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ABSTRACT 
 

A Horizontal scaling is a Cloud architectural strategy by which the number of nodes or computers 

increased to meet the demand of continuously increasing workload. The cost of compute instances 

increases with increased workload & the research is aimed to bring an optimization of the reserved Cloud 

instances using principles of Inventory theory applied to IoT datasets with variable stochastic nature. With 

a structured solution architecture laid down for the business problem to understand the checkpoints of 

compute instances – the range of approximate reserved compute instances have been optimized & 

pinpointed by analysing the probability distribution curves of the IoT datasets. The Inventory theory 

applied to the distribution curves of the data provides the optimized number of compute instances required 

taking the range prescribed from the solution architecture. The solution would help Cloud solution 

architects & Project sponsors in planning the compute power required in AWS® Cloud platform in any 

business situation where ingestion & processing data of stochastic nature is a business need. 
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1. INTRODUCTION 

 
The background of doing the research lies in the works of Sidney Brown et al [1] in his paper 

concerned with (r, q) inventory model interpreted where demand accumulates continuously the 

demand rate at any instant is determined by an underlying stochastic process.  

 
Also, Andrea Nodari [2] in his master’s degree thesis has aimed to answer the few research 

questions, one of them being the modelling the cost optimization in Cloud Computing with 

Inventory theory. I propose to apply this cost optimization theory into real-time datasets & for the 
same have chosen data from IoT devices which are stochastic & varying in nature. My objective 

in the paper has been to understand the background of the solution architecture required to ingest, 

process & store IoT datasets into AWS® platform & then optimize the same by interpreting the 
distribution curves of IoT data captured on Cloud. 

 

The technical challenge to the business problem lies in interpreting IoT data probability 

distribution curves on which Inventory theory has been applied & interpreted of the distribution 
to optimize the compute instance (e.g., uniform distribution, Gaussian distribution curves being 

interpreted in my work with the data captured from IoT devices) 
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I have considered Amazon Web Services as the chosen Cloud provider and to establish the 
concepts of Inventory theory applicability in optimizing the number of Amazon Elastic Compute 

Cloud (EC2) computing resources. 

 

In this paper, my aim was to perform a validation exercise using a dataset emanated from an IoT 
device(s) and capture the many iterations of the data in a database to validate the stochastic 

nature of the source of data & understanding the distribution of the data & I believe this research 

will provide a foundation on which a dynamically time continuous stochastic data ecosystem can 
be assessed and provided with the optimized plan for instances. 

 

The sections of the paper are as follows. In Section 2, I have provided background research work 
already established in this field. In Section 3, provides a brief background of different probability 

distributions, knowing which would help to understand my use case in the experiment section. In 

Section 4, my aim is to provide the high-level solution approach to the business problem. In 

Section 5, I have provided, the solution design using AWS® services which helps me 
approximately compute the expected range of Reserved Instances required for the business 

problem in Section 6. 

 
In Section 7, the experiment scenario is discussed with the approach denoting decision points of 

data results. Section 8, I have discussed the experiments results applied the Inventory theory on 

data visualization of the dataset for experiment after concluding the response of the data in terms 
of probability distribution of the response obtained from data. Section 9 the optimization applied 

to the results obtained for the 2 different IoT sources used for the experiment. Section 10 talks 

about my inference from the experiment and in Section 11, I have discussed the areas of 

improvement of my work. The summarization of my work in Section 12. 
 

2. RELATED WORK 
 

With reference to the application of Inventory Theory applied in Cloud Economics by eminent 
research work in the field contributed by Andrea Nodari [2] on his thesis paper derived the 

relationship between Reserved Instances and On-Demand instances to optimize the usage in 

Cloud platform of Amazon Web Services. This paper has considered Amazon® Web Services as 

the preferred cloud platform for the work. 
 

To set a background of this work from where the application of Inventory Theory can be applied 

to our experiment, I have added the basic difference of the Reserved & On-Demand instances 
available with Amazon® in the cloud platform of Amazon® Web Services. 
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Table 1: Difference between Reserved & On Demand EC2 Instances Source: Derived from Website, 

https://aws.amazon.com/ 

 

Demand 

perspective 

EC2 instance 

type 
Requirement 

F
e
a
si

b
il

it
y
 

Demand is 

predetermined 

or agile 

RESERVED 

UPFRONT Predetermined 

HOURLY Predetermined 

AD-HOC X 

ON-

DEMAND 

UPFRONT X 

HOURLY Ad-hoc 

AD-HOC Ad-hoc 

Cost 

Perspective 

EC2 instance 

type 
Requirement 

F
e
a
si

b
il

it
y
 

Cost & 

budget 

RESERVED 

UPFRONT Cheaper 

HOURLY Cheaper when predetermined 

AD-HOC X 

ON-

DEMAND 

UPFRONT X 

HOURLY Cheaper when Ad-hoc 

AD-HOC Cheaper when Ad-hoc 

 
In the Inventory theory, for the sake of having an understanding between the reserved instances 

and on demand instances it has been considered. 

y = Number of purchased reserved instances 

D = Random variable representing the hourly demand of instances 
di = ith observation of the demand D 

Cri (Count of Reserved Instances) <Cod (Count of On-demand Instances) 
 

Total Cost   = ⅀(Cri y + Cod max {0, di-y}) 

 

 

    =   ⅀Cod *di (when the company does not purchase any reserved instance) 

 

                   =   ⅀Cri* y (conversely when the purchase of reserve instance is more) 

 

  

i=1 

N 

i=1 

N 

i=1 

N 
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Explanation 
 

I assumed cost express in terms of random variable D. To minimize the total cost, the goal of the 

next step is to find the optimal value for y, the number of reserved instances to purchase. Hence 
the cost with demand D and y 

 

C (D, y) = Cri y + Cod max {0, D − y} 
 

C (D, y) is a random variable it is possible to calculate the cost as  

 

C(y) = E [C (D, y)] = ⅀(Cri y + Cod max {0, d − y}) PD(d)….……(i) 

 
          = Cri y ⅀ Cod (d-y) PD(d)…………………………(ii) 

 

I have approximated the discrete random variable D with a continuous random variable such that 

 
ΨD (ξ)=Probability density function of D 

 

ΦD (a) = Cumulative distribution function D and the total cost is expressed as  
 

=∫ 𝜓𝐷(𝜉) ⅆ𝜉
𝑎

0
……………………………………………..….…. (iii) 

 

The total cost from expression…(i) now expressed as  

 

C(y)= E [C (D, y)] =∫ 𝑪 (𝝃, 𝒚)  𝜳𝑫(𝝃) 𝒅𝝃
∞

𝟎
 

                              

  =∫  Cri y +  Cod max{0, d −  y})  𝜳𝑫(𝝃) 𝒅𝝃
∞

𝟎
 

 

 =Cri y ∫  Cod (𝝃 −  𝐲)  𝜳𝑫(𝝃) 𝒅𝝃
∞

𝟎
………………….... (iv) 

 

To minimize the above equation quiet expectedly I have taken a derivative of expression…(iv) 

and set it to zero which has been further derived to 

  

dC (y) / dy =Cri − Cod +Cod ∫   𝜳𝑫(𝝃) 𝒅𝝃
𝒚

𝟎
 = 0 

 

= Cri –Cod (1-∫   𝜳𝑫(𝝃) 𝒅𝝃
𝒚

𝟎
)  =0 

 

= Cri –Cod [1 − ΦD(y)] = 0……. (v) [as applied from above ΦΦ(D) 

 

ΦD(y) = (Cod – Cri) / Cod…………………………………..…(iv) 

 

In subsequent sections of this paper, I have applied the above derivation and relationship between 
cost of on demand instances and Cost of reserve instances & used the same into IoT dataset used 

for the experiment 

d=0 

∞ 

d=y 

∞ 
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3. PROBABILITY DISTRIBUTIONS: A BACKGROUND 
 
The theoretical background of 3 different probability distributions in the below table. Since the 

nature of the IoT data considered for the experiment henceforth is not pre-deterministic but 

stochastic in nature, therefore a background of understanding different probability distributions 

will help to interpret the dataset under consideration when the data is visualized in subsequent 
sections. 

 
Table 2: Definition & example(s) of different probability distributions e.g., Uniform, Gaussian & Poisson 

distribution 

 
Type of 

distribution 
Definition Mathematical 

derivation 
Visualization 

Uniform A continuous 

probability 

distribution with 

likelihood of 

occurrence of 

concerned events 

is equal 

F(x) = 0 when x < a  

         = 1/ (b-a)  

when a ≤ x≤ b  

         = 0 when x>b 

 

F(x) defined 

between 2 points a 

& b along the 

abscissa 

 
Gaussian A continuous 

probability 

distribution for a 

real valued 
random formula 

𝑭(𝒙)

=
𝟏

𝒙𝟐√𝟐𝛑
ⅇ

−
𝟏

𝟐
(

𝒂−𝝁

𝒙𝟐 )
 

x= standard 

deviation 

µ = mean or 

expectation of the 

distribution 

𝒙𝟐 = variance of 

distribution 

 

Poisson  A continuous 

probability 

function which 

determines the 

likelihood of 

number of events 

happening in a 

tenure of time 

𝑭(𝒙) =
(

𝛌𝒙

𝒙!
)

ⅇ−𝝀
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4. SOLUTION APPROACH 
 

I propose below solution approach to the problem statement of optimization of Cloud instances 

considering an IoT data of stochastic distribution nature. 

 
In the subsequent section the experiment would be discussed to arrive to the results for the 

dataset considered for experiment. 

 

 
 

Figure 1. Solution approach flowchart with numbers denoting steps in the experiment (streams on step -3 

are executed in parallel) 

 

5. SOLUTION DESIGN  
 

The dataset for the experiment to follow has been taken from open-source data repository 

available with 
 

5.1. Source of Data 
 
Dataset contains Beach Water Quality – Automated Sensors.  

(https://data.world/cityofchicago/beach-water-quality-automated-sensors) 
 

5.2. Architecture Requirement 
 

 Capture the IoT data from the 3 IoT sensor starting from the edge location. 

 Store the ‘hot’ data & make it available for analysts /operational users. 

 Feed the data through stream analytics system and make it available for any web 
application to access the data. 

 Ensure high availability& security using Virtual private Cloud environment. 

 

5.3. Solution Architecture Diagram 
 

I have visualized a solution architecture as below to capture the data from the above dataset & 

catering to requirement & in subsequent Table 3 have referred the points in the architecture 
where compute resources would be required. 
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Preferred Cloud Platform – Amazon ® Web Services 
 

 
 

Figure 2:   Preferred Solution architecture on Amazon® Web Service platform (architectural logos 
reference www.amazon.com) 

 

6. RANGE COMPUTATION OF INSTANCES 
 

The purpose of the solution architecture in this context was to determine the range of number of 
reserved instances that would be required to meet the business use case and which will be 

validated while applying the inventory theory in subsequent section of experiment based on the 

approximated number of reserved compute instances from Table-3 below. 
 

6.1. Considerations of Computation 
 

1. 2 separate Compute instances will be provisioned either by AWS managed service or by 

user of 2 separate IoT device to capture Beach Water Temperature & Turbidity at every 

checkpoint of compute. 
2. 2-3 Availability zone is considered for disaster recovery or high availability which would 

replicate the compute instance across different geographical zones & provide a range of 

compute instances 

3. The compute services used in the architecture are serverless, hence need not be 
provisioned or maintained separately, AWS underlying architecture would provision & 

maintain the EC2 (Elastic Compute cloud instances- however, instances will be 

provisioned for computation & that would be the basis for validating the experiment in 
subsequent sections 
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Below results are obtained from looking into the solution from a bird’s eye view of the data 
architecture. 

 
Table3: Range Computation of Provisioned Compute Instances based on the preferred Solution 

Architecture 

 
Architectural Viewpoint of Range Computation of Instances 

Source 

of 
Data 

Compute 

Checkpoint 
No 

Compute 

Checkpoint 
Service 

Name 

Functionality No of 

Instances 
(A) 

No-

Multizone 
Availability 

(B) 

Approximate 

number of 
Compute 

resources 

(A *B) 

IoT C1 Compute 

instances 

managed in 
AWS 

Greengrass 

(Managed 

service) 

Capture & stream 

IoT data for 

device 1 & 2 

2 NA 2 

IoT C2 Compute 

instances 

provisioned 

by AWS 

directing 

stream data 

Direct Stream IoT 

Data to S3 object 

storage 

2 2-3 4-6 

IoT C3 AWS 

Lambda 

(Managed 
service) 

Provisioned 

Compute – 

Function/ Code to 
ingest stream data 

2 2-3 4-6 

IoT C4 Instances 

provisioned 

for RDS 

service 

Stores data for 

further analysis & 

querying purpose 

2 2-3 4-6 

Approximate Range of Compute Instances 14-20 

 

Explanation of above Range approximation 
 

 Checkpoint C1, C2, C3 & C4 corresponds to my solution architecture in Figure 4. 

Corresponding to the compute instances managed by AWS Greengrass, compute capacity 

used to direct the data to AWS S3, provisioned compute- Function/ Code to ingest stream 
data in AWS Lambda managed service & processing the final data set to RDS 

respectively. 

 2 separate IoT device to capture Beach Water Temperature & Turbidity at every 

checkpoint of compute & hence compute instance (whether managed by AWS or 
manually provisioned) have been assumed to be 2 for all checkpoints & hence with 4 

compute checkpoints -I approximate the probable usage of 8 instances which need to be 

reserved upfront for one availability zone 

 At the Edge Computing zone, AWS Greengrass doesn’t need the data to be available 
across availability zones but for all other compute points data need to high available 

which I propose to be 2-3 multizone availability based on requirement of consumption. 

 Therefore, I have done a range approximation of Compute instances required in the 

solution as per the Table 3 considering only multizone availability of 6 compute 

instances (C2, C3, & C4) with 2-3 multizone availability which makes it 12-18 compute 
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instances+ 2 instances considered at edge with AWS Greengrass makes the range as 14-

20 compute instances to be reserved upfront from solution architect point of view. 

 

When I moved to the subsequent section of the paper to interpret the IoT data from a probability 

distribution perspective, my goal was to optimize the range as already computed above & specify 
the actual number of instances required in this process of interpretation of data using Inventory 

theory applied to response probability distribution of the datasets. 

 
The value adds, I proposed will support the contextual solution architecture approximation of 

compute resources assume a range of compute instances at the very high level of solution based 

on assumptions to streamline & pinpoint the number of instances by interpretation of actual data 
response applying Inventory theory applied to their probability distributions. 

 

7. EXPERIMENT SCENARIO:  PROBABILITY DISTRIBUTION OF DATA 

SOURCE 
 

Aiping Wang et al [3] in their publication of Survey on stochastic distribution systems found the 
the control task is to obtain control signals so that the output Probability Distribution functions of 

stochastic systems are made to follow their target Probability Distribution functions The research 

in this field already established by predecessors me to formulate the probability distribution 

function for the IoT data under consideration as the initial step. 
 

I have observed with solution architecture defined for the ingestion of IoT data from 2 devices 

specific to the use case could provide a high-level estimation of compute resources required for 
the requirement under consideration. In this context, would like to clarify that the 2 IoT devices 

would capture 2 specific attributes of the data generated at the site namely 1) Water temperature 

& 2) Turbidity. 
 

In this process of performing the experiment I have analysed the work of D. Altman et al [4] 

which took samples of various probability data distributions samples & interpreted it through 

various methods of analysis make assumptions about normality, including correlation, regression, 
tests, and analysis of variance. It has also been concluded is not in fact necessary for the 

distribution of the observed data to be normal, but rather the sample values should be compatible 

having a normal distribution in defined range of values. 
 

Peter Jez [5] in his technical paper compared multiple data samples and carried on a series of 

mathematical test to conclude, mathematically Normal Distribution would be range bounded at 
its boundaries but normal distribution in Gaussian density distribution will have a mean or 

expectation of the value exponentially raised and divisible by the variance of distribution. 

 

Based on all the above studies in the field of probability distribution -the below approach has 
been devised to arrive to the interpretation of the results as per the flow chart. 
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Figure 3:   Experiment Approach flowchart with numbers denoting decision points of interpretation of data 

results in the experiment 

 

8. EXPERIMENT RESULTS: DATA VISUALIZATION 
 
The experiment results visualizing the data output captured for Water Temperature & Turbidity 

of Beach water in Ohio shows 

 

 IoT Sensor1 Output (Water Temperature): As observed, the temperature is range-
bound 12 degrees Fahrenheit to 27 degrees Fahrenheit with a mean (µ)= 42 around 

within the range of 19-20 degrees. Instances were captured real time for7500 timestamp 

instances from IoT sensor 1, ingested in the RDS database instances and presented as 

below Figure -4.  
 IoT Sensor1 Output (Turbidity): As observed, the turbidity readings were slowly 

taking peak as observed around the value of 42 Formazin Turbidity Unit (FTU) & 

gradually declining with being normalized – the distribution fairly forms a bell-curve 
along the value of mean (µ)= 42 with standard deviations (-x) ~ 25 FTU & standard 

deviation (+x) ~25 FTU equally spaced from the mean. Trend lines have been drawn 

trend lines along both the observations. 
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Figure 4:   Data results in the experiment-Depiction of Water Temperature & Turbidity captured across 

timestamp ranges (Left – Water temperature Vs Timestamp, Right- Turbidity Vs Timestamp) 

 

Inference 
 

 The probability distribution of IoT device1 is inferred as Normal Distribution 

 The probability distribution of IoT device1 is inferred as Gaussian Distribution 

 

I have taken an assumption to give equal weightage to the IoT data source considering the 

requirement of Cloud Compute resource while applying Inventory Theory for optimization of 
forecasted range of computer resources. 

 

The end goal is optimizing the total number of compute resources possibly could be required in 
this process of capturing IoT real time data of stochastic nature with the help of Inventory theory 

discussed in Section-2 of this paper & the baseline range would be considered as calculated from 

Section-6, Figure -3 
 

9. EXPERIMENT RESULT: OPTIMIZATION BY APPLYING  INVENTORY 

THEORY 

 

The baseline range outlined would be considered as calculated from Section-3, Figure -3 

considering approximately 2-3 availability zones & the solutions has been architected using the 
solution architecture in Figure-2. The services invoked in the solution are in many cases managed 

services of Amazon ® Web Services but each of the services on the background invokes 

instances for the best suitability of the IoT data processing under consideration. 

 
The best of the solution architecture design could be done with an approximation with the 

solution architecture under consideration which have considered standard well architected 

framework of Amazon ® Web Services particularly suited for the requirement Luis A. San-José 

et al [6] have used the Inventory theory to maximize profit in an inventory system of Time 

varying demand, I have applied the same concept of applying Inventory theory into time varying 

data to maximize resource utilization. 
 

I have investigated the problem statement from the data perspective by which applied statistical 

analysis & pure probability distribution by interpreting the nature of the data & output produced 

from the IoT sensors as depicted and visualized in Figure-4. 
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9.1. Optimization of Instances for IoT Sensor 1 
 

Assuming equal weightage on distribution of compute instances baselined in Section-3 I have 

considered 50% of the instances (7-10 instances) to be consumed to process the IoT Sensor 1 
data which measures Water Temperature Vs Timestamp. 

 

The output has been inferred to be producing a Normal Probability Distribution 
 

Hence, the probability distribution function & the cumulative distribution function in the interval 

of [m, n] can be defined as 

 

Density function: 

 

Ψ(ξ) = 0 if ξ < m 
Ψ(ξ) = 1/ (n−m) if m ≤ ξ ≤ n 

Ψ(ξ) = 0 if ξ >n 

 

Cumulative Distribution: 

ΦD(y) = 0 if y < m 

ΦD(y) = (y−m)/ (n−m) if a ≤ y ≤ b  

 ΦD(y) = 1 if y >n 
 

 Assuming the optimal number of reserved instances will be in the range of 7 ≤ y ≤ 10 

 Assuming the consideration of partial upfront plan of AWS® with hourly rate for on-

demand & reserve instances of m3. medium instances in us region (us-east1-a or us-

west1-b) – Cost /hr (On demand) =$ 0.07 & Cost/hr (Reserved)=$ 0.05 
 

ΦD(y) = (Cod – Cri) / Cod 

(y-7)/ (10-7) = (0.07-0.05)/ 0.07 = 7.85 

Y ~ 8 Instances………. (A) 

 

8.2. Optimization of Instances for IoT Sensor 2 

 

Assuming equal weightage on distribution of compute instances baselined in Section-3 I have 
considered 50% of the instances (7-10 instances) to be consumed to process the IoT Sensor 1 

data which measures Turbidity Vs Timestamp. 

 
The output has been inferred to be producing a Gaussian Probability Distribution 

 

Following similar approach like above from Jamie Zappone[6] outlined that the probability 

distribution function & the cumulative distribution function in the interval of [m, n] can be 
defined as  

 

Density function: 

 

Ψ(ξ)=  
𝟏

𝝈√𝟐𝜫
ⅇ−( 𝒙−𝝁′)𝟐

𝟐𝝈𝟐  

 

Cumulative Distribution: 
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ΦD(y) = 
𝟏

√𝟐𝜫
𝝈 ∫ ⅇ

−(𝒕−𝝁)𝟐

𝟐𝝈𝟐 𝒅𝒕
𝒚

∞

 

 

 Assuming the optimal number of reserved instances will be in the range of 7≤  y ≤ 10 

 Assuming the consideration of partial upfront plan of AWS® with hourly rate for on-

demand & reserve instances of m3. medium instances in US region (us-east1-a or us-

west1-b) – Cost /hr (On demand) =$ 0.07 & Cost/hr (Reserved) =$ 0.05 

 The Mean (µ) is observed to be 42, standard deviation ( 𝜎) =60 within the range of 

normalization of Min value =2000 and Max value =4000 in Figure 4 which calculates the 
Cumulative Distribution function (ΦD(y)) for Gaussian distribution ~ 0.285 when 

the upper limit of integration (y) =8 [ Calculated using Cumulative Dstribution 

Calculator for Gaussian distribution] 
 

Referring to the Cost Optimization obtained from Inventory Theory model as below 

 

ΦD(y) = (Cod – Cri) / Cod 

 

ΦD(y) = (0.07-0.05) / 0.07 =   0.285 is true when 

 

y ~ 8 Instances………. (B) 

 
The total number of reserved instances applying Inventory theory model for optimization  

=(A) +(B) =16. 

  

10. EXPERIMENT INFERENCE 

 
 In this work I have predicted an estimated number of total reserved compute capacity 

expected to process the IoT data from the site location emanating from 2 IoT sensors 
with a stochastic & unpredictable nature of data propagation to be in the range of 14-20 

instances depending on the number multi-availability zone under consideration. 
 I have intended to perform the experiment on the Beach water data and interpreted the 

probability distribution of turbidity and water temperature of the beach water data. As 
observed the water temperature results could be interpreted as uniform probability 

distribution & the turbidity as Gaussian distribution for thousands of instances of 

captured for every event. The Inventory theory model for optimization of reserved Cloud 

Compute resources was hence applied and found that number of instances optimized by 
Inventory model application is streamlined to (8+8) =16 instances which falls correctly 

into the range of instances predicted & assumed during solution architectural approach. 
 

11.  LIMITATIONS & AREAS OF IMPROVEMENT 
 

While in the process of background study I analysed Kenneth J. Arrow et al [7] where optimal 

inventory policies have been discussed with constant & variable rates of changes, I took my 

understanding to model the solution of variable data inflow in an idealized rather than an exact 
representation of the real problem. Hence my results do not guarantee the solution to be the best 

possible solution, rather an approach with real time data to achieve an optimized prediction of 

reserved compute instances & would lead to cost optimization with upfront plan of reserved 
instances. 
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Abayomi et al [8] discussed in their research paper on Dynamics of Inventory Cost Optimization 
the application of Inventory Theory model applied to both deterministic and stochastic demands 

& thereby arrived to find out the optimised stock procurement approach when applied in context 

of Supply chain. I have however, not performed any experiment to apply the Inventory Model to 

determine the number of reserved compute instances in any scenario where there is a constant 
deterministic in nature rather the concept of Inventory Model Cost optimization has been applied 

to stochastic data emanating from IoT & captured in AWS® cloud architecture to predict a 

baseline of the number of reserved compute instances &further optimized using the distribution 
output of the data sources. 

 

Hence, I acknowledge the application of the same solution approach into data sources of constant 
deterministic data is a subject of further research. 

 

12. CONCLUSION 
 

I expect that my work to be a connecting between all the research work established to optimize 
the reserved capacity cost optimization in Cloud Computing. With real data obtained from IoT 

devices which have an uncertainty stochastic nature of propagation, I have intended to simulate a 

solution architecture to capture such data to predict a range of compute capacity required for 
flow, propagation & storage & for the same opted AWS® Cloud platform services. In my 

endeavour to further interpret the dataset into probability distribution curves I have applied Cost 

optimization from Inventory theory model to identify the optimized number of reserved instances 

required for the experiment performed which was observed to be falling in the range of instances 
predicted by solution approach. 

 

I, trust this work will motivate upcoming avenues of future research where data is stochastic & 
real time, data driven approach for cost estimation of compute power is necessary and budget for 

the same need to be predetermined with less dependence on the Cloud service provider to provide 

the provisioning plans. 
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