
Fast Fluid Thermodynamics Simulation

By Solving Heat Diffusion Equation

Wanwan Li

George Mason University

Figure 1: A demo of GPU-accelerated fluid thermodynamics simulation which is solved by Navier-
Stokes equations coupled with Heat Diffusion Equation: (a) Photo-realistic fluid rendering. (b)
Fluid heat map visualization. Temperature is varying between 0◦C(purple) and 10◦C(red).

ABSTRACT

In mechanical engineering educations, simulating fluid thermodynamics is rather helpful for stu-

dents to understand the fluid’s natural behaviors. However, rendering both high-quality and real-

time simulations for fluid dynamics are rather challenging tasks due to their intensive computations.

So, in order to speed up the simulations, we have taken advantage of GPU acceleration techniques

to simulate interactive fluid thermodynamics in real-time. In this paper, we present an elegant,

basic, but practical OpenGL/SL framework for fluid simulation with a heat map rendering. By

solving Navier-Stokes equations coupled with the heat diffusion equation, we validate our frame-

work through some real-case studies of the smoke-like fluid rendering such as their interactions

with moving obstacles and their heat diffusion effects. As shown in Fig. 1, a group of experimental

results demonstrates that our GPU-accelerated solver of Navier-Stokes equations with heat transfer

could give the observers impressive real-time and realistic rendering results.

KEYWORDS

Fluid Simulation; Navier-Stokes Equations; OpenGL/SL; Thermodynamics;

1. Introduction

As a very useful tool to simulate the behavior of fluid dynamics through computers, fluid
simulation technologies have several important applications range from the extremely time-
consuming high-quality animations for film, to simple real-time particle systems[1][2][3],
from the Laplacian Eigenfunctions based simulation[4] to Fourier synthesis of water surface
wave[5] used in the games. However, open-source codes for the fluid simulation via solving
Navier-Stokes equations[6] such as OpenFOAM[7], LifeV[8], FEAT-FLOW[?] are based
on the CPU computation processors which are very slow to deal with the computation-
intensive task. Under the need for speeding up the fluid simulation, GPU-accelerated
real-time fluid rendering has already been applied for 3D interactive simulation[9][10]. For

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

1DOI: 10.5121/ijcga.2021.11401

https://airccse.org/journal/ijcga/vol11.html
https://doi.org/10.5121/ijcga.2021.11401


comparison, CPU-based fluid simulation takes additional time to render every time step
and then compile all the results into a video file. For high spatial and temporal resolution
simulations, this complex process will definitely slow down its process and speed. In order
to increase the simulation efficiency, one powerful method is to use the GPU devices to
simulate the fluid dynamics (and corresponding heat and mass transfer therein) using
multi-threads parallel programming technology.

GPU-based fluid simulation has been well studied in the computer graphics area. For ex-
ample, Harris et al.[11] has previously described the basic concepts, programming method-
ology, and numerical algorithms about how to simulate the dynamic fluid flow-field using
the texture which is a special data structure used for the GPU devices and using the shader
language which is used to instruct the GPU about how to render each pixel on the screen.
However, the GPU-based thermal-fluid simulation has not yet reached its full potential
been widely used in the heat and mass transfer community due to several conceptual chal-
lenges with GPU programming and the limited availability of the open-source GPU code
for specific simulations of a complex physical phenomenon – such as multi-component
species diffusion, coupled heat and mass transport, fluid-obstacle interactions, boiling,
condensation, evaporation, fluid droplet formation, break-up, and contact-line motion on
solid surfaces coupled with solid-fluid and fluid-air interface forces[12][13].

Among those recent works, Nuli et al. [14] used CUDA-enabled GPU to speed up the Sph-
based fluid animation. Clausen et al. [15] proposed a Lagrangian finite element method
to simulates the interactions between liquids and solids. De et al. [16] introduced a power
diagrams-based approach for incompressible fluid simulations. Considering the particle-
strength exchange phenomenon, Zhang et al. [17] resolved the fluid boundary layers issues
in fluid simulations. Koster et al. [18] improved the performance of real-time fluid simu-
lations with an adaptive position-based method. Chu et al. [19] has used the CNN-based
feature descriptors to implement an efficient data-driven approach for smoke flow sim-
ulations. Akbay et al. [20] presented a novel extended partitioned method for two-way
solid-fluid coupling. Nagasawa et al. [21] proposed a nonlinear blending model that can
simulate shear-thinning fluids. Though constraint-based bubbles and affine fluid regions,
Goldade et al. [22] proposed a novel model for efficient immersed bubbles and flexible
spatial coarsening fluid simulation approach. Fang et al. [23] proposed an interface called
IQ-MPM to apply a quadrature material point method for simulating non-sticky strongly
two-way coupled nonlinear solids and fluids interactions. Yang et al. [24] proposed a solver
of Clebsch wave functions for gauge fluid simulations. Xiong et al. [25] proposed a vor-
tex segment cloud-based approach for incompressible flow simulation. Ruan et al. [26]
proposed a novel method to model the contact interaction between solid and fluid where
exists strong surface tension. Wang et al. [27] devised an approach for thin-film smoothed
particle hydrodynamics fluid simulations.

Our work extends the GPU fluid simulation implemented by Philip Rideout et al.[28]
by adding the interaction between fluid and moving obstacle and adding the diffusion
property of the smoke-like fluid. So at here, in order to demonstrate a more practical
open-source framework for GPU accelerated fluid simulations with well-explained imple-
mentation details, and a couple of numerical simulations are implemented and discussed,
we also give detailed algorithms, proof, and mathematical models used for a specific
GPU simulation such as the two-phase smoke-obstacle rendering. To support advances
in both the computer graphics community and the heat mass transfer community, we
also provide some supplemental materials including our source code, implementation in-
structions, and videos of the simulation results which can be accessed through this link:
https://youtu.be/zfczUyBE3ds.

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

2

https://youtu.be/zfczUyBE3ds


2. Numerical Methods

To simulate the heat and mass transport of an incompressible fluid, an implicit volume
of fluid (VOF) GPU model is used. A fluid is incompressible if the volume of any sub-
region is constant over time. Specifically, we simulate the spatial and temporal dynamics
of smoke in the air on a regular Cartesian grid with the 2D spatial coordinates r = (x, y).
The fluid is represented by its velocity field u(r, t) and a scalar pressure field p(r, t). If
the velocity and pressure are known at some initial time t = 0, then the velocity of the
fluid changing over time can be described by the Navier-Stokes equations[10]:

∂u

∂t
= −u · ∇u− 1

ρ
∇p+ ν∇2u +

F

ρ
(1)

∇ · u = 0 (2)

where ρ is the fluid density, ν is the kinematic viscosity, and F represents any external
forces per unit volume that act on the fluid. Equations of the form ∇2x = b are known as
Poisson equations. The case where b = 0 is Laplace’s equation, which is the origin of the
Laplacian operator.

2.1. Advection Equation

Advection is the process by which a fluid’s velocity transports itself or other fluid properties
q(r, t) such as its concentration, temperature, or any quantity carried by the fluid at any
position r and time t in the fluid. This property is described as the first term in Eq. 1
which is shown in Eq. 3:

∂q(r, t)

∂t
= −u(r, t) · ∇q(r, t) (3)

However, in the multi-threads-based parallel GPU computation, it is not a good idea to
simply move the position r of each pixel forward along the velocity field at the corre-
sponding distance that pixel would travel in ∆t time by r(t + ∆t) = r(t) + u(r, t)∆t.
The reason is the locations where the GPU’s multi-threads are writing cannot be moved.
The solution is to invert the problem and use an implicit method[29] to advect quantities
by copying a pixel from the previous time step. According to the advection equation:
q(r + u(r,∆t), t + ∆t) = q(r, t), we can trace the trajectory of the pixel from each grid
cell back in time to its former position, and we copy the quantities at that position to the
new grid cell. To update a quantity q, we use Eq. 4:

q(r, t+ ∆t) = q(r− u(r, t)∆t, t) (4)

In order to prove the correctness of Eq. 4, we need to assume that the ∆t is sufficiently
small to allow the Taylor expansion on both sides of Eq. 4, then it gives Eq. 5:

q(r, t) +
∂q(r, t)

∂t
∆t = q(r, t)− ∂q(r, t)

∂r
u(r, t)∆t (5)

We assume that any 2D position r can be described as a 2D coordinate (x, y), then by
subtracting q(r, t) and dividing ∆t on both sides of Eq. 5 yielding:

∂q(x, y, t)

∂t
= −u(x, y, t)

(
∂q(x, y, t)

∂x
+
∂q(x, y, t)

∂y

)
(6)

Finally, we introduce the divergence operator into the Eq. 6 to get:

∂q(x, y, t)

∂t
= −u(x, y, t) · ∇q(x, y, t) (7)

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

3



From the proof shown here, we could prove that Eq. 7 is equivalent to Eq. 3, so the implicit
method can give us a vivid animation of fluid as it leads to the same result to the methods
that directly advecting quantities by computing where a particle is moving towards over
the next time step.

2.2. Diffusion Equation

In our GPU-based real-time fluid rendering, heat and mass diffusion are important trans-
port mechanisms to account for. Due to the molecular interaction caused by the molecular
heat motion, there is the diffusion phenomenon for both its temperature T and concentra-
tion C. The heat and mass diffusion property can be expressed by heat diffusion equation:

∂Ψ(r, t)

∂t
+ u(r, t) · ∇Ψ(r, t) = ∇ · (DΨ(r, t)∇ ·Ψ(r, t)) (8)

Assume that the diffusion coefficient DΨ(r, t) does not change over time and space, For
simplicity, hence it can be replaced into a constant DΨ, then Eq. 8 is in this form:

∂Ψ(r, t)

∂t
+ u(r, t) · ∇Ψ(r, t) = DΨ∇2Ψ(r, t) (9)

For the mass diffusion equation of fluid, we can simply replace q into C. But for the heat
diffusion of fluid, by replacing q into into T and adding the heat transfer term, we would
get the famous heat equation:

∂T

∂t
+ u · ∇T = DT∇2T + κ(ṪS − T ) (10)

Where ṪS is the temperature of the surface on the obstacle, and k is the thermal con-
ductivity of the fluid. At the same time, this equation equally applies to the obstacle
temperature. Eq. 10 can be decomposed into three terms:

(1) Advection Term:
∂T ′

∂t
= −u · ∇T ′ (11)

(2) Diffusion Term:
∂T ′′

∂t
= DT

(
∂2T ′′

∂x2
+
∂2T ′′

∂y2

)
(12)

(3) Heat Transfer Term:

∇Tr =
1

N

∑
∀d∈Dr

Ṫd − Tr (13)

WhereDr is a 2D domain both near the position r and within the obstacle, N is the number
of pixels on such domain. Then we can get the final heat equation as T = T ′+T ′′+ k∇Tr
So according to this, the GPU-based solver for the diffusion equation is shown below:

T (r, t+ ∆t) = T (r− u(r, t)∆t, t) +DT∇2T (r, t)∆t+ k∇Tr(r, t) (14)

Where the Laplacian operator ∇2T (r, t) in GPU solver can be expressed as:

∇2Tx,y = lim
∆x,∆y→0

(
Tx−∆x,y − 2Tx,y + Tx+∆x,y

∆x2

)
+

(
Tx,y−∆y − 2Tx,y + Ty,y+∆y

∆y2

)
(15)

Diffusion term actually smoothes the value of concentration or temperature of the smoke
among the space.

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

4



2.3. Poisson Equation

Let domain D be the region in which the fluid is moving, then there is the Helmholtz -
Hodge Decomposition Theorem[30]: Any vector field W on a domain D can be uniquely
decomposed in the form described by equation:w = u+∇p. Where u has zero divergences.
The continuity equation 2 requires that for each time step fluid simulation is constrained
with a divergence-free velocity. According to the Helmholtz-Hodge Decomposition Theo-
rem, divergence of the velocity can be corrected by subtracting the gradient of pressure
field: u = w − ∇p. When we apply the divergence operator to both sides of the above
equation, we obtain: ∇ · u = ∇ · (w − ∇p), so that we have ∇ · u = ∇ · w − ∇2p. But
since Eq. 2 enforces that ∇ · u = 0, then this simplifies to the Poisson-pressure equation:

∇2p = ∇ ·w (16)

In our fluid simulation, we need to solve the Poisson-pressure equation. Poisson equations
are common in physics and well understood in numerical analysis[31]. We use an iterative
solution technique called Jacobi iteration[32] that starts with an approximate solution
such as a matrix of zeros and improves it through every iteration with the form:

∇2pt+∆t
x,y = lim

∆x,∆y→0

1

4

(
ptx−∆x,y + ptx+∆x,y + ptx,y−∆y + ptx,y+∆y −∆x∆y∇ ·wx,y

)
(17)

3. Implementation

3.1. Smoke Physics

Smoke is a collection of airborne solid and liquid particulates and gases emitted when
a material undergoes combustion [33]. According to this definition, the smoke itself is
not fluid but a particle system. The reason that why smoke propagates like fluid is the
smoke particles are advected by a translucent media, that is, the airflow, at the same time
diffused into the air. So in order to simulate the behavior of smoke is actually to consider
the fluid property of air plus the diffusion property of smoke.

Recall the process of the generation of smoke: due to combustion, heat is generated and
diffused into the air which causes the particular region of air to rise up due to the heat
buoyancy. At the same time, the burned tiny solid particles are advected by the uprising
air and cause the distribution of smoke changes among the space like the flow of fluid.
So the basic thermodynamics in this process is the combined external force of buoyancy,
caused by the heat source, and gravity together with the heat diffusion.

3.2. External Force

Apply external force F such as buoyancy and gravity. For smoke simulation, temperature
T can influence velocity by making it rise. In our implementation, we also apply the weight
of the smoke in this stage; high concentration C in cool regions will sink. The velocity
u of air caused by heat buoyancy B, density of smoke Dsmoke and density of air Dair at
region r(x, y) is:

F = (C(r, t)Dsmoke + (1− C(r, t))Dair + T (r, t)B)y (18)

This external forces model consists of buoyancy and gravity that can affect the velocity of
smoke only along the y = (0, 1) direction.

3.3. Fluid-Obstacle Interactions

To account for the fluid simulation of a solid-fluid interface, in this part we will take a
close look at the mechanism of the interaction between the smoke and moving solid object.

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

5



In our experiments, we try different motion equations for the moving obstacle. For imple-
mentation on GPU, we are using three different texture buffers to store the information of
obstacle’s mass, obstacle’s velocity, and obstacle’s displacement. We send this information
as framebuffers into the GPU for high-performance computation. However, in order to
expand this obstacle-fluid simulation to the two-phase fluid simulation easily, we use the
advection-based model to render the moving object on the texture space. Here for any
solid object, there is the advection equation of the phase function of obstacle φs:

∂φs
∂t

= −u · ∇φs (19)

And the phase function Φs is defined as a property to describe the distribution of the
obstacle, when Φs is equal to 1, it means this position is fully filled with an obstacle.
However, due to the fact that GPU texture has discrete texels, or say, grids. So it loses
the precision after a large number of iterations according to the advection calculations,
this causes the blurring of the edge of the obstacle. So we propose a constrained advection
model applied during the advection phase, which is:

φs(r, t+ ∆t) =

{
1 φs(r− u∆t, t) > 1− φ0

0 φs(r− u∆t, t) ≤ φ0

(20)

Where φ0 is a pre-defined number, in our implementation, we empirically set φ0 = 0.1
which yields some pretty good effects even under the effects of the loss of mass during the
advection.

The correction of velocity is to subtract the new velocity by the gradient of pressure solved
from the Poisson equation. However, when we consider the interaction between fluid and
obstacle, as the obstacle pushes the fluid around itself moving forward together, we force
the velocity of fluid u equal to the velocity of obstacle us where the obstacle phase function
equals to one. The corrected velocity can be calculated as:

u(r, t+ ∆t) = us(r, t) |φs(r,t)=1 (21)

From experiments, we have found that our proposed model helps us get rid of applying
the ”no-slip boundary condition”[34] by directly forcing the advected properties q into 0
where the obstacle phase function φs is equal to one:

q(r, t+ ∆t) =

{
q(r− u∆t, t) φs(r, t) = 0

0 φs(r, t) = 1
(22)

3.4. Simulation Steps

Figure 2: Fluid Simulation Steps.

As discussed in the above section, our
GPU simulation methods follow the idea
of the Helmholtz-Hodge decomposition
approach. We decompose our uniform
grid into sub-blocks of similar size. In
a simulation, each parallel process stores
the simulation data of its own sub-block
into the texture rendered as a buffer for
GPU computation. For rendering oper-
ations, we add several layers or surfaces into one slab and let these two “play ping-pong”
with each other to read and write the buffer. Each step of our algorithm is shown in
Fig. 2. This process is repeated for every time step, so this figure plots a single time step.

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

6



R
en

d
er

in
g.

H
ea

t
M

a
p

.

(a)Sphere (b)Teapot (c)Dragon

R
en

d
er

in
g
.

H
ea

t
M

ap
.

(d)Bunny (e)Armadillo (f)Angle

Figure 3: Experiments Results of GPU-Accelerated Smoke Thermodynamics Simulation.

The variables u and p hold the velocity and pressure field data. In our implementation on
OpenGL/SL platform which is widely used for high-performance rendering[35]. We have
implemented several different shader functions for each rendering phase.

4. Results And Discussion

In order to demonstrate the properties of fluid through simulations, we have tried the
smoke rendering which has diffusion properties making itself spreading and propagating
in another media fluid, say, air. At the same time, we consider the interaction between
smoke and a moving solid obstacle. As shown in Fig. 3, we have simulated the interaction
between the obstacle and smoke on GPUs. In the sphere example(a), the motion equation
for the osculating sphere is using the spring oscillation model interpreted by the famous
Hook’s law which is shown in Eq. 23:

∂v(r, t)

∂t
= − k

M

∫ t

0
v(r, t)dt (23)

Where the initial velocity of the moving sphere is v = (−100.0, 0), elastic coefficient k = 5,
and mass M = 10. During the rendering of each frame, we use the blending function to mix
up three different texture frame buffers: (i) Background image (a glass box), (ii) Obstacle
(a glass sphere), and (iii) Fluid Density Image (the smoke). All graphics contents are
rendered by GPU shader language OpenGL/SL. In order to validate our code on the case

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

7



R
en

d
er

in
g.

H
ea

t
M

a
p

.

Time (5 sec) Time (10 sec) Time (15 sec)

R
en

d
er

in
g
.

H
ea

t
M

ap
.

Time (20 sec) Time (25 sec) Time (30 sec)

Figure 4: Experiments Results of GPU-Accelerated Smoke Thermodynamics Simulation.

where the obstacle is a none-sphere object, such as the object with a non-irregular shape,
we have shown the simulation of the interaction between the smoke and: a glass teapot(b),
a glass dragon(c), a glass bunny(d) a glass armadillo(e) and a glass angel(f). Besides the
oscillating sphere example(a), other cases(b-f) are not moving.

As shown in the second and fourth row of Fig. 3, presented are the distributions of the heat
among a cold space with ambient temperature as 0◦C. As an impulse of the temperature of
a 10◦C at the center of the smoke, the temperature is advected by the smoke and diffused
into the space. We visualize the heat map with colors where the temperature is varying
between 0◦C(purple) and 10◦C(red). In order to plot the heat value with realistic visual
effects, we are using the heat mapping algorithm by transforming the HSB color space
into the RGB color space[36]. The correlation between the color and the heat value is
represented as the linear interpolation of the hue value from 0 to 4.5 between red and
purple, which is transforming into the heat map color space from min value of 0◦C and
max heat value of 10◦C, the correspondence between temperature(number in ◦C) and the
color is shown at the right side label next to the white boxes in the simulation. During
the simulation, we consider the heat transfer between the hot smoke and the cold sphere,
so, there is heat distribution colored on the sphere. Similarly, the heat maps are rendered
for the simulations on other obstacles such as teapot and dragon, etc. as well.

As Shown in Fig. 4, another experiment is conducted to simulate a sphere that is swimming

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

8



in a glass box filled with smoke. The initial velocity of the sphere is vertical to the gravity
diffraction. Therefore, according to Hook’s law shown in Eq. 23, the sphere will rotate
periodically around the center. In this figure, different columns represent different time
slots during the simulation. As the rotating sphere push the smoke forward, the moving-
forward sphere left an empty area with a low concentration of smoke behind itself. On the
other hand, the smoke in front of the sphere will become denser due to being ”pushed”.
The concentration maps of the smoke which is changing with the time t from 1sec to 30sec
are shown in the first and third row in Fig. 4.

The second and fourth row in Fig. 4 visualizes the heat map of the fluid simulation. Noted
that the sphere and the ambient temperature of the environment outside the glass box is
a low temperature of 0◦C. At the initialization step, the smoke in the glass box is set with
a high temperature 10◦C. During the simulation, as time goes by, the smoke is becoming
cooler as the heat is attracted to the environment at the same time the periphery area of
the sphere is becoming hotter as it is heated by the smoke. However, the heating speed of
the sphere is much slower than the cooling speed of the smoke as the environment is an
open space and has a constant low temperature.

5. Conclusions

During this experiment, we have implemented the GPU-based fluid simulation which takes
into account the interaction between object and smoke-like fluid and has some realistic
results shown in the figures above. However, there are still some problems that are waiting
for us to deal with, such as the ones that happen to the simple advection model of the solid
obstacle. Actually, this model could only deal with the translation of solid objects rather
than any other complex motion such as rotation or deformation which may always happen
on the common simulations such as swimming animals or rotating gears. The reason
why this model is limited for such cases is that the simple advection model works only if
the velocity is exactly the same for every tiny part of the obstacle, and also the motion
equation of the object is known as the input parameters. But for complex motion like
deformation or rotation, some more advanced techniques are needed in order to estimate
the velocity of the edges along with the obstacle, this part can be the next step for our
research. Besides this, as we mentioned in the introduction, we need to continue our work
by taking the multi-phase fluid simulation into account, and validate this further work
on the simulation of the formation of the droplet from a square and finally apply this
to the GPU-based simulation of the droplet evaporating on a heating surface. However,
our presented methods are focusing on the 2D fluid thermodynamics simulation, so the
possible expansion from the 2D simulation into the realistic 3D fluid rendering is a both
challenging and promising task.

6. References

[1] M. Müller, D. Charypar, and M. H. Gross, “Particle-based fluid simulation for inter-
active applications.,” in Symposium on Computer animation, pp. 154–159, 2003.

[2] S. Premžoe, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker, “Particle-based
simulation of fluids,” in Computer Graphics Forum, vol. 22, pp. 401–410, Wiley Online
Library, 2003.

[3] T. Kim, N. Thürey, D. James, and M. Gross, “Wavelet turbulence for fluid simula-
tion,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1–6, 2008.

[4] T. De Witt, C. Lessig, and E. Fiume, “Fluid simulation using laplacian eigenfunc-
tions,” ACM Transactions on Graphics (TOG), vol. 31, no. 1, pp. 1–11, 2012.

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

9



[5] G. A. Mastin, P. A. Watterberg, and J. F. Mareda, “Fourier synthesis of ocean
scenes,” IEEE Computer graphics and Applications, vol. 7, no. 3, pp. 16–23, 1987.

[6] K. M. Kalland, “A navier-stokes solver for single-and two-phase flow,” Master’s thesis,
2008.

[7] H. Jasak, A. Jemcov, Z. Tukovic, et al., “Openfoam: A c++ library for complex
physics simulations,” in International workshop on coupled methods in numerical dy-
namics, vol. 1000, pp. 1–20, IUC Dubrovnik Croatia, 2007.

[8] L. Bertagna, S. Deparis, L. Formaggia, D. Forti, and A. Veneziani, “The lifev
library: engineering mathematics beyond the proof of concept,” arXiv preprint
arXiv:1710.06596, 2017.

[9] A. Kolb and N. Cuntz, “Dynamic particle coupling for gpu-based fluid simulation,”
in Proc. 18th Symposium on Simulation Technique, pp. 722–727, Citeseer, 2005.

[10] K. Crane, I. Llamas, and S. Tariq, “Real-time simulation and rendering of 3d fluids,”
GPU gems, vol. 3, no. 1, 2007.

[11] M. J. Harris, “Fast fluid dynamics simulation on the gpu.,” SIGGRAPH Courses,
vol. 220, no. 10.1145, pp. 1198555–1198790, 2005.

[12] M. Griebel and P. Zaspel, “A multi-gpu accelerated solver for the three-dimensional
two-phase incompressible navier-stokes equations,” Computer Science-Research and
Development, vol. 25, no. 1, pp. 65–73, 2010.

[13] S. A. Putnam, A. M. Briones, L. W. Byrd, J. S. Ervin, M. S. Hanchak, A. White,
and J. G. Jones, “Microdroplet evaporation on superheated surfaces,” International
journal of heat and mass transfer, vol. 55, no. 21-22, pp. 5793–5807, 2012.

[14] U. A. Nuli and P. Kulkarni, “Sph based fluid animation using cuda enabled gpu,”
International Journal of Computer Graphics & Animation, vol. 2, no. 4, p. 45, 2012.

[15] P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’brien, “Simulating liquids and
solid-liquid interactions with lagrangian meshes,” ACM Transactions on Graphics
(TOG), vol. 32, no. 2, pp. 1–15, 2013.

[16] F. De Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun, “Power particles: an
incompressible fluid solver based on power diagrams.,” ACM Trans. Graph., vol. 34,
no. 4, pp. 50–1, 2015.

[17] X. Zhang, M. Li, and R. Bridson, “Resolving fluid boundary layers with particle
strength exchange and weak adaptivity,” ACM Transactions on Graphics (TOG),
vol. 35, no. 4, pp. 1–8, 2016.

[18] M. Köster and A. Krüger, “Adaptive position-based fluids: improving performance of
fluid simulations for real-time applications,” arXiv preprint arXiv:1608.04721, 2016.

[19] M. Chu and N. Thuerey, “Data-driven synthesis of smoke flows with cnn-based feature
descriptors,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1–14, 2017.

[20] M. Akbay, N. Nobles, V. Zordan, and T. Shinar, “An extended partitioned method
for conservative solid-fluid coupling,” ACM Transactions on Graphics (TOG), vol. 37,
no. 4, pp. 1–12, 2018.

[21] K. Nagasawa, T. Suzuki, R. Seto, M. Okada, and Y. Yue, “Mixing sauces: a viscosity
blending model for shear thinning fluids,” ACM Transactions on Graphics (TOG),
vol. 38, no. 4, pp. 1–17, 2019.

[22] R. Goldade, M. Aanjaneya, and C. Batty, “Constraint bubbles and affine regions:

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

10



reduced fluid models for efficient immersed bubbles and flexible spatial coarsening,”
ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp. 43–1, 2020.

[23] Y. Fang, Z. Qu, M. Li, X. Zhang, Y. Zhu, M. Aanjaneya, and C. Jiang, “Iq-mpm: an
interface quadrature material point method for non-sticky strongly two-way coupled
nonlinear solids and fluids,” ACM Transactions on Graphics (TOG), vol. 39, no. 4,
pp. 51–1, 2020.

[24] S. Yang, S. Xiong, Y. Zhang, F. Feng, J. Liu, and B. Zhu, “Clebsch gauge fluid,”
ACM Transactions on Graphics (TOG), vol. 40, pp. 1–11, 8 2021.

[25] S. Xiong, R. Tao, Y. Zhang, F. Feng, and B. Zhu, “Incompressible flow simulation on
vortex segment clouds,” ACM Trans. Graph., vol. 40, no. 4, 2021.

[26] L. Ruan, J. Liu, B. Zhu, S. Sueda, B. Wang, and B. Chen, “Solid-fluid interaction
with surface-tension-dominant contact,” ACM Trans. Graph., vol. 40, July 2021.

[27] M. Wang, Y. Deng, X. Kong, A. H. Prasad, S. Xiong, and B. Zhu, “Thin-film
smoothed particle hydrodynamics fluid,” ACM Transactions on Graphics (TOG),
vol. 40, no. 4, pp. 1–16, 2021.

[28] P. Rideout, “Fluid sim.” https://prideout.net/, May 2012.

[29] J. Stam, “Stable fluids,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pp. 121–128, 1999.

[30] H. Bhatia, G. Norgard, V. Pascucci, and P.-T. Bremer, “The helmholtz-hodge de-
composition—a survey,” IEEE Transactions on visualization and computer graphics,
vol. 19, no. 8, pp. 1386–1404, 2012.

[31] T. Simchony, R. Chellappa, and M. Shao, “Direct analytical methods for solving pois-
son equations in computer vision problems,” IEEE transactions on pattern analysis
and machine intelligence, vol. 12, no. 5, pp. 435–446, 1990.

[32] R. Amorim, G. Haase, M. Liebmann, and R. W. Dos Santos, “Comparing cuda and
opengl implementations for a jacobi iteration,” in 2009 International Conference on
High Performance Computing & Simulation, pp. 22–32, IEEE, 2009.

[33] G. W. Mulholland, “Smoke production and properties,” SFPE handbook of fire pro-
tection engineering, vol. 3, 2002.

[34] S. Richardson, “On the no-slip boundary condition,” Journal of Fluid Mechanics,
vol. 59, no. 4, pp. 707–719, 1973.

[35] Y. Feiniu, L. Guangxuan, F. Weicheng, et al., “High quality interactive volume ren-
dering based on 3d texture mapping using opengl sl,” CJK-MI, pp. 134–138, 2004.

[36] J. D. Foley, F. D. Van, A. Van Dam, S. K. Feiner, J. F. Hughes, and J. Hughes,
Computer graphics: principles and practice, vol. 12110. Addison-Wesley Professional,
1996.

International Journal of Computer Graphics and Animation (IJCGA) Vol. 11, No. 1/2/3/4, October 2021

11

https://prideout.net/



