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ABSTRACT 
 
A new hyperchaotic system with coexisting attractors based on Sprott B chaotic system is proposed in this 

work. A novel feature of this new hyperchaotic system under investigation is that it has two-wing and four-

wing coexisting attractors for two sets of different initial conditions. Thus, the new hyperchaotic system has 

hidden attractors. Interestingly, the proposed designed control function )(tui using adaptive control 

method was able to control and globally synchronizes two identical new hyperchaotic systems evolving 

from different initial conditions with uncertain parameters. The adaptive synchronization scheme was 

applied to secure communication. Finally, the numerical simulation results presented demonstrated the 

effectiveness of the analytical results of the designed scheme. 
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1. INTRODUCTION 
 

Recently, chaos theory has becomes a focal point of discussion among the expert and researcher 

due to its potential applications in: physics, chemical and biological sciences [1], finances [2-3], 

economic [4-6], telecommunication and secure communication [7-11], high performance electric 

circuit design [12-14]. 

 

Historically, the first hyperchaotic system popularly known as four-dimensional hyperchaotic 

Rossler system was reported in 1979 [15]. Hyperchaotic system is more prominent over the 

chaotic system, because chaotic system has only one positive Lyapunov exponent while 

hyperchaotic system has at least two positive Lyapunov exponents. This feature make it more 

complex and unpredictable than chaotic system, hence  give room to wide range of potential 

applications compared to 3D chaotic system [16-17]. 

 

https://airccse.org/journal/ijccms/current2024.html
https://doi.org/10.5121/ijccms.2024.13101
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Numerous techniques have been developed and reported in the literature to achieve chaos control 

and synchronization. Some of these methods are: active control [18-20], adaptive control [21-27], 

backstepping technique [28-30], sliding mode control [31-32]. 

 

The main focus in chaotic or hyperchaotic synchronization is to design the effective control 

feedback function )(tui that will force the state variables of the response (slave) system to track 

the corresponding trajectories of the state variables of the drive (master) system asymptotically 

with time. In most practical applications, the unknown parameters in the drive or response state 

or both states at time usually destroyed the desired synchronization. Therefore, the convectional 

synchronization techniques are not effective in such situation [33]. Thus, the synchronization 

technique for chaotic or hyperchaotic systems with uncertain parameter is an interesting 

challenge that has attracted great attention in a recent time. As the results, the synchronization 

method for unknown parameter in chaotic systems remains a significant point among the 

researchers. 

 

The synchronization of chaotic system is motivated by its potential applications in secure 

communication, information security and privacy protection. To improve the security of the 

aforementioned applications, more complex chaotic dynamical behaviors are used. Consequently, 

coexisting attractors with more complex dynamical behaviors are more important compared to 

generated chaotic attractor.  To improve the information security and reduce the probability of 

information being decoded, coexisting attractors are more reliable [34-35]. 

 

Coexistence of attractors also known as multistability refer to the systems that neither stable nor 

totally unstable but alternate between two or more mutually exclusive attractor with time [36]. 

Coexistence (multistability) is a unique property of a chaotic and hyperchaotic system indicated 

by the presence of two or more coexisting attractors for the same set of system parameter but 

different sets of initial conditions [37]. 

 

The most important application of chaos synchronization in engineering is in secure 

communication. The basic idea is to use a chaotic oscillator as a broadband signal generation. 

The chaotic signal is mask (encrypt) the information signal to produce unpredictable signal which 

is transmitted from the drive to the response (see refs. [30] and [8]),  [38]. At the response, the 

pseudo-random is generated through the inverse operation and the original signal is retrieved. 

 

In this paper, a new hyperchaotic system with two-wing and four-wing attrctors that displayed 

multistability for two different sets of initial conditions is discussed. The next task is to design a 

control function )(tui to control as well as to synchronize the drive and response systems; design 

parameter update law to identify the unknown system parameters and to apply the 

synchronization scheme to secure communication. 

 

To the best of our knowledge, adaptive control and synchronization with application to secure 

communication for Sprott B-based hyperchaotic system is reported here for the first time. 

  

2. NUMERICAL DESCRIPTION OF THE MODELS 
 

The mathematical formulation investigated in this paper is the modified Sprott B chaotic system 

constructed by adding a state-feedback controller on the Sprott B chaotic system and is given in 

equation (1).  
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In equation (1), x , y , z and w  are the state-variables of the system, where a , b and c  are the 

real positive constant system parameters. System (1) displayed hyperchaotic behavior with the 

real positive constant parameters; 6=a , 11=b  and 5=c  via numerical simulation. The 

strange attractors of the Sprott B-based hyperchaotic system (1) are displayed in figure 1. Figure 

1 (a, b and c) displayed 2-wing attractor and figure 1(d) shown 4-wing attractor at the same time.  

 

 
 

Figure 1: The two-wing and four-wing attractors for hyperchaotic system (1) 

 

3. COEXISTENCE OF ATTRACTORS 
 

System (1) is invariant under the transformation ),,,(: wzyxS  ),,,( wzyx −−− . Hence, any 

projection of the attractor has rotational symmetry in the z-axis. Thus, system (1) may likely 

display coexisting attractors. 

 

It is cleared from figure 2 that system (1) exhibited coexisting attractors with respect to two sets 

of different initial conditions; )8.0,6.0,6.0,5.0(),,,( =wzyx
 

plotted in blue color and 

)0.9,2.0,0.1,0.9(),,,( −=wzyx
 
plotted in red color through numerical simulation. Thus, system 

(1) has hidden attractors. 
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Figure 2: Two-wing and four-wing coexistence of attractors of the hyperchaotic system (1) with two sets of 

initial conditions. 

 

4. ADAPTIVE CONTROL  FOR THE NEW HYPERCHAOTIC SYSTEM 
 

In this section, we applied the adaptive control method to designed the control function )(tui  

that converge the state variables ( wzyx ,,, ) asymptotically to the origin with at time according 

to Lyapunov stability theory [39]. 

 

4.1. Design of Adaptive control input )(tui for system (1) 

 

The assumption here is that the positive real parameters of the system; a , b  and c are uncertain. 

Therefore, adaptive control technique is used to design the control input )(tui  as well as the 

parameter update law to identify the unknown system parameters. 

 

Then, the controlled system is considered as follows: 
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(2) 

Where )(tui  ( 4,3,2,1=i ) are the control functions to design appropriately. 

 

The Lyapunov stability theory (ref. [39]) is used to validate the result of system (2) by selecting a 

Lyapunov function as: 
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Where aaa −=~ , bbb −=
~

 and ccc −=~  are the estimated values of the assumed unknown 

parameters a , b  and c  respectively. The time derivative of equation (3) above is given in 

equation (4) below. 

 

ccbbaawwzzyyxxV  ~~~~~~ ++++++=                                                                    
(4) 

 

In order to ensure that the control function )(tui  in equation (2) converge the state variables of 

system (1) to the origin asymptotically, the control input )(tui  is selected from equation (2) as 

follows: 
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The Substitution of equation (2) into equation (4) yielded equation (6). 
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The parameter update laws are estimated from equation (6) and presented in equation (7). 

 

2

2

wc

zb

xyxa

−=

=

+−=







                                                                                                           (7) 

 

Substituting equations (5) and (7) respectively into equation (4) give:   

 

0~~~ 2222222 −−−−−−−= cbawzyxV                                                             (8) 

 

Hence, V is a quadratic positive definite Lyapunov function (see equation (3)) and its time 

derivative ( )V is a quadratic negative definite as reflected in equation (8). 

 

According to the Lyapunov stability theory, system (2) can converge to the origin asymptotically 

with the control input )(tui  ( 4,3,2,1=i ) as defined in equation (5) and the parameter estimated 

update laws in equation (7). 
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4.2. Numerical Simulation Results 
 

To studies the time response of the new Sprott B-based hyperchaotic system with coexisting 

attractors as described in system (1), classical fourth-order RungeKuta routine with time step 

001.0=h is adopted in the numerical simulation. 

 

Fixing the parameters value    0.5,0.11,0.6,, =cba  in that order and the initial conditions

)1.0,6.0,5.0,0.0(),,,( =wzyx , the state variables move hyperchaotically with the control 

function )(tui  deactivated and converges asymptotically to the origin when the control function 

)(tui is activated at 50=t according to the Lyapunov stability theory. 

 

Figure 3 show the results for the time responses of the state variables ),,,( wzyx of the new 

hyperchaotic system (1). 

 

 
 

Figure 3: Time responses of the state variables ( wzyx ,,, ) for new hyperchaotic system (1) via adaptive 

control. 
 

5. ADAPTIVE SYNCHRONIZATION FOR THE NEW HYPERCHAOTIC SYSTEM 
 

Here, we employed adaptive control techniques base on Lyapunov stability theory (ref. [39]) to 

achieved complete synchronization of two identical hyperchaotic systems. 
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5.1. Design of Adaptive control input )(tui for system (1) 

 

In this section, the adaptive control method is used to synchronize two identical hyperchaotic 

systems emanating from different initial condition. 

 

From equation (1), let; 1xx = , 2xy = , 3xz =  and 4xw = . 

 

Then,  
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The equation (9) above is called the master or drive system while equation (10) below is 

designated as slave or response system. 

44324

3213

24312

1121 )(

ucyyyy

uyyby

uyyyy

uyyay

+−=

+−=

++=

+−=









                                                                                      (10)                                      

 

Where )(tui  ( 4,3,2,1=i ) are the control input to determines. 

 

The synchronization error vector between the master (9) and the slave (10) is defined by: 
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Hence, using the definition of the error vector in equation (11), the error dynamic is calculated as 

follows: 
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Choosing the Lyapunov function; ( )2222

4

2

3

2

2

2

1
~~~

2

1
cbaeeeeV ++++++=  and differentiating 

it with respect to time result in equation (13). 
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Where aaa −=~ , bbb −=
~

, and ccc −=~  are the estimated values of the unknown 

parameter a , b  and c  respectively.        

 

Then, equation (14) is obtained by substituted equation (12) into equation (13). 
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From equation (12), the control input )(tui  is chosen as: 
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And the estimated parameter update law is chosen from equation (14) as follows: 
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Substituting equations (15) and (16) respectively into equation (14) gives equation (17).    
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The Lyapunov function V is positively definite with it derivative V  is negatively definite as 

confirmed by equation (17) above. Hence, the error dynamic variable in equation (12) can 

converge to the origin asymptotically in line with the Lyapunov stability theory (ref. [39]) and 

one can conclude that system (12) is globally and exponentially stable. Also the master (drive) 

and the slave (response) systems (equations (9) and (10)) are globally and exponentially 

synchronized for all the initial conditions )0(ix  and )0(iy , and the estimated update law (16). 

 

5.2. Numerical Simulation Results 
 

The main objective of adaptive synchronization is to design an approximate control function 

)(tui to force the state variables of the response (slave) system to track the trajectories of the 

drive (master) state variables such that both systems will remain in step throughout the 

transmission of signal with the parameter update law as well as to stabilize the error function 

)(tei between the drive (master) and the response (master) systems at the origin )0,0,0,0(  at any 

chosen time. 
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To achieve the stated objective, fourth-order RungeKuta algorithm is used to solve the control 

law (15) and the estimated parameter update law (16) by fixing the parameter values of the 

system (1) ]0.5,0.11,0.6[],,[ =cba  with the time step 001.0=h . The initial conditions for the 

drive (master) )( ix and the response (slave) )( iy systems are respectively choosing as 

)8.0,6.0,6.0,5.0(),,,( 4321 =xxxx and )0.9,2.0,0.1,0.9(),,,( 4321 −=yyyy . The reports of the 

numerical simulation are: the state variables of the response (slave) system track the dynamics of 

the drive (master) system when the control function )(tui is activated at 50=t as shown in 

figure 4; the error function )(tei  converges asymptotically to the origin in line with the 

Lyapunov stability theory, when the controllers are switched on at 50=t as depicted in figure 5 

and the synchronization norm
2

4

2

3

2

2

2

1 eeeee +++=  is displayed in figure 6. 

 

For parameter updating, the initial values of the parameter update law (16) are selected as

0.6)0(1 =a , 0.11)0(1 =b and 0.5)0(1 =c . The parameters estimated value a , b and c updated 

to 0.10=a , 0.13=b  and 0.8=c  respectively as shown in figure 7 as →t . 

 

 
 

Figure 4: Time responses for the state variables; drive (master) ),,,( 4321 xxxx  and response (slave) 

),,,( 432 yyyyi   systems for new hyperchaotic system (1) with the controller activated. 
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Figure 5: Error dynamic between the drive (master) and the response (slave) systems for new hyperchaotic 

system (1) with the controllers activated. 

 

 
 

Figure 6: Synchronization norm between the drive (master) and the response (slave) systems for new 

hyperchaotic system (1) with the controllers activated. 

 

 
 

Figure 7: Time response of the parameter update law for new hyperchaotic system (1). 
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6. SECURE COMMUNICATION 
 

The adaptive synchronization scheme in section 5 is applied for secure communication here. The 

major components considering in this scheme are: information signal ( Sm ), encryption signal (

Sc ), decryption signal ( Sr ) and decryption error signal ( er ). 

 

In this secure communication, the information signal is masked with the hyperchaotic wave 

signal carrier using mixing algorithm. The information signal is given by: 

 

tSm 5.0cos0.4=                                                                                                  (17) 

 

The encrypted information with the hyperchaotic wave signal ix  remains hyperchaotic 

throughout the signal transmission as illustrated in equation (18). 

 

SmxSc i +=                                                                                                        (18) 

The information is later decrypted by the inverse function at 50=t when the controllers are 

activated for decryption. The decrypted information is given by equation (19). 

 

iyScSr −=                                                                                                          (19) 

 

The hyperchaotic wave signal carrier ix  of the drive (master) system is transmitted to the 

response (slave) system iy  via coupling channel for synchronization between the drive (master) 

and response (slave) systems. The difference between the information signal and the decrypted 

signal approaches zero at →t with the controllers activated at 50=t , implied that the 

information is recovered. The error function )(ter  between the information signal and the 

decrypted signal is given by equation (20). 

 

SrSmer −=                                                                                                        (20) 

 

The numerical simulation results of the secure communication scheme are shown in figure 8. 
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Figure 8: Secure communication scheme for new hyperchaotic system (1). 

 

7. CONCLUSION     
 

Coexisting attractors, control, synchronization and secure communication of a new hyperchaotic 

system with two-wing and four-wing were studied in this paper. We established that this new 

hyperchaotic system belong to a family of hidden attractor. Adaptive control method base on the 

Lyapunov stability theory was used to designed the control function )(tui  with the parameter 

update law to control as well as to synchronizes two identical hyperchaotic systems emanating 

from two sets of different initial conditions )0(ix  and )0(iy as drive (master) and response 

(slave) systems respectively. The results of the synchronization were applied to secure 

communication. The success of secure communication scheme demonstrated here shows the 

potential of two-wing and four-wing hyperchaotic system (1) in voice encryption, image 

encryption and pseudo-random number generation. 
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