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ABSTRACT 

 
Digital implementations of chaotic systems often suffer from inherent degradation, limiting their long-term 

performance and statistical quality. To address this challenge, we propose a novel four-stage synchronized 

piecewise linear chaotic map. This new map is meticulously designed with four independent segments, each 

possessing its own control parameters, specifically engineered to mitigate the natural degradation 

observed in digitally realized dynamical systems. We characterize its behavior using established tools from 

nonlinear dynamics, including bifurcation diagrams and graphical analysis, which provide a 

comprehensive qualitative understanding of its complex dynamics. 

 
To rigorously validate the statistical features of the generated sequences, we employed the National 

Institute of Standards and Technology (NIST) statistical testing suite. A substantial 100 MB dataset, 

comprising sequences produced by the proposed map, was generated via a Matlab script and subjected to 

this rigorous battery of tests. Our results demonstrate that the proposed map exhibits superior statistical 

properties compared to the classic Bernoulli map, successfully passing all NIST tests where the traditional 

map did not. This research confirms the proposed map's potential as a robust and high-quality source for 

chaotic sequence generation. 
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1. INTRODUCTION 

 

For several years, researchers have extensively studied the applications of chaos [1-4]. Chaos 
plays a fundamental role in various fields, including communications [5], cryptography [6], 

steganography [7], and other security services [8]. It is also a crucial component in mathematical 

[9] and economic simulations [10]. This diversity of applications stems from chaos's ability to 

mimic random noise [11], its hypersensitivity to initial conditions [12], its broad Fourier 
transform spectra, and the fractal properties of its motion in the phase plane [13]. 

 

To properly assess the quality of the "randomness" generated by chaotic systems, especially for 
cryptographic and security applications, it is essential to employ rigorous statistical tests. The 

National Institute of Standards and Technology (NIST) provides a comprehensive suite of 

statistical tests for randomness (NIST SP 800-22) [14]. These tests are widely accepted in the 
scientific community and are designed to detect various types of non-randomness in binary 

sequences, making them an indispensable tool for validating the suitability of chaotic generators 

for sensitive applications. 

 

https://doi.org/10.5121/ijccms.2025.14201


International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.14, No.1/2, June 2025 

2 

Numerous maps exist for generating chaos; however, they can be classified by the number of 
iterated variables or dimensions [15, 16]. Generally, maps with fewer dimensions are simpler to 

implement. Moreover, one-dimensional maps have already demonstrated excellent chaotic 

features [17], making them a good option for chaos generation [18]. 

 
However, when chaotic systems are implemented in digital platforms, they inevitably suffer from 

digital degradation due to finite precision effects and limited computational resources. This 

degradation can lead to a significant loss of chaotic properties, such as periodicity, shrinkage of 
the phase space, and a reduction in unpredictability, which can compromise the security and 

performance of chaotic applications [19, 20, 21]. Addressing these limitations is a critical 

challenge in the practical deployment of chaotic systems. 
 

One-dimensional maps can be sub-classified based on the form of their characteristic curve. If it 

consists of segments, it is considered discontinuous; conversely, if it consists of a single segment, 

it is continuous [22]. Piecewise linear maps are considered discontinuous and have no theoretical 
limit on the number of segments [23], although authors typically restrict them to positive values. 

Our proposal aligns with the approach of switching multiple chaotic systems, as it comprises four 

similar but independent mapping functions. To lay the groundwork for our proposed system, we 
first review some of the well-established one-dimensional chaotic maps that inspire its design. 

 

1.1. One-Dimensional Chaotic Maps 
 

One-dimensional maps are foundational in chaos theory due to their relative simplicity and ability 

to exhibit complex dynamics, making them suitable for various applications despite their low 

dimensionality. Several classic one-dimensional maps serve as benchmarks and are widely 
studied: 

 

 Bernoulli Map: Also known as the doubling map, the Bernoulli map is a 

fundamental example of a chaotic map. Defined as xn+1=(2xn)(mod1) [24], it 
stretches and folds the unit interval [0,1), demonstrating properties like ergodicity 

and mixing, which are crucial for generating sequences with good randomness 

properties. Its simplicity allows for straightforward analysis of its chaotic behavior. 

 Logistic Map: Perhaps the most famous and extensively studied one-dimensional 

map, the Logistic map is given by xn+1=rxn(1−xn) [17]. It famously demonstrates how 
simple non-linear equations can lead to highly complex, chaotic behavior through a 

series of period-doubling bifurcations as the parameter r is varied. For r=4, the map 

exhibits full chaos over the interval [0,1]. Its applications range from population 
dynamics to pseudorandom number generation. 

 Tent Map: Characterized by its piecewise linear nature, the Tent map is defined as 

xn+1=μmin(xn,1−xn) [11]. For μ=2, it maps the interval [0,1] onto itself, producing 

chaotic sequences. Its linear segments make it easier to analyze some of its 
properties compared to non-linear maps like the Logistic map, while still possessing 

strong chaotic characteristics suitable for practical applications. 

 Sine Map: Another non-linear one-dimensional chaotic map, the Sine map is defined 

by xn+1=(A/π)sin(πxn) [25]. For specific values of parameter A (e.g., A=4), it exhibits 

chaotic behavior similar to the Logistic map, mapping the interval [0,1] to itself. Its 
smooth, sinusoidal characteristic curve contributes to its rich dynamic properties. 

 

These one-dimensional maps, along with many others, provide the theoretical basis and practical 
tools for generating chaotic sequences used in diverse applications. Their behavior and properties 

are extensively analyzed to ensure their suitability for tasks requiring high levels of 

unpredictability and apparent randomness. Building upon these principles, the subsequent section 
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details the development and explicit mathematical formulation of our novel four-stage 
synchronized chaotic map. 

 

2. MAP DEVELOPMENT 

 

The new proposal features four stages working in conjunction. The traditional Bernoulli map [24] 
operates exclusively in the first quadrant (positive input, positive output), as shown in Figure 1. 

The proposed map, however, works in all four quadrants. The first stage receives and delivers 

positive values, similar to the original map. 
 

 
 

Figure 1. Description of the coordinated system generated by input and output signs 
 
The second stage receives positive values and delivers negative ones, operating in the fourth 

quadrant. The third stage receives and delivers negative values, working in the third quadrant. 

Finally, the fourth stage receives negative values and delivers positive ones, operating in the 
second quadrant and completing the cycle. The proposal operates in an anti-clockwise direction, 

as depicted in Figure 1. 

 
Equation 1 explicitly defines the proposed synchronized map, describing the evolution of the 

system through its four operational stages. This equation is fundamental for understanding how 

the current output state of the map (xn) determines its future state (xn+1), and how the feedback 

parameters (μ) modulate this behavior. The equation is expressed as a system of piecewise 
functions, where xn+1 takes a different form depending on the stage the system is currently in: 

 

xn+1= {
1− (1− μ1)[2xnmodulo (1)] firststage

− (1− μ2 )[(1− 2xn)modulo (1)] secondstage

μ3 [2xnmodulo (− 1) ] thirdstage

− μ4 [ (1− 2xn )modulo (− 1) ] fourthstage
}

  Equation 1 
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Where: 
 

 xn represents the current output state of the map at a given time. This value serves as the 

input to the current stage of the cycle. 

 xn+1 denotes the future state of the map, which will become xn for the next step in the 

cycle. 

 μ1,2,3,4 are the feedback parameters corresponding to the First, Second, Third, and Fourth 

Stages, respectively. These values are crucial as they control the "strength" of the 
feedback and, consequently, the dynamic behavior of the map in each quadrant. By 

adjusting these parameters, one can significantly influence how the system transitions 

and behaves in each phase. 

 The operation X(modY) (modulo) returns the remainder of the division of X by Y. This 
operation is key for confining values within a specific range and for transitions between 

quadrants. 

 
Each of the four branches of the equation corresponds to a specific operational stage of the cycle, 

functioning in a distinct quadrant of the Cartesian plane, as described in the text: 

 

 First Stage: Operates in the first quadrant. It receives and delivers positive values. The 

expression 1−(1−μ1)[2xn(mod1)] models how the positive input xn is transformed into a 
positive output, with μ1 controlling the slope or scaling factor. 

 Second Stage: Operates in the fourth quadrant. It receives positive values and delivers 

negative ones. The formula −(1−μ2)[(1−2xn)(mod1)] ensures that a positive xn input 

results in a negative output, with μ2 adjusting the intensity. 

 Third Stage: Operates in the third quadrant. It receives and delivers negative values. The 
expression μ3[2xn(mod−1)] transforms a negative xn input into a negative output. The 

modulo with −1 is important here to maintain the correct direction for negative values. 

 Fourth Stage: Operates in the second quadrant. It receives negative values and delivers 

positive ones, completing the anti-clockwise cycle. The expression −μ4[(1−2xn)(mod−1)] 
converts a negative xn input into a positive output. 

 

In summary, Equation 1 is the core of the proposed model. It describes how the system advances 

from one state to another deterministically, with each stage designed to operate within a specific 
quadrant of the plane, and the μ parameters offering the necessary control to tune the chaotic or 

desired dynamics of the map. 

 
Figure 2 illustrates each stage operating in different quadrants, generating a map that functions 

within the interval (-1, 1). The stages presented in the figure show their characteristic behavior 

using μ1,2=0.01 for the first and second stages, and μ3,4=0.99 for the third and fourth stages. For 
stage selection, the map employs a simple mechanism. In the first iteration, the map selects the 

first stage. For the second iteration, the second stage is selected; then, for the next two iterations, 

the third and fourth stages are selected, respectively. When the fifth iteration occurs, the process 

restarts with the first stage, and the cycle repeats indefinitely. 
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Figure 2. Graphical description of the map described in Equation 1 

 

Using each stage of Eq. (1), different apparently random sequences are generated; one sequence 

from each stage is presented in the lower part of Figure 3. The most visible feature of each 
sequence in Figure 3 is its range: the sequence generated by the first stage has a range of (0, 1), 

the second one is (-1, 0), the third one is (-1, 0), and the fourth stage sequence is (0, 1). By 

utilizing every stage, the synchronized map generates a sequence with a range of (-1, 1), which is 
shown in the upper part of Figure 3. 

 

 
 

Figure 3. Different sequences obtained from the stages of the map, and the one obtained from the 

synchronized map 

 
To gain a deeper understanding of the proposed map's dynamic characteristics, we proceed with a 

detailed graphical analysis using established visualization tools. 
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3. GRAPHICAL ANALYSIS 

 
The cobweb plot is a visual tool that illustrates the qualitative behavior of one-dimensional 

iterated functions [26]. Devaney referred to this tool as Graphical Analysis [27]; it helps observe 

the long-term orbit of a specific map under given initial conditions. To construct a cobweb plot, a 

diagonal line is first drawn. The map is then iterated as many times as required. Once the orbit 
has been determined, a vertical line is traced from coordinate (0, x0) to (x1,x0); subsequently, a 

horizontal line is traced from (x1, x0) until it reaches (x1, x1). After this initial trace, the process is 

repeated for each iteration, following: vertical traces from (xn−1,xn−1) to (xn, xn−1) and horizontal 
traces from (xn ,xn−1) to (xn, xn). 

 

Based on the previously described procedure, the cobweb for each stage was plotted; the results 

appear in Figure 4. The plots for the first and fourth stages are quite similar, both having two 
sinking points. In contrast, the second and third stage plots do not show any attractors; they 

appear to be similar projections. 

 

 
 

Figure 4. Each individual stage cobweb plot 

 

The basic cobweb determination procedure is suitable for simple functions. However, in the 
present work, we propose a four-synchronized stages map; therefore, we need to propose a 

modified cobweb determination procedure. This procedure is quite similar to the basic one; it 

simply requires expanding the x-axis range from (0, 1) to (-1, 1) and the y-axis also from (0, 1) to 

(-1, 1), thereby increasing the number of quadrants. 
 

The modified procedure works to represent the new map's orbits; in Figure 5, the cobweb plot for 

the proposed map is presented. The first quadrant cobweb is generated by the first stage function, 
the second quadrant by the fourth stage function, the third quadrant by the third stage function, 

and the fourth quadrant by the second stage function. The new map inherits certain behaviors 

from its progenitor individual stage functions; the first and third quadrant cobwebs are quite 

similar to their respective individual stage cobwebs. On the other hand, the second and fourth 
quadrant cobwebs are affected. 
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Figure 5. Cobweb plot of the newly proposed four synchronized stages map 

 
Beyond qualitative visualizations like cobweb plots, bifurcation diagrams offer a crucial 

quantitative perspective on a system's long-term behavior as its parameters vary. The following 

section presents a comprehensive analysis using these diagrams. 

 

4. BIFURCATION DIAGRAMS 

 
These diagrams illustrate the long-term values of a mathematical function given specific initial 

values [28]. The term 'bifurcation' refers to a system's ability to produce several different output 

values; traditionally, the parameter that controls the range of output values is the feedback 
parameter, also known as μ [29]. Figure 6 shows four bifurcation diagrams, one for each stage. 

The first and fourth stage diagrams are similar but mirrored, as are the second and third stage 

diagrams. 

 
Due to their similarity, the first and second stages will be used as references. The first stage 

diagram is dense for μ∈ (0,0.2). After that, the diagram is divided into two zones for μ∈ (0.2,0.35) 

and then into four zones for μ∈ (0.35,0.5). Finally, the bifurcation diagram has only one possible 
output, indicating that the stage is no longer chaotic. The fourth stage diagram exhibits the same 

behavior, but the ranges are mirrored. 

 
The second stage diagram is dense for μ∈ (0,0.5); however, the possible output range diminishes 

from -1 to -0.5. When μ>0.5, the diagram shows a complete absence of output for the function; in 

fact, the system output for μ∈ (0.5,1) is almost 0. The third stage diagram has similar behavior 

but starts with values closest to 0 and finishes dense and covering the complete available output 
range (-1, 0). 
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Figure 6. Bifurcation diagrams for each independent stage 

 

As previously mentioned, bifurcation depends on the feedback factor; therefore, this factor must 

be varied constantly and uniformly, which is not possible since the proposed map has four 
functions and requires some arrangements. The first arrangement is to unify the values; by 

unifying them, the bifurcation diagram in Figure 7 is elaborated. 
 

 
 

Figure 7. Failure to obtain the bifurcation diagram of the proposed map 

 

The diagram in Figure 7 represents a failure because using the same μ value for all four functions 

compromises some outputs, causing the map to not work properly. Figure 7 demonstrates that the 
same μ value cannot be used for every stage. 

 

To generate a correct diagram, another modification is required. The second modification is to 

propose individual feedback factors: μ1 ,μ2, μ3, and μ4. These individual factors correspond to 
each individual stage; however, the bifurcation diagram is defined for only one feedback factor. 

Therefore, another modification is required; this time, let us define μ=μ1=μ2 and μ3=μ4=(1−μ). 

Using this third modification, the bifurcation diagram in Figure 8 was obtained. 
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Figure 8. Bifurcation diagram for the proposed map 

 

Since the third modification, the μ range of the obtained bifurcation diagram is (0, 0.5); 
nonetheless, the system output range is (-1, 1), covering the entire available space. The diagram 

has a silhouette similar to the second stage diagram, disregarding its shadow zones. They appear 

as triangle-shapes; two of them are easily recognized, starting at μ=0 and ending at μ=0.5. 

Additionally, there are other shadow zones, but they are blurrier than the triangles, making them 
difficult to identify. 

 

Having characterized the qualitative and quantitative dynamics of the proposed map, we now 
present the empirical results of its statistical validation, focusing on the rigorous NIST testing 

suite. 

 

5. RESULTS 

 

For presentation, the results focus on the NIST statistical testing suite with a sequence generated 
using the complete map. 

 

5.1. NIST Tests 
 

A Matlab script was developed using the mathematical descriptions for the proposed map. This 

script produced a 100MB TXT file containing sequences, which was used to test the map's 

behavior. The control parameters used for file creation were selected to offer high concordance 
across all our presented results. Table 1 shows two columns: one for the proposed Bernoulli map 

and another for the classic Bernoulli map. The classic Bernoulli map has the following 

mathematical description: 

 

Xn+1=μ[2xnmod (1) ],
   Equation 2 

 

where μ∈ (0,1) and xn∈ (0,1). Equation 2 was transformed to μ∈ (0,2a) and xn∈ (0,2b), yielding 
the next expression: 
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Xn+1=
μ

2b [2xnmod (2a)]
   Equation 3 

 
With the mathematical definition for the classic Bernoulli map within the proper limits, a 100 

MB TXT file with sequences was generated. The initial value for the generation was 

858,993,459, and the feedback value was 224; these values are equivalent to those used for file 
generation with the proposed map. Everything was defined to establish the fairest possible 

comparison between both maps. 

 

According to Table 1, the proposed map outperforms the classic one in the Frequency, 
Cumulative Sums, Runs, and FFT tests. It shows the same result for Longest-run but is slightly 

inferior in the Rank test. Despite the comparison, the proposed map passed all its tests, while the 

classic one did not. 
 

Table 1: Comparison table for Classic Bernoulli and Proposed maps 

 

Statistical test Classic Bernoulli Map Proposed Map 

Frequency 0.5781 0.9893 

Cumulative-sum 1 0.5458 0.9905 

Cumulative-sum 2 0.5690 0.9892 

Runs 0.8257 0.9444 

Longest-run 1.0000 1.0000 

Rank 0.9935 0.9907 

FFT 0.9845 0.9992 

 

6. CONCLUSIONS 

 

A new chaotic map was proposed. Despite its individual stages, they operate as a single unified 
system. To join the individual maps, several modifications were performed. While the traditional 

Bernoulli map is defined from 0 to 1, the new one is defined from -1 to 1. The proposed map's 

behavior was validated by calculating its bifurcation diagram and cobweb plot. To calculate the 

bifurcation diagram, some adjustments were needed; the four feedback factors in the proposed 
map were related. This adjustment was solely for diagram calculation; in a real application, they 

can be independent. After the bifurcation diagram, the cobweb plot was calculated. Traditional 

cobweb plotting relates a map's current iteration result to its immediate next iteration; however, 
additional features were needed to represent the real behavior of our proposed map. 

 

After minor modifications, the Matlab script produced a 100MB TXT file, which was used to 

demonstrate the statistical quality of the random sequences generated by the proposed map. The 
tests were performed with a suite released by the NIST. To provide a reference frame, another 

100MB TXT file was created using the traditional Bernoulli map and tested with the same suite. 

In contrast to the original map, the proposed one passed all tests. These promising statistical 
outcomes lead us to the following conclusions regarding the design and potential applications of 

our novel chaotic map. 

 
The inherently robust design of the proposed map, particularly its synchronized multi-stage 

piecewise linear architecture, holds significant implications for its digital implementation. Unlike 

many chaotic systems that experience substantial degradation when realized with finite precision, 



International Journal of Chaos, Control, Modelling and Simulation (IJCCMS) Vol.14, No.1/2, June 2025 

11 

our map demonstrates resilience, successfully maintaining its chaotic properties and passing 
rigorous statistical tests. This sustained performance in a digital environment is crucial for 

practical applications where computational constraints or the need for high-quality randomness 

are paramount. Its design suggests a promising avenue for developing reliable hardware-based 

chaotic generators for cryptographic purposes, secure communications, and other embedded 
systems where the integrity and unpredictability of chaotic sequences are critical for security and 

system stability. 
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