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ABSTRACT

A cloud service provider strives to effectively provide a high Quality of Service (QoS) to client jobs. Such
jobs vary in computational and Service-Level-Agreement (SLA) obligations, as well as differ with respect
to tolerating delays and SLA violations. The job scheduling plays a critical role in servicing cloud demands
by allocating appropriate resources to execute client jobs. The response to such jobs is optimized by the
cloud service provider on a multi-tier cloud computing environment. Typically, the complex and dynamic
nature of multi-tier environments incurs difficulties in meeting such demands, because tiers are dependent
on each others which in turn makes bottlenecks of a tier shift to escalate in subsequent tiers. However,
the optimization process of existing approaches produces single-tier-driven schedules that do not employ
the differential impact of SLA violations in executing client jobs. Furthermore, the impact of schedules
optimized at the tier level on the performance of schedules formulated in subsequent tiers tends to be
ignored, resulting in a less than optimal performance when measured at the multi-tier level. Thus, failing in
committing job obligations incurs SLA penalties that often take the form of either financial compensations,
or losing future interests and motivations of unsatisfied clients in the service provided. Therefore, tolerating
the risk of such delays on the operational performance of a cloud service provider is vital to meet SLA
expectations and mitigate their associated commercial penalties. Such situations demand the cloud service
provider to employ scalable service mechanisms that efficiently manage the execution of resource loads in
accordance to their financial influence on the system performance, so as to ensure system reliability and
cost reduction. In this paper, a scheduling and allocation approach is proposed to formulate schedules that
account for differential impacts of SLA violation penalties and, thus, produce schedules that are optimal in
financial performance. A queue virtualization scheme is designed to facilitate the formulation of optimal
schedules at the tier and multi-tier levels of the cloud environment. Because the scheduling problem is NP-
hard, a biologically inspired approach is proposed to mitigate the complexity of finding optimal schedules.
The reported results in this paper demonstrate the efficacy of the proposed approach in formulating cost-
optimal schedules that reduce SLA penalties of jobs at various architectural granularities of the multi-tier
cloud environment.
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1. INTRODUCTION

In a cloud computing environment, client jobs have different service demands and QoS obligations that
should be met by the cloud service provider. The arrival of such jobs tends to be random in nature. Cloud
resources should deliver services to fulfill different client demands, yet such resources might be limited.
Arrival rates of jobs dynamically vary at run-time, which in turn cause bottlenecks and execution difficul-
ties on cloud resources. It is typical that an SLA is employed to govern the QoS obligations of the cloud
computing service provider to the client. A service provider conundrum revolves around the desire to main-
tain a balance between two conflicting objectives: the limited resources available for computing and the
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high QoS expectations of varying random computing demands. Any imbalance in managing these con-
flicting objectives may result in either dissatisfied clients and potentially significant commercial penalties,
or an over-sourced cloud computing environment with large assets of computational resources that can be
significantly costly to acquire and operate.
Various scheduling approaches are presented in the literature to address the problem so that QoS expecta-
tions of client jobs are obtained. Such approaches often focus on optimizing system-level metrics at the
resource level of the cloud computing environment, and hence aim at minimizing the response times of
client jobs by allocating adequate resources. The response time of a job entails two components: the job’s
waiting time at the queue level and the job’s service time at the resource level. The bottleneck of jobs in the
queues has a direct impact on the waiting times of client jobs and, thus, their response times.
A major limitation in schedulers of existing approaches is that they often optimize performance of schedules
at the individual resource level. As such, they fail to take advantage of any available capacities of the
other resources within the tier. Furthermore, single-resource-driven scheduling is blind to the impact of
the resultant schedules on other tiers. Due to complications of the bottleneck shifting and dependencies
between tiers of the multi-tier cloud environment, SLA violations of client jobs in a tier would escalate
when such jobs progress through subsequent tiers of the cloud environment. Also, such schedules are blind
to penalties incurred by the cloud service provider due to SLA violations.
It is typical that a cloud service provider strives to maintain the highest QoS provided to clients, so as to
maintain client satisfaction [1–3]. The more satisfied the clients, the higher the likelihood they will choose
the cloud service provider to execute their demands. However, cloud jobs often differ with respect to delay
tolerance, resource computational demand, QoS expectations, and financial value. Furthermore, certain
jobs are time-critical and hence cannot tolerate execution delays, as well as are financially delay-sensitive
and tightly coupled with the client experience. Any delays in responding to SLA obligations of such jobs
would likely cause financial losses and negative reputation consequences, which thus negatively affects
client loyalties of choosing the cloud service provider.
Take, for example, the first notice of a loss application. Once a vehicle gets into an accident, an on-board
system detects and sends the accident data to the cloud service provider to process and determine accident
location severity, and as a result, notify the appropriate police department. Any delay in processing these
data leads to catastrophic consequences. Thus, the SLA that governs this application produces severe
penalties reflective of these consequences.
Therefore, the cloud service provider must: (1) ensure resource availability for such jobs under all circum-
stances, which has to be a function of SLA impacts associated with the jobs; (2) formulate cost-optimal
schedules that account for the differential impact of delays in executing client jobs to minimize potential
penalties due to such delays; (3) develop a model that computes SLA violation penalties of client jobs and
supports the commitment of the cloud service provider in delivering better service and client experience;
(4) mitigate the computational complexity of scheduling the excessive client demands on resource queues,
as well as facilitate the exploration and exploitation through the search space of schedules to find an optimal
scheduling solution.
In this paper, a differentiated impact scheduling approach is proposed to formulate penalty-aware QoS-
driven schedules that are optimal in financial performance. The scheduling approach extends the previous
work published in [4, 5], and accounts for the followings:

• The utilization of resources within a tier is leveraged so as to influence tier-driven schedules that
account for the mutual performance impact of tier resources on the system performance.

• The effect of tier dependencies on the system performance is leveraged so as to produce multi-tier-
driven schedules that contemplate the impact of schedules optimized in a tier on the performance of
schedules formulated in subsequent tiers.

• A penalty model that allows for differential treatments of jobs is employed so as to ensure financially
optimal job schedules.

• A genetic-based approach and a queue virtualization scheme are designed to formulate schedules
at the tier and multi-tier levels of the cloud environment, as well as to alleviate and simplify the
complexity of finding optimal schedules.
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2. BACKGROUND AND RELATED WORK

The performance of a cloud service provider is highly influenced by the availability of resources, to ensure
reliable and efficient executions of the varying client demands. Improving the cloud performance through
efficient service models is a driving factor to properly tackle the differentiated QoS penalties of client
jobs, so as to reduce negative commercial consequences on the cloud service provider and the client [6–8].
Such models should maintain high client satisfactions and business continuity through reliable scheduling
and balancing strategies that support efficient utilization of cloud resources. The strategies should provide
services to client demands in a timely manner and thus mitigate the negative impact on the QoS delivered
to clients [9].
Existing approaches in the literature typically address the scheduling of client jobs that entail identical SLA
penalties on a single-tier environment [10–12]. Jia et al. [13] propose a multi-resource, load balancing
greedy algorithm for distributed cloud cache systems. The algorithm seeks a locally optimal schedule
of stored data among cache resources so as to minimize the imbalance degree. Resources are allocated
priorities/weights according to the system load-distribution, where higher priorities are given to under-
utilized resources. Furthermore, a market-based load balancing algorithm is proposed by Yang et al. [14] to
distribute workloads between resources. The cost of a job is directly related to the resource loads, as well
as resources continuously exchange state load-information to decide on the redistribution and allocation of
jobs. Heavily utilized resources are assigned higher cost, and thus are not allocated client jobs. The former
algorithms minimize the response times of jobs and load imbalance degrees, however they only compute
single-tier-driven and penalty-unaware schedules.
The effect of different levels in computational demands and SLA soft deadlines on the system performance
of a single-tier environment is investigated by Stavrinides et al. [15]. A tardiness bound relative to the job’s
service deadline is employed to represent SLA violations. Moon et al. [16] describe the SLA as a function
of response time, where a client’s job does not incur an SLA penalty on the cloud service provider if the job
completes the execution within pre-defined service bounds. Also, Chen et al. [17] present a client-priority-
aware load balancing algorithm to produce schedules that increase the utilization of resources and reduce
the makespan of client jobs. Nayak et al. [18] propose a scheduling mechanism to enhance the acceptance-
rate ratio of deadline-sensitive tasks and maximize resource utilization. However, optimization strategies
of the former approaches fail to contemplate differentiated QoS penalties for client jobs when the varying
levels of SLA violations and tardiness bounds are translated into quantifiable penalties on the cloud service
provider.
Moreover, several scheduling approaches are proposed to improve the latency of client jobs. For instance,
the redundancy-based scheduling is a promising reliability approach that makes duplicate copies of a job on
multiple resources as presented in Lee et al. [19], Birke et al. [20], and Gardner et al. [21]. Nevertheless,
the redundancy approach generally devises scheduling treatment regimes that formulate schedules for client
jobs whose QoS penalties are identical, while the various SLA commitments of jobs with their associated
differential penalties are not employed when such schedules are produced.
Mailach et al. [22] schedule jobs based on their estimated service times. Okopa et al. [23] present a fixed-
priority scheduling to address the execution of client jobs with variant execution demands. The proposed
scheduling policy primarily delivers high service performance to high priority jobs by reducing their av-
erage response times, nevertheless, it negatively penalizes the performance of low priority jobs. However,
such schedules are only single-tier-driven formulated on single-server and multi-server systems, while dif-
ferential service penalties of jobs are not applied.
Furthermore, pair-based scheduling mechanisms are proposed to minimize the execution time of tasks on
resources of multiple clouds [24, 25]. Panda et al. [26] formalize job schedules on multiple clouds, as well as
present scheduling algorithms that enhance the makespan of tasks and average utilization of the clouds. One
presented scheduling algorithm employs the task minimum completion time as a performance indicator to
schedule tasks on the cloud that completes their execution at the earliest time. Another scheduling algorithm
computes the median of tasks over all clouds, so as to assign the maximum-median task to the cloud that
completes the execution at the earliest opportunity.
Similarly, Moschakis et al. [27] present a multi-cloud scheduling model, and propose a scheduling strategy
to dispatch tasks into the least loaded cloud using an inter-cloud dispatcher. In each cloud, a private cloud
dispatcher is employed to distribute incoming tasks with the goal of minimizing the total makespan and
maximizing the utilization of resources. However, the former multi-cloud-based scheduling algorithms
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identically penalize client jobs regardless of the performance effect of their service tardiness and demands
on such clouds. Such approaches would in turn fail to formulate optimal schedules when the multiple clouds
employ multi-tier environments, primarily when client jobs entail various differentiated SLA penalties to
represent their service performance.
Moreover, meta-heuristic approaches are employed to provide near-optimal schedules in a reasonable time
[28–31]. Such approaches are typically used because the various characteristics and SLA obligations of
clients make tackling the scheduling problem a complex task that often cannot be effectively addressed in
a polynomial time. The honey-bee meta-heuristic algorithm has been employed by Babu et al. [32, 33] to
distribute workloads between resources and minimize job response times. Jobs removed from overloaded
queues are treated as honey bees, while underloaded queues are treated as food sources. Although the
honey-bee scheduling approach improves the satisfaction for a specific job, it does not account for the
satisfaction status of other client jobs and their effect on the system performance. Thus, other jobs waiting
in the queues of the tier would not necessarily be satisfied and benefit from the scheduling decision.
In addition, Gautam et al. [34] use a genetic-based approach to formulate QoS-based optimal schedules
that reduce the delay cost of client jobs, however, in a single-tier environment. In a similar environment, a
resource scheduling genetic-based approach is proposed by Wang et al. [35] to allocate independent tasks
of known service demands to a set of resources, to minimize the response time and energy consumption
cost. Likewise, Boloor et al. [36] present a heuristic-based scheduling approach to tackle the execution of
client requests on resources of multiple data centers such that the percentile of requests’ response times
is less than a pre-defined value. Zhan et al. [37] present a load-balance-aware, genetic-based scheduling
method to minimize the makespan of client jobs. Nevertheless, the former meta-heuristic approaches do
not address the differentiated penalties of client jobs at the system-metric level of delay cost and response
time of client jobs. Also, such schedules produce non-optimal performance when measured at the multi-tier
level.
Furthermore, a combination of Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO)
algorithms is presented by Cho et al. [38] to jointly compose an ACOPS algorithm that balances the load
between resources. The PSO operator is used to speedup the convergence procedure of the ACO scheduling.
However, the ACOPS employs a pre-reject operator to reject tasks that demand for a memory larger than the
remaining memory in the system. Although the pre-reject operator reduces the scheduling solution space
and time produced by the ACO algorithm, the various SLA commitments of tasks make such rejection
strategies increase QoS penalties and the likelihood of dissatisfied clients. The performance of schedules
formulated through such meta-heuristic approaches are not optimized at the tier and multi-tier levels of the
cloud computing environment.
Reig et al. [39] rely on prediction models to identify the resource requirements that the client is entitled to
consume, so as to avoid inefficient allocation and utilization of resources. However, such models do not
distribute the load among resources by means of optimal schedules to guarantee the explicit SLA obligations
of clients. Nevertheless, maximizing resource utilization would often incur potential SLA violations, while
focusing on satisfying SLA requirements of clients may imply poor resource utilization [40].
Generally speaking, existing approaches adopt identical SLA penalties for jobs that demand for optimal
QoS-aware schedules formulated through either single-tier-driven or resource-driven strategies. Because
client jobs often tend to have different tolerances and sensitivities to SLA violations, such approaches in
their optimization strategies would formulate schedules that do not account for the performance impact of
the differential SLA penalties of client jobs at the multi-tier level of the cloud computing environment. An
optimal balance should be maintained between meeting QoS obligations specified in the SLA and mitigating
commercial penalties associated with potential SLA violations.
As such, a differential penalty is a viable performance metric that should be devised to reflect on the QoS
provided to clients. This paper presents an SLA-based management approach that mitigates the effect of a
penalty in multi-tier cloud computing environments through differential penalty-driven scheduling. Optimal
schedules are formulated with respect to SLA commitments of clients, in the context of various QoS and in
compliance with the risk operations of the cloud service provider.
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3. PENALTY-ORIENTED MULTI-TIER SLA CENTRIC SCHEDULING

OF CLOUD JOBS

A multi-tier cloud computing environment consisting of N sequential tiers is considered:

T = {T1, T2, T3, ..., TN} (1)

Each tier Tj employs a set of identical computing resources Rj :

Rj = {Rj,1, Rj,2, Rj,3, ..., Rj,M} (2)

Each resource Rj,k employs a queue Qj,k that holds jobs waiting for execution by the resource. Jobs with
different resource computational requirements and QoS obligations are submitted to the environment. It is
assumed that these jobs are submitted by different clients and hence are governed by various SLA’s. Jobs
arrive at the environment in streams. A stream S is a set of jobs:

S = {J1, J2, J3, ..., Jl} (3)

The index of each job Ji signifies its arrival ordering at the environment. For example, job J1 arrives at the
environment before job J2. Jobs submitted to tier Tj are queued for execution based on an ordering βj . As
shown in Figure 1, each tier Tj of the environment consists of a set of resources Rj . Each resource Rj,k
has a queue Qj,k to hold jobs assigned to it. For instance, resource Rj,1 of tier Tj is associated with queue
Qj,1, which consists of 3 jobs waiting for execution.

βj =

Mk⋃
k=1

I(Qj,k), ∀j∈ [1, N ] (4)

where I(Qj,k) represents indices of jobs in Qj,k. For instance, I(Q1,2) = {3, 5, 2, 7} signifies that jobs J3,
J5, J2, and J7 are queued in Q1,2 such that job J3 precedes job J5, which in turn precedes job J2, and so
on.
Jobs arrive in random manner. A job dispatcher JDj is employed to buffer incoming client jobs to tier Tj .
Job Ji arrives at tier Tj at time Ai,j via the queue of the job dispatcher JDj of the tier. It has a prescribed
execution time Ei,j at each tier. Each job has a service deadline DLi, which in turn stipulates a target
completion time C(t)i for the job Ji in the multi-tier environment.

Ji =
{
Ai,j , Ei,j , C(t)i

}
, ∀ Tj ∈T (5)

The total execution time ETi of each job Ji is as follows:

ETi =
N∑
j=1

Ei,j (6)

The job dispatcher JDj queues these jobs to the resource queues Rj of the tier. Job Ji waits ωβji,j time units
in tier Tj according to an ordering βj of the jobs waiting for execution at resources Rj . Job Ji gets its turn
of execution by resource Rj,k, and afterward, leaves tier Tj at time Di,j to be queued by the dispatcher
JDj+1 of tier Tj+1. When leaving the cloud environment from tier N , job Ji has a response timeRT βi and
end-to-end waiting time ωT βi computed according to the overall ordering β of jobs at the N tiers.

β =

N⋃
j=1

βj (7)

The waiting time ωβji,j of each job Ji at tier Tj is defined as the difference between the time it starts execution
by one of the resources and its arrival time Ai,j . The end-to-end waiting time ωT βi of job Ji according to

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 10, No.1/2, April 2020

5



Tier              Tier   

Job 

Dispatcher

 

  

Dispatching 

a Job

Migrating a Job

  

Arriving 

Jobs

Queue Re-Ordering Jobs

Local Scheduling

Global Scheduling

   

Waiting Time of 

Job in this Queue 

is Ignored

Waiting Time of 

Job in the Tier

Execution 

Time of Job 

in the 

Resource

   

Job 

Dispatcher

jT 1jT

,i jA ,i jA
, i j ,i jD

, 1i jA , 1i jD

, 1 i j

1jJD
jJD

,


 j

i j, 0


 j

ji JD

1, 0




j

ji JD
1

, 1


 


j

i j

 

 

 

 

, , 1i j i jD A

Internet

Smart Devices

Thin/Thick 

Clients
User

 

 

A Job Getting 

Executed

 

 

Leaving 

Job

Tier/Queueing

Level

Resource

Level

 

 

,j MR

,2jQ

,1jR

,1jQ

,j MQ

,2jR

System (Multi-Tier) Level

Figure 1. Modeling Parameters and Operators of 2 Consecutive Tiers of the Multi-Tier Cloud Environment

the overall ordering β across all tiers in the multi-tier cloud environment is defined as the summation of the
job’s waiting time ωβji,j in all tiers. The response time RT βi of job Ji in the multi-tier cloud environment is
defined as the difference between the departure timeDi,N of job Ji from the last tier TN and the arrival time
Ai,1 of job Ji to the first tier T1. The response timeRT βi of job Ji can also be viewed as the summation of
waiting times ωβji,j and execution times Ei,j . The performance parameters ωβji,j , ωT

β
i , and RT βi for each job

Ji are computed as follows:

ω
βj
i,j = Di,j − Ei,j −Ai,j (8)

ωT βi =

N∑
j=1

ω
βj
i,j (9)

RT βi = Di,N −Ai,1 =

N∑
j=1

(ω
βj
i,j + Ei,j) = ωT βi + ETi (10)

The excessive volume of client demands and the potential lack of adequate resource availability are critical
situations for the cloud service providers. Priorities are, therefore, given to jobs according to the impact of
potential delays in their execution. Such priorities must be reflected in the scheduling strategy in a way that
ensures the financial viability of the cloud service provider and, at the same time, high client satisfaction.
The scheduling strategy should leverage the available delay tolerance of client jobs so as to satisfy the
critical demands of delay intolerant jobs.

3.1. Differentiated Cost of Time-Based Scheduling
The execution time Ei,j of job Ji at tier Tj is pre-defined in advance. Therefore, the resource capabilities
of each tier Tj are not considered and, thus, the total execution time ETi of job Ji is constant. Instead, the
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primary concern is on the queueing-level of the environment represented by the total waiting time ωT βi of
job Ji at all tiers T according to the ordering β.
A unit of waiting time ωTi of job Ji would incur a differentiated financial service cost ψi. Such situations
demand the cloud service provider emphasize the notion of financial penalty in the scheduling of client jobs
so that schedules are computed based on economic considerations. The service penalty cost ψi is assumed
to follow a normal distribution with a mean µ and variance σ.

ψi = N(µ, σ) (11)

The service time of job Ji is subject to an SLA that stipulates an exponential differentiated financial penalty
curve ηi as follows:

ηi = χ ∗ (1− e−ν ψi
∑N
j=1 ω

βj
i,j ) (12)

As such, the total differentiated financial performance penalty cost of the job stream l across all tiers is
given by ϑ as follows:

ϑ =

l∑
i=1

ηi (13)

The objective is to find job orderings β = (β1, β2, β3, . . . , βN ) such that the stream’s total differentiated
financial penalty cost ϑ is minimal:

minimize
β

(ϑ) ≡ minimize
β

l∑
i=1

N∑
j=1

( ψi ω
βj
i,j ) (14)

3.2. Differentiated Cost of Time-Based Scheduling: Multi-Tier Considerations

The target completion time C(t)i of job Ji represents an explicit QoS obligation on the service provider to
complete the execution of the job. Thus, the C(t)i incurs a service deadline DLi for the job in the environ-
ment. The service deadline DLi is higher than the total prescribed execution time ETi and incurs a total
waiting time allowance ωALi for job Ji in the environment.

DLi = C(t)i −Ai,j
= ETi + ωALi

(15)

As such, the time difference between the response time RT βi and the service deadline DLi represents the
service-level violation time αβi of job Ji, according to the ordering β of jobs in tiers T of the environment.

(RT βi −DLi) =

{
αβi > 0, The client is not satisfied
αβi ≤ 0, The client is satisfied

(16)

A unit of SLA violation time αβi of the job Ji at the multi-tier level of the environment incurs a differentiated
financial SLA violation cost ζi. The cost ζi of SLA violation at the multi-tier level is assumed to follow a
normal distribution with a mean µ and variance σ.

ζi = N(µ, σ) (17)

The service-level violation time αβi is subject to an SLA that stipulates an exponential differentiated finan-
cial penalty curve ηi as follows:

ηi = χ ∗ (1− e−ν ζi (RT
β
i −DLi))

= χ ∗ (1− e−ν ζi (ωT
β
i −ωALi))

= χ ∗ (1− e−ν ζi α
β
i )

(18)
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where χ is a monetary cost factor and ν is an arbitrary scaling factor. The total performance penalty cost
ϑ of the stream l across all tiers is given by Equation 13 and, accordingly, the financial performance of
job schedules is optimized such that the differentiated SLA violation penalty is minimized at the multi-tier
level.

• Differentiated ωALi Based Minimum Penalty Formulation

The performance of job schedules is formulated with respect to the multi-tier waiting time allowance ωALi
of each job Ji. Accordingly, the SLA violation penalty is evaluated at the multi-tier level of the environment.
The objective is to seek job schedules in tiers of the environment such that the total SLA violation penalty
of jobs would be minimized globally at the multi-tier level of the environment.
The total waiting time ωT βi of job Ji currently waiting in tier Tp, where p<N , is not totally known because
the job has not yet completely finished execution from the multi-tier environment. Therefore, the job’s ωT βi
at tier Tp is estimated and, thus, represented by ωCX βi,p according to the scheduling order β of jobs. As
such, the job’s service-level violation time αβi at tier Tp would be represented by the expected waiting time
ωCX βi,p of job Ji in the current tier Tp and the waiting time allowance ωALi incurred from the job’s service
deadline DLi at the multi-tier level of the environment.

αβi = ωCX βi,p − ωALi (19)

where the expected waiting time ωCX βi,p of job Ji at tier Tp incurs the total waiting time ωT βi of job Ji at
the multi-tier level.

ωCX βi,p =
(p−1)∑
j=1

(ω
βj
i,j) + ωELi,p + ωRMβp

i,p (20)

where ωβji,j(∀j ≤ (p− 1)) represents the waiting time of job Ji in each tier Tj in which the job has com-
pleted execution, ωELi,p represents the elapsed waiting time of job Ji in the tier Tp where the job currently
resides, and ωRMβp

i,p represents the remaining waiting time of job Ji according to the scheduling order βp
of jobs in the current holding tier Tp.

ωRMβj
i,j =

∀∑
h∈I(Qj,k), h precedes job Ji

Eh,j , ∀j∈ [1, N ] (21)

where I(Qj,k) represents indices of jobs in Qj,k. For instance, I(Q1,2) = {3, 5, 2, 7} signifies that jobs J3,
J5, J2, and J7 are queued in Q1,2 such that job J3 precedes job J5, which in turn precedes job J2, and so
on. However, the elapsed waiting time ωELi,j affects the execution priority of the job. The higher the time
of ωELi,j of job Ji in the tier Tj , the lower the remaining allowed time of ωALi of job Ji at the multi-tier
level, thus, the higher the execution priority of job Ji in the resource.
The objective is to find scheduling orders β = (β1, β2, β3, . . . , βN ) for jobs of each tier Tj such that the
stream’s total differentiated penalty ϑ is minimal, and thus the SLA violation penalty is minimal. The
financially optimal performance scheduling with respect to ωALi is formulated as:

minimize
β

(ϑ) ≡ minimize
β

l∑
i=1

N∑
p=1

ζi (ωCX βi,p − ωALi) (22)

• Differentiated ωPTi,j Based Minimum Penalty Formulation

The performance of job schedules is formulated with respect to a differentiated waiting time ωPTi,j of the
job Ji at each tier Tj . The ωPTi,j is derived from the multi-tier waiting time allowance ωALi of job Ji, with
respect to the execution time Ei,j of the job Ji at the tier level relative to the job’s total execution time ETi
at the multi-tier level of the environment.

ωPT i,j = ωALi ∗
Ei,j
ETi

(23)
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In this case, the higher the execution time Ei,j of job Ji in tier Tj , the higher the job’s differentiated waiting
time allowance ωPT i,j in the tier Tj . Accordingly, the SLA violation penalty is evaluated at the multi-tier
level with respect to the ωPTi,j of each job Ji.

The waiting time ωβji,j of job Ji at tier Tj would not be totally known until the job completely finishes

execution from the tier, however, it can be estimated by ωPX βji,j according to the current scheduling order

βj of jobs in the tier Tj . As such, the service-level violation time αT βji,j of job Ji in the tier Tj according

to the scheduling order βj of jobs would be represented by the expected waiting time ωPX βji,j and the
differentiated waiting time allowance ωPTi,j , of the job in the tier Tj .

αT βji,j = ωPX βji,j − ωPTi,j (24)

αβi =

N∑
j=1

αT βji,j (25)

where αβi is the total service-level violation time of the job Ji at all tiers of the environment according to
the scheduling order β. The expected waiting time ωPX βji,j incurs the actual waiting time ωβji,j of job Ji in

tier Tj , and thus depends on the elapsed waiting time ωELi,j and the remaining waiting time ωRMβj
i,j of the

job Ji according to the scheduling order βj of jobs in the current holding tier Tj .

ωPX βji,j = ωELi,j + ωRMβj
i,j (26)

The elapsed waiting time parameter ωELi,j of job Ji in tier Tj affects the job’s execution priority in the re-
source. The higher the time of ωELi,j , the lower the remaining time of the differentiated waiting allowance
ωPTi,j of job Ji in the tier Tj , therefore, the higher the execution priority of the job Ji in the resource, so as
to reduce the service-level violation time αT βji,j of the job in the tier Tj .
The objective is to find scheduling orders β = (β1, β2, β3, . . . , βN ) for jobs of each tier Tj such that the
stream’s total differentiated penalty ϑ is minimal, and thus the SLA violation penalty is minimal. The
financially optimal performance scheduling with respect to ωPTi,j is formulated as:

minimize
β

(ϑ) ≡ minimize
β

l∑
i=1

N∑
j=1

ζi (ωPX
βj
i,j − ωPT i,j) (27)

4. MINIMUM PENALTY JOB SCHEDULING: A GENETIC ALGORITHM

FORMULATION

During scheduling of client jobs for execution, a job is first submitted to tier-1 by one of the resources of the
tier. Jobs should be scheduled in such a way that minimizes total waiting time and SLA-violation penalties.
Finding a job scheduling that yields minimum penalty is an NP problem. Given the expected volume of
jobs to be scheduled and the computational complexity of the job scheduling problem, it is prohibitive to
seek optimal solution for the job scheduling problem using exhaustive search techniques. Thus, a meta-
heuristic search strategy, such as Permutation Genetic Algorithms (PGA), is a viable option for exploring
and exploiting the large space of scheduling permutations [41]. Genetic algorithms have been successfully
adopted in various problem domains [42], and have undisputed success in yielding near optimal solutions
for large scale problems, in reasonable time [43].
Scheduling client jobs entails two steps: (1) allocating/distributing the jobs among the different tier re-
sources. Jobs that are allocated to a given resource are queued in the queue of that resource; (2) ordering
the jobs in the queue of the resource such that their penalty is minimal. What makes the problem increas-
ingly hard is the fact that jobs continue to arrive, while the prior jobs are waiting in their respective queues
for execution. Thus, the scheduling process needs to respond to the job arrival dynamics to ensure that job
execution at all tiers is penalty optimal. To achieve this, job ordering in each queue should be treated as a
continuous process. Furthermore, jobs should be migrated from one resource to another so as to ensure bal-
anced job allocation and maximum resource utilization. Thus, two operators are employed for constructing
optimal job schedules:
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• The reorder operator is used to change the ordering of jobs in a given queue so as to find an order
that minimizes the total penalty of all jobs in the queue.

• The migrate operator, in contrast, is used to exploit the benefits of moving jobs between the different
resources of the tier so as to reduce the total penalty. This process is adopted at each tier of the
environment.

However, implementing the reorder/migrate operators in a PGA search strategy is not a trivial task. This
implementation complexity can be relaxed by virtualizing the queues of each tier into one virtual queue. The
virtual queue is simply a cascade of the queues of the resources. In this way, the two operators are converged
into simply a reorder operator. Furthermore, this simplifies the PGA solution formulation. A consequence
of this abstraction is the length of the permutation chromosome and the associated computational cost. This
virtual queue will serve as the chromosome of the solution. An index of a job in this queue represents a
gene. The ordering of jobs in a virtual queue signifies the order at which the jobs in this queue are to be
executed by the resource associated with that queue. Solution populations are created by permuting the
entries of the virtual queue, using the order and migrate operators.

Tier j

J5 J4 J2J9 J3 J1J10 J8 J7 J6

j,1Q j,2Q
j,3Q

Virtual Queue ( Tier j )

J5 J4 J2

J9 J3 J1

J10 J8 J7 J6 j,1R

j,2R

j,3R

j,1Q

j,2Q

j,3Q

jJD

Figure 2. The Virtual Queue of a Tier j

4.1. Tier-Based Virtual Queue
To produce tier-driven optimal performance, a tier-based virtual queue is proposed. In this case, a virtual
queue is a cascade of resource queues of the tier. Figures 2 and 3 of the jth tier show the construct of one
virtual queue represented as a cascade of the three queues (Qj,1, Qj,2, and Qj,3) of the tier. The schedule’s
performance is optimized at this virtual-queue level.

4.1.1. Evaluation of Schedules
A fitness evaluation function is used to assess the quality of each virtual-queue realization (chromosome).
The fitness value of the chromosome captures the cost of a potential schedule. The fitness value fr,G of
a chromosome r in generation G is represented by the differentiated financial waiting penalty of the job
schedule in the virtual queue, according to the scheduling order βj of jobs in each tier Tj .

fr,G =

l∑
i=1

(ψi ω
βj
i,j) (28)
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Figure 3. A Tier-based Genetic Approach on the Virtual Queue

The waiting time ωβji,j of the ith job in the virtual queue of the jth tier should be calculated based on its
order in the queue, as per the ordering βj . The normalized fitness value Fr of each schedule candidate is
computed as follows:

Fr =
fr,G∑n

C=1(fC,G)
, r∈C (29)

Based on the normalized fitness values of the candidates, Russian Roulette is used to select a set of schedule
candidates to produce the next generation population, using the combination and mutation operators.

4.1.2. Evolving the Scheduling Process
To evolve a new population that holds new scheduling options for jobs in resource queues of the tier, the
crossover and mutation genetic operators are both applied on randomly selected schedules (virtual queues)
of the current generation. The crossover operator produces a new generation of virtual queues from the
current generation. The mutation operator applies random changes on a selected set of virtual queues of the
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Figure 4. The System Virtual Queue

new generation to produce altered virtual queues. These operators diversify the search direction into new
search spaces to avoid getting stuck in a locally optimum solution. Overall, the Single-Point crossover and
Insert mutation genetic operators are used. Rates of crossover and mutation operators are both set to 0.1 of
the population size in each generation.
Figure 3 explains how each virtual queue in a given generation is evolved to create a new virtual queue of the
next generation, using the crossover and mutation operators. Each chromosome (virtual queue) represents
a new scheduling of jobs. The jobs and their order of execution on the resource will be reflected by the
segment of the virtual queue corresponding to the actual queue associated with the resource. As a result of
the evolution process, each segment of the virtual queue corresponding to an actual queue will be in one of
the following states:

• Maintain the same set and order of jobs held in the previous generation;

• Get a new ordering for the same set of jobs held in the previous generation;

• Get a different set of jobs and a new ordering.

For instance, queue Qj,1 of Chromosome (1,n) in the first generation maintains exactly the same set and
order of jobs in the second generation shown in queue Qj,1 of Chromosome (2,n). In contrast, queue
Qj,2 of Chromosome (1,1) in the first generation maintains the same set of jobs in the second generation,
yet has got a new order of jobs as shown in queue Qj,2 of Chromosome (2,1). Finally, queue Qj,2 of a
random Chromosome (1,C) in the first generation has neither maintained the same set nor the same order
of jobs in the second generation shown in queue Qj,2 of Chromosome (2,C), which in turn would yield
a new scheduling of jobs in the queue of resource Rj,2 if Chromosome (2,C) is later selected as the best
chromosome of the tier-based genetic solution.

4.2. Multi-Tier-Based Virtual Queue
The goal is to formulate optimal schedules such that SLA violation penalties of jobs are reduced at the
multi-tier level. However, it is complicated to apply the allocation and ordering operators at the multi-tier
level. As such, the operator complexities are mitigated by virtualizing resource queues of the multi-tier
environment into a single system virtual queue that represents the chromosome of the scheduling solution,
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Figure 5. A System Virtualized Queue Genetic Approach

as shown in Figure 4. This system-level abstraction converges the operators into simply a reorder operator
running at the multi-tier level.

4.2.1. Evaluation of Schedules
The quality of a job schedule in a system virtual queue realization (chromosome) is assessed by a fitness
evaluation function. For a chromosome r in generation G, the fitness value fr,G is represented by the SLA
violation cost of the schedule in the system virtual queue computed at the multi-tier level. Two different
fitness evaluation functions are adopted in two different solutions:

fr,G =


∑l
i=1 ζi (ωCX

β
i,p − ωALi),

Differentiated Penalty ωALi based Scheduling∑l
i=1 ζi (ωPX

βj
i,j − ωPT i,j),

Differentiated Penalty ωPT i,j based Scheduling

(30)

In both scenarios, the SLA violation cost of job Ji is represented by the job’s waiting time (either ωCX βi,p
or ωPX βji,j) according to its scheduling order β in the system virtual queue and the job’s waiting allowance
(either ωALi or ωPT i,j) incurred from its service deadlineDLi at the multi-tier level. The normalized fitness
value Fr of each schedule candidate is computed as in Equation 29. Based on the normalized fitness values
of the candidates, Russian Roulette is used to select a set of schedule candidates that produce the next
generation population, using the combination and mutation operators.

4.2.2. Evolving the Scheduling Process
The schedule of the system virtual queue is evolved to produce a population of multiple system virtual
queues, each of which represents a chromosome that holds a new scheduling order of jobs at the multi-tier
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level. To produce a new population, the Single-Point crossover and Insert mutation genetic operators are
applied on randomly selected system virtual queues from the current population. Rates of these operators
in each generation are set to be 0.1 of the population size. The evolution process of schedules of the system
virtual queues along with the genetic operators are explained in Figure 5. Each segment in the system
virtual queue corresponds to an actual queue associated with a resource in the tier. In each generation, each
segment is subject to the states examined in Section 4.1.2.

5. EXPERIMENTAL WORK AND DISCUSSIONS ON RESULTS

The tier-based and multi-tier-based differentiated SLA-driven penalty scheduling are applied on the multi-
tier environment. The differentiated service penalty cost ψi and SLA violation cost ζi for each job are
generated using a mean µ of 1,000 cost units and a variance σ of 25. The penalty parameter ν is set to
ν= 0.01

1000 .
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(d) Virtual Queue of 30 Jobs

Figure 6. Differentiated Waiting Penalty Tier-Based Scheduling

Table 1. Differentiated Waiting Penalty Tier-Based Scheduling

Virtual-Queue
Length

1 Initial2 Enhanced3 Improvement
Waiting Penalty Waiting Penalty Waiting % Penalty %

Figure 6a 15 38203 0.318 21168 0.191 44.59% 39.92%
Figure 6b 20 80039 0.551 46190 0.370 42.29% 32.85%
Figure 6c 25 130253 0.728 80532 0.553 38.17% 24.05%
Figure 6d 30 160271 0.799 102137 0.640 36.27% 19.88%
1 Virtual-Queue Length represents the total number of jobs in queues of the tier. For instance, the first entry of the table means

that the 3 queues of the tier altogether are allocated 15 jobs.
2 Initial Waiting represents the total waiting penalty of jobs in the virtual queue according to the their initial scheduling before

using the tier-based genetic solution.
3 Enhanced Waiting represents the total waiting penalty of jobs in the virtual queue according to the their final/enhanced schedul-

ing found after using the tier-based genetic solution.
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5.1. Experimental Evaluation: Performance Penalty
The optimal schedule is the one with a minimum differentiated penalty cost. The penalty cost performance
of the proposed scheduling algorithm is mitigated. The effectiveness of penalty cost-driven schedules that
produce optimal enhancement and consider the performance of the scheduling algorithm at the single-tier
level is evaluated. The virtualized queue and segmented queue genetic scheduling are employed, as well as
the service penalty function fr,G in Equation 4.1 is used. 
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Figure 7. Differentiated Waiting Penalty Queue-Based Scheduling

Table 2. Differentiated Waiting Penalty Queue-Based Scheduling

Queue
Length

1 Initial2 Enhanced3 Improvement
Waiting Penalty Waiting Penalty Waiting % Penalty %

Resource 1 Figure 7a 8 37541 0.313 20431 0.185 45.58% 40.96%
Resource 2 Figure 7b 10 35853 0.301 24126 0.214 32.71% 28.85%
Resource 3 Figure 7c 13 36344 0.305 27162 0.238 25.26% 21.94%
Resource 1 Figure 7d 12 54202 0.418 33130 0.282 38.88% 32.60%
Resource 2 Figure 7e 8 62432 0.464 47481 0.378 23.95% 18.60%
Resource 3 Figure 7f 9 58319 0.442 44934 0.362 22.95% 18.09%
1 Queue Length represents the number of jobs in the queue of a resource.
2 Initial Waiting represents the total waiting penalty of jobs in the queue according to their initial scheduling before using the

segmented queue genetic solution.
3 Enhanced Waiting represents the total waiting penalty of jobs in the queue according to their final/enhanced scheduling found after

using the segmented queue genetic solution.

The results reported in Table 1 and Figure 6 demonstrate the effectiveness of the differentiated penalty-based
scheduling in reducing total service penalty cost, at the virtualized queue level. For instance, the penalty
of the initial scheduling shown in Figure 6a has a cost of 38,203 time units. The differentiated penalty
scheduling algorithm produces schedules that reduce this cost by 44.59%, to 21,168 units. Consequently,
the SLA penalty payable by the cloud service provider has also been improved by 39.92%, a reduction from
0.381 for the initial scheduling to 0.191 for the enhanced penalty-based scheduling.
In addition, the differentiated penalty-based scheduling demonstrates its effectiveness in optimizing finan-
cial performance by formulating cost-optimal schedules at the individual-queue level, as shown in Table 2
and Figure 7. For example, resource-3 (presented in Figure 7c) demonstrates the efficacy of the penalty-
based scheduling in improving the penalty cost of the job schedule by 25%, a reduction in cost from 36,344
to 27,126 time units. As a result, the performance of the differentiated penalty cost of the queue-state is
optimized by 21.94%, reduced from 0.305 due to the initial scheduling order to reach 0.238 due to the
improved differentiated penalty-based schedule.
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Thus, the virtualized queue and segmented queue genetic solutions have efficiently explored a large solution
search space using a small number of genetic iterations to achieve the enhancements. Figure 6c shows that
the virtualized queue required a total of only 1,000 genetic iterations to efficiently seek an optimal schedule
of jobs in tier T1, each iteration employs 10 chromosomes to evolve the optimal schedule. As such, 10×103
scheduling orders are constructed and genetically manipulated throughout the search space, as opposed to
25! (approximately 1.55×1025) scheduling orders if a brute-force search strategy is employed to seek the
optimal scheduling of jobs. Similar observations are in order with respect to the results reported on the
segmented queue genetic solution.

Table 3. Total Differentiated Waiting Penalty
Differentiated Penalty

Virtualized Queue
Differentiated Penalty

Segmented Queue
Virtualized

Queue
Segmented

Queue WLC WRR

2423344 2709716 2976390 3004961 3652770 3899232

 

Figure 8. Maximum Differentiated Waiting Penalty Performance Comparison

To contrast the financial performance of the scheduling strategies, Table 3 and Figure 8 evaluate the dif-
ferentiated service penalty cost. The WLC and WRR entail a cost of 3.65×106 and 3.9×106 time units,
respectively. However, the virtualized queue and segmented queue scheduling approaches (without the ser-
vice cost ψi) show superior performance compared with WLC and WRR, yet show inferior performance in
improving the service penalty cost compared with the differentiated penalty-based scheduling approaches.
In fact, the differentiated penalty-based virtualized and segmented queue scheduling approaches produce
schedules that improve service penalty cost. The differentiated penalty-based scheduling of the segmented
queue genetic approach reduces the service penalty to a cost of 2.7×106 time units, demonstrating a supe-
rior performance compared with WLC and WRR. In contrast, the differentiated penalty-based scheduling
of the virtualized queue genetic approach optimizes financial performance by reducing service penalty cost
to 2.4×106, demonstrating the best financial performance compared with the other scheduling strategies.
Overall, single-tier-driven differentiated penalty scheduling produces schedules that enhance financial per-
formance. The virtualized queue and segmented queue genetic approaches employed in the scheduling pro-
cess demonstrate their effectiveness in efficiently facilitating the search for financially performance-optimal
schedules at the tier level and individual queue level of the tier, respectively.
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(a) System-Level (Total of 69 Jobs)
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(c) Tier-2 (29 Jobs)

Figure 9. Differentiated SLA Penalty Multi-Tier ωALi Based System Virtualized Queue Scheduling

5.2. Evaluation of Differentiated Scheduling: Multi-Tier Considerations
This is concerned with formulating performance-optimal schedules that produce a minimum differentiated
SLA penalty at the multi-tier level. The experiments are conducted using the system virtualized queue
and segmented queue genetic scheduling, explained in section 4.2. The QoS penalty function fr,G of the
multi-tier genetic scheduling in Equation 30 is used. Thus, the penalty function evaluates the effectiveness
of schedules to reach an optimal financial performance by minimizing the differentiated multi-tier SLA
penalty.

Table 4. Differentiated SLA Penalty Multi-Tier ωALi Based System Virtualized Queue Scheduling

Number
of Jobs

1 Initial2 Enhanced3 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 9a 69 446183 1.66 262387 1.35 41.19% 18.38%
Tier-1, Figure 9b 40 327232 0.96 193614 0.86 40.83% 11.05%
Tier-2, Figure 9c 29 118951 0.70 68773 0.50 42.18% 28.51%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. The multi-tier environment contains 69 jobs in total. The 3 queues of tier-1
and tier-2 are allocated 40 and 29 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized queue genetic solution.
3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the system virtualized queue

genetic solution.

The results shown in Table 4 and Figure 9 represent a system-state of a multi-tier environment that is
allocated 69 jobs; 40 jobs are allocated to tier T1 and 29 jobs are allocated to tier T2. The differentiated
multi-tier penalty ωALi based scheduling of the system virtualized queue genetic approach has gradually
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Figure 10. Differentiated SLA Penalty Multi-Tier ωALi Based Segmented Queue Scheduling

Table 5. Differentiated SLA Penalty Multi-Tier ωALi Based Segmented Queue Scheduling

Number
of Jobs

Initial1 Enhanced2 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 10a 75 267775 2.14 196484 1.66 26.62% 22.60%
Resource-1 Tier-1, Figure 10b 9 39837 0.33 24775 0.22 37.81% 33.22%
Resource-2 Tier-1, Figure 10c 13 34988 0.30 25724 0.23 26.48% 23.17%
Resource-3 Tier-1, Figure 10d 10 30976 0.27 22281 0.20 28.07% 25.02%
Resource-1 Tier-2, Figure 10e 13 54131 0.42 44182 0.36 18.38% 14.56%
Resource-2 Tier-2, Figure 10f 16 57945 0.44 45633 0.37 21.25% 16.69%
Resource-3 Tier-2, Figure 10g 14 49899 0.39 33890 0.29 32.08% 26.83%
1 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue genetic solution.
2 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the segmented queue genetic solution.

reduced the SLA penalty cost. The differentiated ωALi based scheduling genetic evaluation function in
Equation 30 is employed. The financial performance of the system-state is optimized by 41.19%, through
formulating an enhanced cost-optimal schedule that reduces the SLA penalty from a cost of 446,183 time
units for the initial schedule to a cost of 262,387 time units for the improved schedule computed at the
multi-tier level. As such, the differentiated SLA penalty cost payable by the cloud service provider has
been improved by 18.38%, a reduction in the penalty from 1.66 for the initial schedule to 1.35 for the
improved cost-optimal schedule of the system-state.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 10, No.1/2, April 2020

18



 (a) System-Level (Total of 66 Jobs)

 
(b) Tier-1 (35 Jobs)

 
(c) Tier-2 (31 Jobs)

Figure 11. Differentiated SLA Penalty ωPTi,j Based System Virtualized Queue Scheduling

Table 6. Differentiated SLA Penalty ωPTi,j Based System Virtualized Queue Scheduling

Number
of Jobs

1 Initial2 Enhanced3 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 11a 66 412442 1.71 232573 1.33 43.61% 22.05%
Tier-1, Figure 11b 35 259880 0.93 153300 0.78 41.01% 15.29%
Tier-2, Figure 11c 31 152562 0.78 79273 0.55 48.04% 30.05%

1 Number of Jobs represents the total number of jobs in queues of the tier/environment. The multi-tier environment is allocated 66 jobs in total. The 3 queues of tier-1
and tier-2 are allocated 35 and 31 jobs, respectively.

2 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the system virtualized queue genetic solution.
3 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the system virtualized queue

genetic solution.

Similarly, the differentiated multi-tier penalty ωALi based scheduling of the segmented queue genetic ap-
proach shows an improved financial performance on the system-state. Cost-optimal schedules are formu-
lated in each individual queue to efficiently reduce the differentiated SLA penalty cost at the multi-tier
level, as shown in Table 5 and Figure 10. In a multi-tier environment allocated 75 jobs, the differentiated
SLA penalty improves by 22.6% at the multi-tier level. The SLA penalty cost of the system-state has been
reduced from 2.14 for the initial schedule to reach 1.66 for the cost-optimal schedule.
In the same way, the financial performance of the differentiated multi-tier penalty ωPT i,j based scheduling
of the system virtualized queue genetic approach corroborates the financial performance of the former dif-
ferentiated penalty ωALi based scheduling. Cost-optimal schedules at the multi-tier level are also produced
by the differentiated multi-tier penalty ωPT i,j based scheduling of the segmented queue genetic approach,
which as well corroborates the financial performance of the differentiated multi-tier penalty ωALi based
scheduling of the segmented queue genetic approach.
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Figure 12. Differentiated SLA Penalty ωPTi,j Based Segmented Queue Scheduling

Table 7. Differentiated SLA Penalty ωPTi,j Based Segmented Queue Scheduling

Number
of Jobs

Initial1 Enhanced2 Improvement
Violation Penalty Violation Penalty Violation % Penalty %

System-Level, Figure 12a 57 216897 1.80 154844 1.35 28.61% 25.35%
Resource-1 Tier-1, Figure 12b 9 48050 0.38 37272 0.31 22.43% 18.45%
Resource-2 Tier-1, Figure 12c 9 45753 0.37 31513 0.27 31.12% 26.38%
Resource-3 Tier-1, Figure 12d 11 39447 0.33 32400 0.28 17.87% 15.10%
Resource-1 Tier-2, Figure 12e 10 32291 0.28 24992 0.22 22.60% 19.87%
Resource-2 Tier-2, Figure 12f 8 26630 0.23 15065 0.14 43.43% 40.18%
Resource-3 Tier-2, Figure 12g 10 24726 0.22 13601 0.13 44.99% 41.95%
1 Initial Violation represents the total SLA violation time of jobs according to their initial scheduling before using the segmented queue genetic solution.
2 Enhanced Violation represents the total SLA violation time of jobs according to their final/enhanced scheduling found after using the segmented queue genetic solution.

For instance, the SLA penalty of the system-state shown in Table 6 and Figure 11 is optimized at the multi-
tier level by 22.05%, a reduction in the SLA penalty cost from 1.71 for the initial schedule to reach 1.33 for
the improved schedule efficiently computed by the differentiated multi-tier penalty ωPT i,j based scheduling
of the system virtualized queue genetic approach. In addition, the differentiated multi-tier penalty ωPT i,j
based scheduling of the segmented queue genetic approach improves the financial performance of the SLA
penalty by 25.35% at the multi-tier level, which reduces the SLA penalty cost of the system-state from 1.8
for the initial schedule to 1.35 for the enhanced schedule shown in Table 7 and Figure 12.
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A comparison of the financial performance of the differentiated penalty-based scheduling strategies in opti-
mizing the differentiated SLA penalty cost at the multi-tier level is presented in Table 8 and Figure 13. The
differentiated multi-tier penalty ωALi based and ωPT i,j based scheduling efficiently produce optimal sched-
ules that reduce the SLA penalty cost, using the system virtualized queue and segmented queue genetic
scheduling solutions. However, compared with the differentiated service penalty scheduling approaches,
the multi-tier ωALi based and ωPT i,j based scheduling approaches demonstrate a superior performance in
reducing the SLA penalty cost.

Table 8. Total Differentiated SLA Penalty

Differentiated Penalty Multi-Tier
ωPTi,j Based Scheduling

Differentiated Penalty Multi-Tier
ωALi Based Scheduling

Multi-Tier
ωPTi,j Based Scheduling

Multi-Tier
ωALi Based Scheduling WLC WRRSystem

Virtualized Queue
Segmented

Queue
System

Virtualized Queue
Segmented

Queue
System

Virtualized Queue
Segmented

Queue
System

Virtualized Queue
Segmented

Queue
1431984 1800853 1589481 1897843 2074843 2521244 2228040 2692282 3559464 3805631

 

Figure 13. Comparison of the Approaches

Differentiated multi-tier penalty ωALi based scheduling of the segmented queue genetic approach reduces
the SLA penalty by approximately 47% compared with WLC and 50% compared with WRR; however, it
shows an inferior financial performance compared with the differentiated multi-tier penalty ωPT i,j based
scheduling of the segmented queue genetic approach. In contrast, differentiated multi-tier penalty ωALi
based scheduling of the system virtualized queue genetic approach produces schedules that entail a cost of
1.59×106 time units of the SLA penalty at the multi-tier level, a reduction of 55% and 58% compared with
WLC and WRR strategies, respectively. Superior financial performance is demonstrated in the differenti-
ated multi-tier penalty ωPT i,j based scheduling of the system virtualized queue genetic approach, which
produces schedules that reduce the SLA penalty to around a cost of 1.43×106 time units.

6. CONCLUSION

This paper presents a QoS-driven scheduling approach to address the differentiated penalty of delay-
intolerant jobs in a multi-tier cloud computing environment. The approach emphasizes the notion of fi-
nancial penalty in scheduling client jobs so that schedules are effectively produced based on economic
considerations. Job treatment regimes are devised in a differentiated QoS penalty model, so as the cloud
service provider computes schedules that capture the financial impact of SLA violation penalty on the QoS
provided. Optimal performance is delivered to clients who cannot afford the cost of SLA violations and
delays.
The proposed queue virtualization design schemes facilitate the formulation of schedules at the tier and
multi-tier levels of the cloud computing environment. The design schemes leverage the utilization of re-
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sources within a tier to derive tier-driven schedules with optimal performance, as well as employ depen-
dencies and bottleneck shifting between tiers to formulate multi-tier-driven schedules with optimal per-
formance. The proposed meta-heuristic approaches, represented by the differentiated penalty virtualized-
queue and segmented-queue genetic solutions, reduce the complexity of optimal scheduling of jobs on
resource queues of the tiers.
The formulated cost-optimal schedules reduce the cost of SLA penalty for client jobs, which accordingly
maximizes client satisfactions and thus loyalties to the cloud service provider. The produced schedules
maintain a balance between delivering the highest QoS provided to clients while ensuring an efficient sys-
tem performance with a reduced operational cost, and thus fulfilling the different QoS expectations and
mitigating their associated commercial penalties. It is shown that the financial performance has been im-
proved by reducing the QoS penalty under different SLA commitments of client jobs in a multi-tier cloud
computing environment.

7. FUTURE WORK

A cloud service provider employs multiple resources that typically demand a huge amount of energy to
execute various client demands. Due to its impact on system performance, energy saving has recently
become of paramount importance in cloud computing. However, a major challenge on a cloud service
provider is maintaining a maximum energy efficiency (minimum consumption) while ensuring high system
performance that fulfills the different QoS expectations in executing client jobs of varying computational
demands. Any imbalance in managing these conflicting objectives may result in failing to meet SLA obli-
gations of clients and, thus, financial penalties on the cloud service provider. Accordingly, it is imperative
to devise scheduling approaches that produce energy-efficient optimal schedules with minimal SLA penal-
ties at the multi-tier level. A sustainable cloud computing environment would help reduce the energy cost
required to execute client demands.

REFERENCES

[1] A. Shawish and M. Salama, Cloud Computing: Paradigms and Technologies. Springer, 2014, pp.
39–67.

[2] I. Chana and S. Singh, “Quality of service and service level agreements for cloud environments: Issues
and challenges,” in Cloud Computing: Challenges, Limitations and R&D Solutions. Springer, 2014,
pp. 51–72.

[3] J. Vuong, “Disaster recovery planning,” in Proceedings of the Information Security Curriculum De-
velopment Conference, October 2015, pp. 1–3.

[4] H. Suleiman and O. Basir, “Service level driven job scheduling in multi-tier cloud computing: A
biologically inspired approach,” in Proceedings of the International Conference on Cloud Computing:
Services and Architecture, July 2019, pp. 99–118.

[5] ——, “QoS-driven job scheduling: Multi-tier dependency considerations,” in Proceedings of the In-
ternational Conference on Cloud Computing: Services and Architecture, July 2019, pp. 133–155.

[6] O. Rana, M. Warnier, T. Quillinan, F. Brazier, and D. Cojocarasu, Managing Violations in Service
Level Agreements. Springer, 2008, pp. 349–358.

[7] M. Cochran and P. Witman, “Governance and service level agreement issues in a cloud computing
environment,” Journal of Information Technology Management, vol. 22, no. 2, pp. 41–55, 2011.

[8] J.-H. Morin, J. Aubert, and B. Gateau, “Towards cloud computing SLA risk management: Issues
and challenges,” in Proceedings of the Hawaii International Conference on System Sciences, January
2012, pp. 5509–5514.

[9] G. Singh and S. Prakash, “A review on quality of service in cloud computing,” in Big Data Analytics,
October 2018, pp. 739–748.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 10, No.1/2, April 2020

22



[10] A. Thakur and M. Goraya, “A taxonomic survey on load balancing in cloud,” Journal of Network and
Computer Applications, vol. 98, no. 11, pp. 43–57, 2017.

[11] S. Shaw and A. Singh, “A survey on scheduling and load balancing techniques in cloud comput-
ing environment,” in Proceedings of the International Conference on Computer and Communication
Technology, September 2014, pp. 87–95.

[12] A. Abdelmaboud, D. Jawawi, I. Ghani, A. Elsafi, and B. Kitchenham, “Quality of service approaches
in cloud computing: A systematic mapping study,” Journal of Systems and Software, vol. 101, no. 3,
pp. 159–179, 2015.

[13] Y. Jia, I. Brondino, R. J. Peris, M. P. Martinez, and D. Ma, “A multi-resource load balancing algorithm
for cloud cache systems,” in Proceedings of the Annual ACM Symposium on Applied Computing,
March 2013, pp. 463–470.

[14] C.-C. Yang, K.-T. Chen, C. Chen, and J.-Y. Chen, “Market-based load balancing for distributed het-
erogeneous multi-resource servers,” in Proceedings of the International Conference on Parallel and
Distributed Systems, December 2009, pp. 158–165.

[15] G. Stavrinides and H. Karatza, “The effect of workload computational demand variability on the per-
formance of a SaaS cloud with a multi-tier SLA,” in Proceedings of the IEEE International Conference
on Future Internet of Things and Cloud, August 2017, pp. 10–17.

[16] H. Moon, Y. Chi, and H. Hacigumus, “Performance evaluation of scheduling algorithms for database
services with soft and hard SLAs,” in Proceedings of the Second International Workshop on Data
Intensive Computing in the Clouds, November 2011, pp. 81–90.

[17] H. Chen, F. Wang, N. Helian, and G. Akanmu, “User-priority guided Min-Min scheduling algorithm
for load balancing in cloud computing,” in Proceedings of the National Conference on Parallel Com-
puting Technologies, February 2013, pp. 1–8.

[18] S. Nayak, S. Parida, C. Tripathy, and P. Pattnaik, “An enhanced deadline constraint based task schedul-
ing mechanism for cloud environment,” Journal of King Saud University - Computer and Information
Sciences, vol. 30, no. 4, 2018.

[19] K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling redundant requests with cancellation
overheads,” IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 1279–1290, 2017.

[20] R. Birke, J. Perez, Z. Qiu, M. Bjorkqvist, and L. Chen, “Power of redundancy: Designing partial
replication for multi-tier applications,” in Proceedings of the IEEE Conference on Computer Commu-
nications, May 2017, pp. 1–9.

[21] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia, and A. Scheller-Wolf, “Queueing
with redundant requests: Exact analysis,” Queueing Systems: Theory and Applications, vol. 83, no.
3-4, pp. 227–259, 2016.

[22] R. Mailach and D. Down, “Scheduling jobs with estimation errors for multi-server systems,” in Pro-
ceedings of the International Teletraffic Congress, September 2017, pp. 10–18.

[23] M. Okopa and H. Okii, “Fixed priority SWAP scheduling policy with differentiated services under
varying job size distributions,” in Proceedings of the Second International Conference on Digital
Information Processing and Communications, July 2012, pp. 168–173.

[24] S. Panda, S. Pande, and S. Das, “Task partitioning scheduling algorithms for heterogeneous multi-
cloud environment,” Arabian Journal for Science and Engineering, vol. 43, no. 2, pp. 913–933, 2018.

[25] S. Panda, S. Nanda, and S. Bhoi, “A pair-based task scheduling algorithm for cloud computing en-
vironment,” Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 4,
2018.

[26] S. Panda and P. Jana, “Efficient task scheduling algorithms for heterogeneous multi-cloud environ-
ment,” The Journal of Supercomputing, vol. 71, no. 4, pp. 1505–1533, April 2015.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 10, No.1/2, April 2020

23



[27] I. Moschakis and H. Karatza, “Multi-criteria scheduling of bag-of-tasks applications on heterogeneous
interlinked clouds with simulated annealing,” Journal of Systems and Software, vol. 101, pp. 1–14,
2015.

[28] D. Chaudhary and B. Kumar, “Analytical study of load scheduling algorithms in cloud computing,” in
Proceedings of the International Conference on Parallel, Distributed and Grid Computing, December
2014, pp. 7–12.

[29] M. Rana, S. Bilgaiyan, and U. Kar, “A study on load balancing in cloud computing environment
using evolutionary and swarm based algorithms,” in Proceedings of the International Conference on
Control, Instrumentation, Communication and Computational Technologies, July 2014, pp. 245–250.

[30] P. Singh, M. Dutta, and N. Aggarwal, “A review of task scheduling based on meta-heuristics approach
in cloud computing,” Knowledge and Information Systems, vol. 52, no. 1, pp. 1–51, 2017.

[31] S. Mishra, B. Sahoo, and P. Parida, “Load balancing in cloud computing: A big picture,” Journal of
King Saud University - Computer and Information Sciences, vol. 30, no. 1, 2018.

[32] R. Babu, A. Joy, and P. Samuel, “Load balancing of tasks in cloud computing environment based on
bee colony algorithm,” in Proceedings of the International Conference on Advances in Computing and
Communications, September 2015, pp. 89–93.

[33] R. Babu and P. Samuel, “Enhanced bee colony algorithm for efficient load balancing and scheduling
in cloud,” in Proceedings of the International Conference on Innovations in Bio-Inspired Computing
and Applications, July 2016, pp. 67–78.

[34] R. Gautam and S. Arora, “Cost-based multi-QoS job scheduling algorithm using genetic approach
in cloud computing environment,” International Journal of Advanced Science and Research, vol. 3,
no. 3, pp. 110–115, 2018.

[35] Y. Wang, J. Wang, C. Wang, and X. Song, “Resource scheduling of cloud with QoS constraints,” in
Proceedings of the International symposium on Neural Networks, July 2013, pp. 351–358.

[36] K. Boloor, R. Chirkova, T. Salo, and Y. Viniotis, “Heuristic-based request scheduling subject to a
percentile response time SLA in a distributed cloud,” in Proceedings of the IEEE Global Telecommu-
nications Conference, December 2010, pp. 1–6.

[37] Z.-H. Zhan, G.-Y. Zhang, Y. Lin, Y.-J. Gong, and J. Zhang, “Load balance aware genetic algorithm
for task scheduling in cloud computing,” in Proceedings of the International Asian-Pacific Simulated
Evolution and Learning, December 2014, pp. 644–655.

[38] K.-M. Cho, P.-W. Tsai, C.-W. Tsai, and C.-S. Yang, “A hybrid meta-heuristic algorithm for VM
scheduling with load balancing in cloud computing,” Neural Computing and Applications, vol. 26,
no. 6, pp. 1297–1309, 2015.

[39] G. Reig, J. Alonso, and J. Guitart, “Prediction of job resource requirements for deadline schedulers
to manage high-level SLAs on the cloud,” in Proceedings of the IEEE International Symposium on
Network Computing and Applications, July 2010, pp. 162–167.

[40] I. Menache, S. Perez-Salazar, M. Singh, and A. Toriello, “Dynamic resource allocation in the cloud
with near-optimal efficiency,” arXiv preprint arXiv:1809.02688, vol. abs/1809.02688, 2018.

[41] Y. Xiaomei, Z. Jianchao, L. Jiye, and L. Jiahua, “A genetic algorithm for job shop scheduling problem
using co-evolution and competition mechanism,” in Proceedings of the International Conference on
Artificial Intelligence and Computational Intelligence, October 2010, pp. 133–136.

[42] X. Li and L. Gao, “An effective hybrid genetic algorithm and tabu search for flexible job shop schedul-
ing problem,” International Journal of Production Economics, vol. 174, no. 4, pp. 93–110, 2016.

[43] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. Ammari, “An effective and distributed particle swarm
optimization algorithm for flexible job-shop scheduling problem,” Journal of Intelligent Manufactur-
ing, vol. 29, no. 3, pp. 603–615, 2018.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 10, No.1/2, April 2020

24




