself is single-client. Without this multiplexing

happening at the framework level, only a single application could access each sensor at any

given time.

 HAL: The Sensors Hardware Abstraction Layer (HAL) API is the interface between the

hardware drivers and the Android framework. It consists of one HAL interface sensors.h and

one HAL implementation we refer to as sensors.cpp.

 Kernel driver: The sensor drivers interrelate with the physical devices. Sometimes, the HAL

implementation and the drivers constitute one software entity. In some cases, the hardware

integrator needs sensor chip manufacturers in order to produce the drivers. However, these

latter’s are the HAL implementers. In all cases, HAL implementation and kernel drivers are

the responsibility of the hardware manufacturers, and Android does not provide preferred

approaches to write them.

 Sensor hub: Sensor hub is useful to perform some low-level computation at low power

while the SoC can be in a suspend mode. Some sensor hubs contain a microcontroller for

generic computation, and hardware accelerators to enable very low power computation for

low power sensors.

 Sensors: Those are the physical MEMs chips making the measurements. In many cases,

several physical sensors are present on the same chip. For example, some chips include an

accelerometer, a gyroscope and a magnetometer. (Such chips are often called 9-axis chips, as

each sensor provides data over 3 axes.). A few of those chips also contain some logic to

achieve common computations such as step detection, motion detection and 9-axis sensor

fusion.

The Android Sensor Framework architecture is shown in Fig. 2 below.

http://developer.android.com/reference/android/hardware/SensorManager.html

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

19

Figure 2. Layers of the Android sensor stack and their respective owners [6]

2.3 Model-driven engineering

Recently, the results collected have shown the benefits of MDE compared to the traditional

development approach in terms of quality and productivity [8]:

 Quality: An overall reduction from 1, 2 to 4 times of the anomalies/bugs number, therefore,

a significant gain during the application maintenance phase.

 Productivity: An improvement of the productivity from 2 to 8 times in term of lines of

source code.

The MDA approach is proposed by the OMG [9] since 2001. This is a particular view of the

Model Driven Development (MDD) [10]. The MDA (Model-Driven Architecture) approach

offers significant benefits in controlling the development of computer applications and including

productivity gains, increased reliability, significantly improvement of sustainability and greater

agility dealing with changes. In order to clarify the concepts, the OMG has defined a number of

terms around models namely meta-meta-model, meta-model, model, business model (CIM),

functional model (PIM) which is independent from the technique and technical model (PSM)

illustrated in Fig. 3 and Fig. 4.

 A model, or terminal model, (M1) is a representation of a real object (in M0) conforming to a

meta-model (M2),

 A meta-model (M2) is a representation of a set of modeling elements (in M1) conforming to

a meta-meta-model (M3),

 A meta-meta-model (M3) is a set of modeling elements used to define meta-models (M2 &

M1) conforming to itself.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

20

Figure 3. Four-level Meta model Architecture Figure 4. Fundamental models in MDA

MDA supports the development of the following three types of models:

 Computation Independent Model (CIM): this model represents the highest level of

abstraction. It describes the system requirements and the environment in which it will

operate, while the details of the software structure and realization are hidden or not yet

determined.

 Platform Independent Model (PIM): this model describes the details of the system, but

does not show details of the use of its platform or of a particular technology.

 Platform Specific Model (PSM): this model describes the details and features absent from

the PIM. It must be adapted to specify the implementation of the system in a single

technology platform.

As these different types of models represent different levels of abstraction of the same system,

MDA recommends the use of transformation mechanisms allowing transformations and refining

models to other models (CIM to PIM, PIM to PSM, etc.).

Starting from a model of business concepts and transforming this model into other models

gradually refining to finally arrive at a model of source code (see Fig.4 for more details) [11].

Transformations between the various models are conceived with tools that are compatible with

the OMG standard called QVT (Query / View / Transformation) [12].

A model transformation is a process of converting a PIM, combined with other information, to

generate a PSM. The MDA defines the following types of transformations based on the sorts of

mappings:

 A transformation for a model type mapping is a process of converting a PIM to yield a PSM

by following the mapping.

 A transformation for a model instance mapping is a process of converting a marked PIM to

yield a PSM by following the mapping.

Fig. 5 shows the application concepts of how one generally applies the MDA.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

21

Figure 5.Transformation concepts of the MDA [11]

A mapping is a determination (or transformation specification), including rules and other data, for

transforming a PIM to deliver a PSM for a particular platform.

 A model type mapping indicates a mapping based on the types of model elements. It

indicates mapping rules for how diverse types of elements in the PIM are converted to

various types of elements in the PSM [13].

 A model instance mapping determines how particular model elements are to be converted in

a specific way using marks. PIM elements are marked to show how they are to be changed.

A mark from a PSM is applied to a PIM element to indicate how that element is to be

transformed. A PIM element may likewise be marked several times with marks from various

mappings and is, therefore, transformed according to each of the mappings. A PIM is marked

to form a marked PIM that is then transformed to a PSM [13].

3. RELATED WORKS

Few years ago, the variety of the numerous mobile applications has increased due to the

popularity of smartphones and app-stores. Despite this growth, there are still a limited number of

applications, which use embedded sensing devices that are available on different mobile

platforms. The MDA approach aims to provide application porting tools to adapt their code to

different platforms. Many proposals of methods for the generation of native mobile applications

according to the MDA approach have emerged (see table 2 and table 3 below for more details).

Table 2. Approaches for modeling and code generation of mobile applications

Work Title Year Description

W 1

JustModeling: An MDE

Approach to Develop

Android Business

Applications [14]

2016

JustModeling, an MDE approach formed by JBModel,

that is a graphical modeling tool by which the user

models the application business classes using the UML

class diagram and affords a set of model

transformations to generate the code for the

JustBusiness framework, which automatically generates

all required resources of the mobile application.

W 2

Model-driven

development of mobile

applications for Android

and iOS supporting role-

based app variability

[15]

2016

A modeling language and an infrastructure for the

model driven development of native apps in iOS and

Android. This approach allows a flexible app

development on diverse abstraction levels: compact

modeling of standard app elements, such as standard

data management and increasingly detailed modeling of

individual elements to cover specific behavior.

Moreover, a kind of variability modeling is supported,

such that mobile apps with variants can be developed.

http://link.springer.com/article/10.1007/s10270-016-0559-4
http://link.springer.com/article/10.1007/s10270-016-0559-4
http://link.springer.com/article/10.1007/s10270-016-0559-4
http://link.springer.com/article/10.1007/s10270-016-0559-4
http://link.springer.com/article/10.1007/s10270-016-0559-4
http://scholar.google.com/scholar?q=model+driven+development&hl=fr&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwjy6ffB-tnYAhWKuRQKHRREA28QgQMIMTAA

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

22

W 3

Modeling and

generating native code

for cross-platform

mobile applications

using DSL [16]

2016

Approach for modeling and generation of multiplatform

mobile applications (e.g. Android, iOS, Windows

Phone). Proposing a platform-independent meta-model

to monetize a mobile application in textual format, and

defining a set of transformation rules and templates for

native code generation.

W 4

Model Driven

Development of

Android Application

Prototypes from

Windows Navigation

Diagrams [17]

2016

Approach allows automating the generation of android

application prototyping from windows navigation

diagrams.

W 5

Code Generation

Approach for Mobile

Application Using

Acceleo [18]

2016

Methodology based on the MDA approach to produce

mobile applications according to the principal ‘Develop

Once, Run Everywhere’. This approach exploits UML

class diagram modeling and use the Acceleo tool to

generate a specific code in order to accelerate and

facilitate the development of mobile apps.

W 6

Modelling and

generating the user

interface of mobile

devices and web

development with DSL

[19]

2015

Approach to developing the user interface for mobile

applications, applied to Android and Java Server Faces

Framework.

A language for the development of graphical interfaces,

DSL Technology neutral, with the intention of

generating native code for several defined platforms.

W 7

Model-Driven

Development Based on

OMG’s IFML with

WebRatio Web and

Mobile Platform [20]

2015
WebRatio proposal platform for the development of

CDEM web and mobile applications based on IFML.

W 8

A GUI Modeling

Language for Mobile

Applications [21]

2015

Method for modeling mobile interfaces, as part of a

future project development for mobile applications

MDD. The language is presented

Developed: MIM (Mobile Interface Modeling), and the

feasibility of implementing the proposal is evaluated

W 9

Model-Driven Cross-

Platform Apps Towards

Business Practicability

[22]

2015
MD2 as a solution to meet the typical needs of

enterprise applications.

W 10

Generating Android

graphical user interfaces

using an MDA approach

[23]

2014

Approach to developing the user interface for mobile

applications, applied to Android.

A language for the development of graphical interfaces,

DSL Technology neutral, with the intention of

generating native code for several defined platforms.

W 11

A Model-Driven

Approach to Generate

Mobile Applications for

Multiple Platforms [24]

2014

UML profile for the mobile development platform. The

goal is to generate code and business logic for different

platforms.

Prototype development tool to generate code called

MAG (mobile application generator).

W 12

A MDA-Based Model-

Driven Approach to

Generate GUI for

Mobile Applications

[25]

2013

A model-driven approach to modeling the graphical

interface of a mobile application. It presents a design of

forms using UML

However, most of these methods allow the modeling and generation of graphical user interfaces

and certain portions of code, without providing a mechanism for exploiting the native capabilities

of a smartphone such as cameras, embedded sensors, etc.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

23

Main highlighted points:

 Undoubtedly, embedded sensors are a very little taken into account, as we have been

analyzing previously. There are few works that come to consider the embedded sensors in

the modeling.

 Another interesting point is the fact that Android and iOS are the most chosen target

platforms for case studies and evaluations. As a third option Windows Phone remains the

most commonly used.

 The generated applications are largely native and are data-oriented type.

 In addition, almost all the proposals generate the application taking into account the structure

of the project according to the IDE corresponding to the chosen platform; By means of this

one can realize a compilation with the respective SDK, thus get the executable application.

 Finally, the type of evaluation most viewed is to make an illustration or case study of the

proposal submitted.

The following table 3 displays a comparative study between the various approaches allowing to

develop cross-platform mobile applications based on MDA approach.

Table 3. Comparative table of approaches for modeling and code generation of mobile applications

Work
Input

Model

Output

Platforms

Based

Modeling

Design

Type
Mapping

Support

embedded

sensors

W 1 UML
Java code with

annotation
UML Graphical Acceleo

Not

Supported

W 2
Abstract

Syntax

Native code for

Android and iOs
DSL (Xtext) Textual Xtend

Not

Supported

W 3
Abstract

Syntax

Native code for

Android, iOS and

Windows Phone

DSL (Xtext) Textual Xtend Partially

W 4 UML
GUI for Android

Platform

Windows

Navigation

Diagram

Graphical
Not

specified

Not

Supported

W 5 UML
GUI and Java Class

files for Android
UML Graphical

QVT and

Acceleo

Not

Supported

W 6
Abstract

Syntax

Native code for

Android and JSF
DSL (Xtext) Textual Xtend

Not

Supported

W 7 IFML

GUI and business

logic for Android

and iOS

IFML mobile Graphical WebRatio
Not

Supported

W 8
Abstract

Syntax
GUI for mobile apps MIM DSL Graphical

Not

specified

Not

Supported

W 9
Abstract

Syntax

Native code for

Android and iOS
DSL (Xtext) Textual Xpand

Not

Supported

W 10
Abstract

Syntax

Native code for

Android
DSL (Xtext) Textual Xtend

Not

Supported

W 11 UML

GUI and business

logic for Android

and Windows Phone

UML Profile Graphical MAG Partially

W 12 UML

GUI for mobile

platform and class

structure

Object

Diagram
Graphical

ATL, DOM

and Xpand

Not

Supported

http://www.linguee.fr/anglais-francais/traduction/the+main+points+highlighted.html

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

24

In the following section, a meta-model is proposed for modeling applications, providing the

access to data from the embedded sensors and transmit them to various targets such as embedded

databases, files, web services, etc. This proposal outperforms the previously presented works, by

allowing them to also support the development of applications based on embedded sensors

4. ANDROID SENSOR CODE GENERETOR

In this approach, a meta-model for designing a mobile application is provided, based on

embedded sensors. Then, M2M transformations (Model model) and M2T (Model to Text) are

applied to generate the code targeting a specific platform. To do this, we opted for the Xtext

framework [26] to implement the meta-model and Xtend language [26] to perform different

transformations.

Fig. 6 shows the different stages that characterize our approach.

Figure 6. Architecture for code generation from a platform independent model [23]

After generating the code by using a set of templates, the user can also add code snippets to

enhance the application. Thus, the generator allows substantial savings of time and generates a

code in accordance with the coding standards (see Fig. 7 for more details).

Figure 7. Model to Text transformation (M2T)

5. MOBILE SENSOR META-MODEL

A mobile application can use many sensors, each sensor sends data in a specific time interval.

These data will be stored in collections, files, data bases or sent to web services etc. thereafter;

they will be used in applications such as labyrinth, blood pressure, accelerometer analyzer, room

temperature, etc.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

25

The meta-model proposed to model a mobile application making use of embedded sensors is

presented in the Fig. 8.

Figure 8. Mobile phone sensor meta-model

6. ANDROID SENSOR TEMPLATES

In this section, different templates used in code generation are discussed, in order to build a

mobile application for Android, which makes use of embedded sensors.

To get this done, the next three steps should be followed:

Step 1: Declare the sensors in the AndroidManifest configuration file. This allows Google Play

filtering applications compatible with the user's device (Manifest Template).

Step 2: Collect the values through the SensorEvent class. All data is stored in an array, whose

size depends on the type of sensor used (Activity Template).

Step 3: Send the recovered data to the designated targets in a separate thread.

6.1 Activity Class Template

In order to implement SensorEventListener, The Activity class provides concrete implementations

for onAccuracyChanged(), and onSensorChanged(). Both methods update the display whenever

a sensor reports new data or its accuracy changes.

An extract of Template used to generate the Activity class is presented below (see Fig. 9 for more

details):

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

26

Figure 9. Extract of Activity Class

The proposed template for generating the onSensorChanged() method is presented below. The

latter allows recovering data according to the specified sensor mentioned in target-data (see Fig.

10 for more details).

In the following sub-sections, the different proposed templates are presented.

Figure 10. onSensorChanged method template

6.2 Manifest Template

Each sensor must be specified in a separate tag. A snippet of the AndroidManifest.xml for the

example app is shown here:

<uses-feature android:name="android.hardware.sensor.accelerometer"

android:required="true" />

This is an example manifest entry that filters apps that do not have an accelerometer.

A Template for Manifest.xml configuration file generation to support the use of embedded

sensors is introduced below (see Fig. 11 for more details).

def genActivity(EList<Sensor> sensors)'''
public class SensorActivity extends Activity implements

SensorEventListener {
 private SensorManager sensorManager;
 «genOnCreate(sensors)»
 «genOnAccuracy(sensors)»
 «genOnSensorChanged(sensors)»
 …
}
'''

def genOnSensorChanged(EList<Sensor> sensors)'''
public void onSensorChanged(SensorEvent event) {
 onAccuracyChanged(event.sensor, event.accuracy);
 switch (event.sensor.getType()) {
 «FOR s : sensors»
 case Sensor.TYPE_«getClass(s).toUpperCase»:
 sendData("«getClass(s)»",
 «FOR i : 0 ..< s.output»
 event.values[«i»]
 «IF i != s.output - 1»,«ENDIF»
 «ENDFOR»);
 break;
 «ENDFOR»
 }
}
'''

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

27

Figure 11. Manifest file Template

7. ILLUSTRATING EXAMPLE: TEMPERATURE AND HUMIDITY SMART

SENSOR

Temperature and Humidity Smart Sensor detector is a tool allowing the measurement of the

ambient humidity and the temperature of the environment in real time, by using the embedded

sensors in the smartphone. (The table 4 below shows the environment sensors that are used in this

application).

Table 4.The environment sensors that are used in this example

Sensor Sensor event data Units of measure Data description

TYPE_AMBIENT_TEMPERATURE event.values[0] °C
Ambient air

temperature.

TYPE_RELATIVE_HUMIDITY event.values[0] %
Ambient relative

humidity.

7.1 Analysis and Model Creation

The application's model is presented below (see Fig. 12 for more details).

def genManifest(EList<Sensor> sensors) '''
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="«packageName»" android:versionCode="1"
android:versionName="«version»">

<uses-sdkandroid:minSdkVersion="«minSdk»" />
«FOR s : sensors»

<uses-feature
android:name="android.hardware.sensor.«s.types.toString.toLowerCase»"

android:required="true" />
«IF (s.types.equals("Gravity") ||

s.types.equals("Linear_Accelerometer"))
&& !sensors.contains("Accelerometer")»

<uses-feature android:name="android.hardware.sensor.accelerometer"
android:required="true" />

«ENDIF»
«ENDFOR»

</manifest>
'''

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

28

Figure 12. The application’s model

7.2 The Generated Code

The configuration file generated from the application’s model (see Fig. 13 for more details):

Figure 13. Manifest.xml configuration file generated

<manifest

xmlns:android="http://schemas.android.com/apk/res/android

"

 package="ma.uca.mobile" android:versionCode="1"

 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="4" />

<uses-feature

android:name="android.hardware.sensor.ambient

_temperature"

android:required="true" />

 <uses-feature

android:name="android.hardware.sensor.relative_hum

idity"

android:required="true" />

</manifest>

MobileApp "SmartSensor"{

version "1.0"

 packageName "ma.uca.mobile"

 minSdk 4

 sensors(

 AmbientTemperature {

 output 1

 accuracy {LOW}

 delay{GAME}

 targets {UI}

},

RelativeHumidity{

 output 1

 accuracy {LOW}

 delay{GAME}

 targets {UI}

},

)

Screen title "SMART SENSOR" orientation "portrait" {

Layout [id 1 width "match" orientation "horizontal"

column "1" weight "match" type "Linear"]{

Label [id 1 text "MAGNETOMETER METAL DETECTOR"

gravity "center" paddingBottom "50"

paddingTop "20"],

Label [id 2 text "TEMPERATURE" paddingBottom

"30"],

Label [id 3 gravity "center" paddingBottom

"50"],

Label [id 4 text "HUMIDITY" paddingBottom

"30"],

Label [id 3 gravity "center"]

 }

}

}

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

29

Code snippet generated for the Activity class (see Fig. 14 for more details):

Figure 14. Code Snippet generated for the Activity Class

7.3 The Graphical Interface Generated for the Android Platform

The figure below shows a generated graphical interface, which displays the data retrieved by the

embedded sensor in the text fields. A test code on values is added to the program in order to

detect the magnetic field (see Fig. 15 for more details).

Figure 15. GUI generated for Temperature and Humidity Smart Sensor

public void onSensorChanged(SensorEvent event) {
 onAccuracyChanged(event.sensor,
event.accuracy);
 switch (event.sensor.getType()) {
 case Sensor. TYPE_MAGNETICFIELD:
 sendData("AmbientTemperature",
 event.values[0]
);
 break;

 case Sensor. TYPE_MAGNETICFIELD:
 sendData("RelativeHumidity",
 event.values[0]
);
 break;
 }
}

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

30

8. FUTURE WORK

As a further perspective, this approach can be brought to a broader scheme, i.e. for all mobile

platforms (e.g. iOS, Windows Mobile, etc.), by implementing the suggested approach. The Xtext

language is used to realize the meta-model and Xtend for the implementation of the various

transformations and Templates. The proposed meta-model comes to enhance the previously

established work presented in [16], In fact, this latter allow to model mobile applications that

make use of embedded sensors, plus the ability to transmit collected data to various targets, such

as web services, embedded databases, files, or graphical interfaces.

For future improvements, the possibility to extend our method to deal with data recovering from

external sensors might be considered; as well as the design a software layer to ensure data

security access, and the integrity of recovered data.

9. CONCLUSION

By and large, thanks to the growth of the various mobile technologies, that develops the same

application for these different platforms, this latter has become a daunting task. Taking into

account the fact that each platform uses different tools (e.g. programming languages and user

interface declarations, etc.), these heterogeneity development tools and languages make the

burden heavier to develop multiplatform applications. Thus, developers are asked to select an

option on the platform, while guaranteeing a large enough diffusion.

This work focuses on mobile applications which use embedded sensors, in order to generate

native code without having to redevelop all files and lines of code, which are sometimes

redundant and complicated to set up. Therefore, the generation of code for the embedded sensors

in mobiles apps was not taken into account in the most recent work, as pointed out in the

comparative study.

The potential benefits of the MDA are: the reduction of cost, in terms of maintaining only one

code to write, and the time reduction, in terms of targeting multiple devices and platforms by

writing only one code, and also by having the ability to research cross-platform applications

development with one's effort and findings.

By and large, this paper established a study on the embedded sensors in mobile devices, adopting

an MDA approach for modeling and automatically generate applications that make use of the

data retrieved via these sensors, based on a model consistent with the meta-model proposed.

REFERENCES

[1] Perera C, Zaslavsky A, Christen P, Salehi A, Georgakopoulos D (2012) Capturing sensor data from

mobile phones using global sensor network middleware. In : 23rd International Symposium on

Personal Indoor and Mobile Radio Communications (PIMRC), (pp. 24-29). IEEE.

[2] Kent S (2002) Model driven engineering. In Integrated formal methods (pp. 286-298). Springer

Berlin/Heidelberg.

[3] Bézivin J (2004) In search of a basic principle for model driven engineering. Novatica Journal,

Special Issue, 5(2): 21-24.

[4] Android (2016) Sensors Overview.

 https://developer.android.com/guide/topics/sensors/sensors_overview.html. Accessed 12 June 2017.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

31

[5] Zhi-An Y, Chun-Miao M (2012) The development and application of sensor based on android. In :

8th International Conference on Information Science and Digital Content Technology (ICIDT), (Vol.

1, pp. 231-234). IEEE.

[6] Android (2017) Sensor stack. https://source.android.com/devices/sensors/sensor-stack. Accessed 25

July 2017.

[7] Xing L, Jiqiang L, •Wei W, Yongzhong H, Xiangliang Z (2017) Discovering and understanding

android sensor usage behaviors with data flow analysis, World Wide Web (pp. 1-22).

[8] El Hamlaoui M (2015) Mise en correspondance et gestion de la cohérence de modèles hétérogènes

évolutifs (Doctoral dissertation, Université Toulouse le Mirail-Toulouse II).

[9] OMG (1989) Object Management Group. http://www.omg.org Accessed April 2016.

[10] Hailpern B, Tarr P (2006) Model-driven development: The good, the bad, and the ugly. IBM systems

journal, 45(3):451-461.

[11] Maroukian K, Apostolopoulos C, Tsaramirsis G (2017) Extending model driven engineering aspects

to business engineering domain: a model driven business engineering approach. International Journal

of Information Technology, 9(1):49-57.

[12] OMG (2008). Meta object facility (MOF) 2.0 query/view/transformation specification. Final Adopted

Specification (November 2005).

[13] Alkhir SS (2003). Understanding the model driven architecture. Published in Methods & Tools.

[14] Freitas F, Maia PHM (2016) JustModeling: An MDE Approach to Develop Android Business

Applications. In : VI Brazilian Symposium on Computing Systems Engineering (SBESC) (pp. 48-55).

IEEE.

[15] Vaupel S, Taentzer G, Gerlach R, Guckert M (2016) Model-driven development of mobile

applications for Android and iOS supporting role-based app variability. Software & Systems

Modeling (pp. 1-29).

[16] Lachgar M, Abdali A (2016) Modeling and generating native code for cross-platform mobile

applications using DSL. Intelligent Automation & Soft Computing (pp. 1-14).

[17] Channonthawat T, Limpiyakorn Y (2016) Model Driven Development of Android Application

Prototypes from Windows Navigation Diagrams. In : International Conference on Software

Networking (ICSN) (pp. 1-4). IEEE.

[18] Benouda H, Azizi M, Esbai R, Moussaoui M (2016) Code generation approach for mobile

application using acceleo. In : International Review on Computers and Software (IRECOS), 11(2),

:160-166.

[19] Lachgar M, Abdali A (2015) Modeling and generating the user interface of mobile devices and web

development with dsl. Journal of Theoretical & Applied Information Technology, 72(1).

[20] Acerbis R, Bongio A, Brambilla M, Butti S (2015) Model-driven development based on omg’s IFML

with webratio web and mobile platform. In International Conference on Web Engineering (pp. 605-

608). Springer, Cham.

[21] Geiger-Prat S, Marín B, España S, Giachetti G (2015) A GUI modeling language for mobile

applications. In : 9th International Conference on Research Challenges in Information Science

(RCIS), (pp. 76-87). IEEE.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.9, No.2, April 2018

32

[22] Majchrzak TA, Ernsting J, Kuchen H (2015) Model-Driven cross-platform apps: Towards business

practicability.

[23] Lachgar M, Abdali A (2014) Generating Android graphical user interfaces using an MDA approach.

In : Third IEEE International Colloquium in Information Science and Technology (CIST), (pp. 80-

85). IEEE.

[24] Usman M, Iqbal MZ, Khan MU (2014) A model-driven approach to generate mobile applications for

multiple platforms. In : Software Engineering Conference (APSEC), 21st Asia-Pacific (Vol. 1) (pp.

111-118). IEEE.

[25] Sabraoui A., El Koutbi M., Khriss I (2013) A MDA-based model-driven approach to generate GUI

for mobile applications. International Review on Computers and Software Journal (IRECOS), 8(3) :

845-852.

[26] Bettini L (2016) Implementing domain-specific languages with Xtext and Xtend. Packt Publishing

Ltd.

