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ABSTRACT 

 
The Position Based Fluids (PBF) method is a state-of-the-art approach for fluid simulations in the context 

of real-time applications like games. It uses an iterative solver concept that tries to maintain a constant 

fluid density (incompressibility) to realize incompressible fluids like water. However, larger fluid volumes 

that consist of several hundred thousand particles (e.g. for the simulation of oceans) require many 

iterations and a lot of simulation power. We present a lightweight and easy-to-integrate extension to PBF 

that adaptively adjusts the number of solver iterations on a fine-grained basis. Using a novel adaptive-

simulation approach, we are able to achieve significant improvements in performance on our evaluation 

scenarios while maintaining high-quality results in terms of visualization quality, which makes it a perfect 

choice for game developers. Furthermore, our method does not weaken the advantages of prior work and 

seamlessly integrates into other position-based methods for physically-based simulations. 

 

KEYWORDS 

 
Fluid simulation, Adaptive fluid simulation, Position based fluids, Adaptive position-based fluids, SPH, 

PCISPH, Constraint fluids, Position based dynamics 

 

1. INTRODUCTION 

 
Modern games leverage real-time physics simulations to provide a realistic experience. In 

particular, fluid simulations that can interact with other physical objects in the scene have become 

more and more popular [1,2,3].The approach of Position Based Fluids (PBF) by Macklin et al. [4] 

has relaxed previous limitations while maintaining stability. It uses position-based dynamics and 

constraint functions based on Smoothed Particle Hydrodynamics (SPH) [5, 6].Moreover, it allows 

for a seamless integration into other position-based methods that are widely spread in the scope of 

real-time applications [7]. 

 

However, fluids require a notion of incompressibility (constant fluid density) for a realistic 

simulation. In the scope of PBF, this requirement is realized by an iterative approach that tries to 

adjust particle positions to reach the desired incompressibility. This iterative process suffers from 

low convergence rates when simulating large volumes with a large number of particles. In these 

cases, the required solver iterations have to be increased significantly, implying a huge impact on 

the runtime of the overall simulation. 

 

 

 



International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

In this paper, we demonstrate a novel adaptive approach for the simulation of fluids using 

position-based constraint functions, called 

is very easy to integrate into other position

further restrictions compared to 

performance, which is desirable for games.
 

Depending on the situation and camera setup during runtime, our method can adaptively adjust 

the particle positions of the fluid via fine

The LOD information is then used to adap

particle in the fluid (Figure 1)

different areas. Our approach is also able to achieve high

fluid volumes. The evaluation itself is based on different scenarios that are mainly compared on 

the basis of visual quality (visible differences) and performance.

 

Figure 1.  Images from the second evaluation scenario with different methods and number of 

iterations �.The variants in the top row 

(left, red) and � � 10 (right, 

 

2. RELATED WORK 
 

2.1. Fluid Simulations 
 

Müller et al. use SPH-based quantities, which form the basis for the computation of an 

acceleration vector (force-based)

particles in every time step. Their

compressibility in many situations

in every time step for particle

problematic for interactive applications as described 

approach from [11] can be circumvented by 

variations. However, WCSPH suffers from
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In this paper, we demonstrate a novel adaptive approach for the simulation of fluids using 

based constraint functions, called Adaptive Position-Based Fluids (APBF).Our concept 

is very easy to integrate into other position-based simulation frameworks and does not impose 

further restrictions compared to PBF.Furthermore, it allows for considerable increases in 

desirable for games. 

Depending on the situation and camera setup during runtime, our method can adaptively adjust 

the particle positions of the fluid via fine-grained level-of-detail (LOD) information per 

information is then used to adaptively adjust the number of solver iterations for each 

(Figure 1).This allows to trade simulation precision for performance in 

approach is also able to achieve high-quality results with respect to rendered 

evaluation itself is based on different scenarios that are mainly compared on 

the basis of visual quality (visible differences) and performance. 

 

Images from the second evaluation scenario with different methods and number of 

in the top row were simulated using Position Based Fluids with 

, orange). Our adaptive method is presented in the bo

(green) and uses � ∈ �5,… ,10
. 

based quantities, which form the basis for the computation of an 

based) [8, 9].This vector is used to update the particle move

step. Their approach is responsible for a fairly high amount of 

compressibility in many situations [10].Premoze et al. [11] solve the Poisson equation iteratively 

in every time step for particle-based fluids to ensure incompressibility. However

problematic for interactive applications as described by Becker et al. [10].The expensive solver 

can be circumvented by WCSPH [4], which allows for small density 

suffers from time-step (Δ�) restrictions. 
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In this paper, we demonstrate a novel adaptive approach for the simulation of fluids using 

).Our concept 

based simulation frameworks and does not impose 

.Furthermore, it allows for considerable increases in 

Depending on the situation and camera setup during runtime, our method can adaptively adjust 

) information per particle. 

tively adjust the number of solver iterations for each 

.This allows to trade simulation precision for performance in 

quality results with respect to rendered 

evaluation itself is based on different scenarios that are mainly compared on 

 

Images from the second evaluation scenario with different methods and number of 

were simulated using Position Based Fluids with � � 5 

in the bottom row 

based quantities, which form the basis for the computation of an 

.This vector is used to update the particle movement of all 

approach is responsible for a fairly high amount of 

solve the Poisson equation iteratively 

incompressibility. However, this is 

.The expensive solver 

, which allows for small density 
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An alternative to WCSPH is PCISPH [12].PCISPH weakens the time-step restrictions and also 

achieves good results compared to WCSPH.The authors use an iterative algorithm to predict the 

next position and next velocity in each iteration.Ihmsen et al. further improved SPH-based fluid 

simulation in terms of time-step restrictions and performance with IISPH [13].A recent advance 

in the direction of interactive and incompressible fluid simulations is the paper Position Based 

Fluids (PBF) by Macklin et al. [4].It describes the modelling of incompressible fluids with the 

help of position-based constraints in the context of the Position Based Dynamics framework by 

[14, 15].Those constraints are solved iteratively in every time step. 

 

2.2. Adaptive Fluid Simulations 

 
Adams et al. introduced an adaptive sampling model, which is based on heterogeneous particle 

sizes [16].The sampling condition is based on visual importance of affected regions with respect 

to near object geometry. This allows for a reduction in the number of particles inside a fluid 

volume. One of the main contributions is the adaptive sampling approach that describes merging 

and splitting of particles. The decision on merging or splitting is based on the so-called extended 

local feature size. From a high-level point of view, this can be seen as the distance to the surface 

and next obstacle in the scene. 

 

Hong et al. use a hybrid grid and particle-based method and introduce a multi-layer approach in 

which the simulation domain is split into four layers (based on the distance to the surface) [17, 

18].Related to the previously presented approach, the authors also use different particle sizes in 

different layers. Every layer has its unique rules on whether to split or merge particles. This 

approach is also similar to the one by Zhang et al. who also perform splitting and merging based 

on several conditions [19]. 

 

Another adaptive simulation is the Two-Scale Particle-Simulation by Solenthaler et al. [20].They 

are using two differently scaled simulations in parallel, which remove the need for splitting and 

merging. The larger-scaled simulation acts as a base simulation of the fluid domain. This 

simplifies neighbour search and related computations. Horvath et al. extended this approach to an 

arbitrary number of levels with smooth collision-detection support [21].The LOD can be adapted 

according to camera-dependent properties, such as the distance to the used camera. 

 

Goswami et al. [22] differentiated between active and inactive particles that are subject to 

different position-adjustment steps. Inactive particles remain in a sleeping state (not moving) until 

they become reactivated. The decision on the activity state of a particle is based on the 

observation that not all particles contribute significantly to the overall visual appearance: particles 

(or particles in their surroundings) that are moving fast or are close to the boundary of the fluid 

are most important for visual quality. 

 

There have also been a huge variety of approaches to select the time-steps adaptively.Goswami et 

al. [23] introduced an approach for WCSPH that groups particles into regions. Those receive 

different time-steps and are updated at different frequencies in order to improve 

performance.Ihmsen et al. [24] introduced adaptive time-steps for PCISPH, also to improve 

performance. In contrast to these methods, our approach does not run multiple differently-scaled 

particle simulations in parallel and does not use different particle sizes or adaptive time steps. 

Instead, we manipulate the number of solver iterations per particle to improve performance while 

preserving a high visual quality. The approach most similar to our method is the one by Goswami 

et al. [22], since it also differentiates between active and inactive particles and uses a similar LOD 

criterion. 
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3. INCOMPRESSIBILITY IN PBF 

 
Position based fluids rely on the Position Based Dynamics (PBD) principle [15].In general, PBD 

uses a set of non-linear constraint functions that work on positions 
�, their mass �� and their 

weighting �� � �
��

, where � refers to the �-th point.These constraint functions are then solved in 

an iterative manner.In contrast to the PBD concept that uses an inherently sequential Gauss-

Seidel solver, PBF leverages a parallel Jacobi-style solver. 

 

PBD tries to find a position-correction configuration Δ
� that manipulates the positions in order 

to satisfy constraints of the form [14]: 

 ���
 + Δ
� � 0 and ���
 + Δ
� ≤ 0, (1) 

 

where ��  refers to the �-th constraint and 
 describes the concatenated vector of positions.In order 

to solve for the position-correction configuration Δ
, we can approximate �� via Taylor 

expansion: 

 ���
 + Δ
� ≈ ���
� + ∇
���
� ⋅ Δ
. (2) 

 

By choosing the correction to be in the direction of the gradient ∇�� and weighting according to 

the masses, we receive 

 Δ
 � ���∇
���
�, (3) 

 

with � being a scaling factor along the gradient.Following the rewriting steps in [15], we receive 

the formula for the scaling factor 

 λ � − "#�$�
∑ &'(∇
')��
�(*+

. (4) 

PBF uses this general concept with the help of a density constraint by [25]: 

 ���
� � ,�
,-

− 1 � 0, (5) 

 

with ./being the rest density of the fluid and .� the current mass density.From a PBD's point of 

view, this equality constraint is inserted for every particle in the simulation, which results in an 

evaluation of .� at the location of every �-th particle.For this purpose, we can leverage the default 

SPH-based density estimator [26]: 

 .� � ∑ �01�
� − 
0 , ℎ�0 , (6) 

 

where 1 is the smoothing kernel and ℎ is the smoothing length of the kernel.In our scenes, we 

typically choose a fixed smoothing length ℎ, and kernels 1 with finite support.The gradient of 

the density constraint based on SPH can be computed using the general SPH-based gradient 

formulation by [27].Using ��, we can formulate the position correction Δ
� as 

 Δ
� � ��
�
,-

∑ 3�� + �04∇1�
� − 
0 , ℎ�0 . (7) 

 

By applying the position correction Δ
� to all particles in every iteration, we can propagate the 

influences of the density constraint to all neighboring particles.This implies a low convergence 

rate with a large number of particles, since the corrections are only propagated to the direct 

neighbors in every iteration. 
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4. ITERATION-ADAPTIVE 

 
A higher number of solver iterations implies a better approximation of the used density 

constraint, and thus, of the desired incompressibility.

significantly influences the runtime of the simulation.

Choose the number of iterations adaptively.

of incompressibility depending on the situation.

required, allowing an adjustment on a per

level that represents the level of detail per particle (

 

 

 

where 5� refers to the position of the 

 

This definition is somewhat similar to other adaptive approaches.

that is greater or equal to the currently processed one have to be considered at the same time 

during a solver step. Otherwise, a particle with a higher 

specific solver step in the future, and misses the previous adjustment steps for the rest of the 

particles. This would lead to instability and too

Hence, we will call a particle with index 

to be considered in the current iteration of the solver loop:

 

 

 

where 6 is ∈ 7.For simplicity, we assume that the level can be directly mapped to the

iterations.In order to reason about all particles that are active with respect to a specific iteration 

we define the set 89  as 

 

 

Particles that are already finished and do not need to be considered in future 

by 

 

 

A visualization of these definitions can be found in Figure 

 

Figure 2.  Schematic visualizations of three adaptive iterations

3). Particles in red will not be considered for further iterations and remain fixed at their position. 

Blue particles will still be considered and adjusted accordingly. For 

the top row has at least a LOD of 3, since it is cons
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DAPTIVE POSITION-BASED FLUIDS 

solver iterations implies a better approximation of the used density 

constraint, and thus, of the desired incompressibility. The number of iterations, however, 

significantly influences the runtime of the simulation. The general idea is straight forward: 

oose the number of iterations adaptively. Doing so results in a lower or higher approximation 

of incompressibility depending on the situation. For this reason, a fine-grained approach is 

required, allowing an adjustment on a per-particle basis. First, we require a notion of a particle 

level that represents the level of detail per particle (LOD).This level information is defined as

6:�5�� ∶  7 → �1, … , �9
 ⊂ 7, 

refers to the position of the �-th particle and �9  to the maximum LOD. 

definition is somewhat similar to other adaptive approaches. All particles with a certain level 

that is greater or equal to the currently processed one have to be considered at the same time 

Otherwise, a particle with a higher LOD would only be considered in a 

specific solver step in the future, and misses the previous adjustment steps for the rest of the 

This would lead to instability and too-coarse-grained approximations (Section

ith index � with respect to a given solver iteration 6 active

to be considered in the current iteration of the solver loop: 

?@�5� , 6� ∶� 6:�5�� A 6, 
.For simplicity, we assume that the level can be directly mapped to the

iterations.In order to reason about all particles that are active with respect to a specific iteration 

89 ≔ �5�|?@�5� , 6� 
. 

Particles that are already finished and do not need to be considered in future iterations are given 

89D ≔ E ∅, 6 ≤ 1
8� \89 , 6 H 1.J 

A visualization of these definitions can be found in Figure 2. 

 

Schematic visualizations of three adaptive iterations (from left to right: iterations 1 to 

onsidered for further iterations and remain fixed at their position. 

onsidered and adjusted accordingly. For instance, the right particle in 

of 3, since it is considered in all shown iterations (1 to 
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solver iterations implies a better approximation of the used density 

The number of iterations, however, 

The general idea is straight forward: 

Doing so results in a lower or higher approximation 

grained approach is 

equire a notion of a particle 

).This level information is defined as 

(8) 

All particles with a certain level 

that is greater or equal to the currently processed one have to be considered at the same time 

would only be considered in a 

specific solver step in the future, and misses the previous adjustment steps for the rest of the 

grained approximations (Section 4.3.). 

active if it has 

(9) 

.For simplicity, we assume that the level can be directly mapped to the number of 

iterations.In order to reason about all particles that are active with respect to a specific iteration 6, 

(10) 

 

iterations are given 

(11) 

 

(from left to right: iterations 1 to 

onsidered for further iterations and remain fixed at their position. 

instance, the right particle in 

to 3).  
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4.1. Adaption Models 

 
The required LOD information per particle can be computed using an analysis based on particle 

data or rendering information. We choose the rendering-feedback approach to reduce additional 

overhead by reusing information that is used for visualization purposes. We have integrated and 

evaluated two possible approaches to compute the LOD information per particle. The first 

approach uses the distance to the camera (DTC) of every particle, which can be computed using 

the particle locations and the camera transformations (Figure 3). 

 

 
 

Figure 3.  Sample LOD visualizations of the first evaluation scenario for different APBF models. 

Top left: high-LOD particles classified by DTVS. Top right: low-LOD particles classified by 

DTVS. Bottom: DTC classification.Color coding: green, high LOD; yellow, lower LOD; red, low 

LOD. 

 

The second model realizes a camera-based distance-to-the-visible-surface approach (DTVS).In 

comparison to the actual distance of a particle to the surface of the fluid volume, we will treat 

particles as surface particles if they are directly visible from the camera (Figure 3).We then 

compute the distance of a particle to its nearest surface particle along a ray from the camera. 

Figure 4 shows a schematic classification according to the DTVS approach. Dynamic changes of 

the camera position are implicitly reflected in the LOD computation, since the LOD per particle is 

updated in every frame. 

 

The actual LOD information is determined from the distances in both cases via linear 

interpolation between the maximum and minimum distance and the lowest and highest LOD.For 

customization purposes of the simulation quality, the distances for the actual interpolation can 

either be user-defined or automatically resolved. Moreover, multiple camera perspectives in 

parallel can be handled by blending multiple LOD information per particle. 

 

4.2. Incompressibility 

 
When adjusting the number of iterations adaptively, the worst-case approximation is the one with 

the lowest LOD, which still involves a single simulation step in general. In the best case, the 

approximation is equal to maximum LOD.The computed LOD-distribution depends on the used 

LOD model (Section 4.1.) and how it influences a particular region of the simulation. 
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Figure 4.  Sample classification according to the 

(indicated by black arrows). High

Note that linear interpolation of the distances avoids significant differences of 

to neighboring particles. 

 

Related to the density distribution, there can be regions with a lower den

higher density. However, the average density across the whole simulation domain remains 

comparable to the computed average density of 

particles with a higher LOD can compensate for ov

from particles with lower LOD

models, the integrated linear-interpolation scheme between the different 

distribution of the LOD across the whole simulation domain (Figure 

amount of particles can always compensate for coarse approximations from lower

in our scenarios. Changing the 

assignment (e.g. non-linear LOD

changes in the average density and the visualization.

 

Figure 5.  Adjustment of active particles (blue) in the neighborhood of inactive particles (red) and 

active ones. The green circles refer to the 

indicate the direction vector of 

approximations of the density of inactive ones that lie in their smoothing radii.

 

4.3. Stability and Robustness

 
PBF is stable after a single simulation step assuming a valid configuration in terms of time

size number of iterations. Every

during a simulation run.APBF explicitly manipulates possible further iterations and adjustments 

per particle, which implies modified 

set 89D  will not be updated any more after iteration 
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Sample classification according to the DTVS model and the given viewing direction 

(indicated by black arrows). High-LOD particles are bluish and low-LOD particles are 

Note that linear interpolation of the distances avoids significant differences of LOD

Related to the density distribution, there can be regions with a lower density and regions with a 

, the average density across the whole simulation domain remains 

comparable to the computed average density of PBF.This is caused by our solver approach, where 

can compensate for over- and under-approximations of the density 

LOD in further iterations (Figure 5).Using the presented adaption 

interpolation scheme between the different LOD allows for an even 

across the whole simulation domain (Figure 4).Therefore, a sufficient 

amount of particles can always compensate for coarse approximations from lower-LOD

the LOD-computation strategy to a non-evenly distributed 

LOD assignment from the raw depth buffer) can cause noticeable 

changes in the average density and the visualization. 

 
 

Adjustment of active particles (blue) in the neighborhood of inactive particles (red) and 

active ones. The green circles refer to the SPH-based smoothing radii and the black arrows 

indicate the direction vector of Δ
. In this way, active particles can compensate coarse

approximations of the density of inactive ones that lie in their smoothing radii. 

4.3. Stability and Robustness 

is stable after a single simulation step assuming a valid configuration in terms of time

rations. Every further simulation step does not introduce or cause instability 

explicitly manipulates possible further iterations and adjustments 

per particle, which implies modified Δ
 updates in each other iteration.Inactive particles from the 

will not be updated any more after iteration 6 − 1, and their position remains fixed.Position 
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model and the given viewing direction 

particles are reddish. 

LOD assignments 

sity and regions with a 

, the average density across the whole simulation domain remains 

.This is caused by our solver approach, where 

approximations of the density 

).Using the presented adaption 

allows for an even 

).Therefore, a sufficient 

LOD particles 

evenly distributed LOD 

assignment from the raw depth buffer) can cause noticeable 

Adjustment of active particles (blue) in the neighborhood of inactive particles (red) and 

based smoothing radii and the black arrows 

compensate coarse-grained 

is stable after a single simulation step assuming a valid configuration in terms of time-step 

further simulation step does not introduce or cause instability 

explicitly manipulates possible further iterations and adjustments 

particles from the 

, and their position remains fixed.Position 
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updates of active particles are adjusted according to the other active and inactive ones

5).Since all particles in the set 8989  cannot cause instability with respect to each other (see 

cannot introduce instability with particles in 

also implies that particles transitioning from low 

introduce instability. 

 

However, low-LOD particles can become poorly adjusted in relation to non

rough approximation of position adjustments for a subset of particles in the simulation domain 

can cause insufficiently solved contact constraints (Figure 6

on these non-desired particle locations will cause additional

particles, which in turn causes visual artifacts to 

we apply the concept of pre-stabilization

case moves particles out of obstacles by adjusting the predicted as well a

before the actual constraint-solving step 

 

Figure 6.  A high-LOD (blue) and a low

Due to coarse-grained approximations, the low

the obstacle. The applied position corrections in the next step will move the red parti

predicted location (center). Hence, it will be accelerated out of the obstacle, w

artifacts (right). 

 

5. ALGORITHM 

 
The main simulation algorithm is shown in 

comparison to the PBF algorithm, and 

We first perform an application of external forces 

particles in 89 .Afterwards, we discover neighboring particles and contact collisions (with 

obstacles) for all particles in 8�.We apply a user

all contact constraints that manipulate particles in the set of 

value between 1 and �9 . 
 

Inside the main simulation loop, we perform all operations on active particles in the s

8�KLM.Contact constraints that affect the current particle 

Δ
�.In the final step, all particles in 
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updates of active particles are adjusted according to the other active and inactive ones

9  are always considered at the same time in iteration 

cannot cause instability with respect to each other (see PBF method).Since those particles also 

cannot introduce instability with particles in 89D , no particles in 89  can introduce instability. This

also implies that particles transitioning from low LOD to high LOD and vice versa cannot 

particles can become poorly adjusted in relation to non-fluid particles. This

rough approximation of position adjustments for a subset of particles in the simulation domain 

ed contact constraints (Figure 6).Performing the default solver steps 

desired particle locations will cause additional velocity to be added to the affected 

particles, which in turn causes visual artifacts to appear. In order to compensate for these artifacts, 

stabilization [7] to a subset of the particles.Pre-stabilization in our 

obstacles by adjusting the predicted as well as the current positions 

solving step (Figure 6). 

 
 

(blue) and a low-LOD particle (red) at the beginning of a frame (left

d approximations, the low-LOD particle was not completely moved out of 

the obstacle. The applied position corrections in the next step will move the red parti

). Hence, it will be accelerated out of the obstacle, which c

The main simulation algorithm is shown in Figure7.Regions in red indicate chan

algorithm, and green regions (line 7 and lines 9 to 11) indicate new 

first perform an application of external forces fLOK  and a prediction of new positions for all 

.Afterwards, we discover neighboring particles and contact collisions (with 

.We apply a user-defined number of pre-stabilization iterations for 

all contact constraints that manipulate particles in the set of 8PD , where Q is also a user

Inside the main simulation loop, we perform all operations on active particles in the s

affect the current particle � will be solved during the calculation of 

.In the final step, all particles in 8� will be modified according the concept of PBD
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updates of active particles are adjusted according to the other active and inactive ones (Figure 

are always considered at the same time in iteration 6, particles in 

method).Since those particles also 

instability. This 

and vice versa cannot 

particles. This 

rough approximation of position adjustments for a subset of particles in the simulation domain 

Performing the default solver steps 

velocity to be added to the affected 

order to compensate for these artifacts, 

stabilization in our 

s the current positions 

) at the beginning of a frame (left). 

particle was not completely moved out of 

the obstacle. The applied position corrections in the next step will move the red particle to its 

hich causes visible 

indicate changed parts in 

indicate new parts. 

and a prediction of new positions for all 

.Afterwards, we discover neighboring particles and contact collisions (with 

stabilization iterations for 

is also a user-defined 

Inside the main simulation loop, we perform all operations on active particles in the set 

will be solved during the calculation of 

PBD. 
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6. IMPLEMENTATION DETAILS 

 
We realized our adaptive fluid-simulation solver in C++ AMP for GPUs [28].We use signed-

distance fields for collision detection and leverage the counting-sort based approach by [29] for 

efficient neighbor discovery on GPUs, in contrast to other methods for CPUs [30].Since particles 

are reordered during the neighbor-discovery phase, memory coherence during the evaluation of 

the density constraint is greatly improved. 

 

The adaption models are based on renderer information that is retrieved by analyzing the depth 

image of the scene without occlusions by scene geometry. The depth information can be directly 

resolved by rendering all particles as splatted spheres, which is also used by our and other 

common screen-space based rendering approaches for particle fluids [2, 31].Furthermore, a single 

pass over all particles is used to compute and propagate the LOD information.  

 

1: for all particles � ∈ 8�do 

2: apply forces R� ⇐ R� + Δ� fLOK 
3: predict position T�∗ ⇐ T� + Δ� :� 
4: end for 

5: for all particles � ∈ 8�do 

6: find neighboring particles ���T�∗� 

7: find contacts for pre-stabilization 

8: 

 

end for 

9: while iter<stabilIterations do 

10: perform contact responses for contact ��  
with �V ∈ � � |particles��� ∈ 8PD , 
 

11: end while 

12: while iter<�9 do 

13: for all particles � ∈ 8�KLMdo 

14: calculate �� 
15: end for 

16: for all particles � ∈ 8�KLMdo 

17: calculate Δ
� 
18: perform contact responses 

19: end for 

20: for all particles � ∈ 8�KLMdo 

21: update positions T�∗ ⇐ T�∗ + Δ
� 
22: end for 

23: end while 

24: for all particles � ∈ 8�do 

25: update velocity R� ⇐ �
WK �T�∗ − T�� 

26: update positionT� ⇐ T�∗ 

27: end for 

 

Figure 7.  APBF-simulation loop based on PBF 
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7. EVALUATION 

 
The overall evaluation is based on the pure version of PBF and our adaptive version and focuses 

on the visual quality of the simulation: Selected frames of the PBF simulation are visually 

compared to the APBF versions. Rendering of fluids relies on direct semi-transparent particle 

visualization in the form of non-distorted spheres in order to properly compare certain regions in 

the images. Furthermore, we do not apply any smoothing operations (e.g. Laplacian smoothing) 

to the particle data before rendering and make use of a single camera in every scenario. 

 

The evaluation is performed on three scenarios, which make use of differently configured fluid 

setups. The fluid and scene configuration is then fixed for all performance and visual-quality 

evaluations for PBF and APBF.All scenarios use a frame time of Δ� � 0.0016 seconds andtwo 

time-steps per frame. For every scenario, a minimum (required for an acceptable result) and a 

default number of iterations (for an appealing result) based on PBF are determined. The number 

of iterations was determined by analyzing the density information to ensure a proper 

representation of the modeled fluid. An appealing result achieves a reasonable density 

distribution across the whole simulation domain, in contrast to the much coarser approximation in 

the case of an acceptable result. Note that an increase in the number of iterations also implies an 

increase in apparent viscosity in our scenarios, which is an inherit side effect of PBF.This, 

however, can be avoided by using an unilateral density constraint in combination with force-

based cohesion viscosity [7, 32]. 

 

Performance tests were executed on two different GPUs from different vendors: a GPU from 

NVIDIA (GeForce GTX 680) and a GPU from AMD (Radeon HD7850).A performance 

measurement is the median execution time of 1000 simulation steps and 100 application 

executions (see Table 1). 

 
Table 1.  Performance results for the presented evaluation scenarios on an NVIDIA GeForce GTX 680 and 

an AMD Radeon HD7850 

 

Scenario Particles Configuration Iterations 
Frame time in 

milliseconds 

Performance 

Improvement 
NVIDIA AMD NVIDIA AMD 

Dam 

Break 

216k PBF 

PBF 

APBF (DTC) 

APBF (DTVS) 

3 

6 

{3,…6} 

{3,…6} 

20 

39 

24 

23 

25 

46 

30 

29 

- 

- 

63% 

70% 

- 

- 

53% 

59% 

Double 

Dam 

Break 

673k PBF 

PBF 

APBF (DTC) 

APBF (DTVS) 

5 

10 

{5,…10} 

{5,…10} 

194 

410 

241 

232 

238 

476 

290 

281 

- 

- 

70% 

77% 

- 

- 

64% 

69% 

Multi 

Dam 

Break 

225k PBF 

PBF 

APBF (DTC) 

APBF (DTVS) 

4 

8 

{4,…8} 

{4,…8} 

28 

54 

38 

34 

35 

67 

48 

46 

- 

- 

42% 

59% 

- 

- 

40% 

46% 

 

7.1. Dam Break 

 
The scene consists of a single dam-break location of a water-like fluid, which is released after the 

start. It contains 216,000 particles and uses a number of iterations � � 3 for an acceptable 

density approximation and � � 6 for an appealing result in terms of density. 
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Figure 8 shows the visualized simulation during the collision of the fluid with the 

case of PBF with � � 3, many particles are only loosely connect

causes visible holes in the fluid surface in the 

also influenced and affected by this 

much smoother fluid surface, as

front of the scene looks smooth and evenly distributed compared to the reference 

the case of DTC, smaller holes and a non

However, DTVS creates an overall appealing visualization, which also represents fine

details like the vortex in the front right.

 

Figure 9 (top left) shows the influence on the average density in percent across all particles in the 

simulation during the time of the selected 

shifted versions of the reference simulation

around 4% compared to the reference algorithm

 

 

Figure 8.  Comparison of the evaluation images for the 

low quality (left, red, � � 3) and h

�3, … ,6
� with DTC (left, blue) and DTVS

highlighted. 

 

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

shows the visualized simulation during the collision of the fluid with the 

, many particles are only loosely connected to their neighbors, which 

causes visible holes in the fluid surface in the front. Some regions in the back of the scene are 

also influenced and affected by this issue. Increasing the number of iterations to � �
much smoother fluid surface, as well as the absence of holes. When using DTC and 

front of the scene looks smooth and evenly distributed compared to the reference simulation. In

, smaller holes and a non-smooth fluid surface in the back are clearly 

creates an overall appealing visualization, which also represents fine

details like the vortex in the front right. 

) shows the influence on the average density in percent across all particles in the 

simulation during the time of the selected images. All APBF graphs appear to be scaled and/or 

shifted versions of the reference simulation-density graph. The most significant deviation is 

compared to the reference algorithm. 

Comparison of the evaluation images for the dam-break scenario. Upper row: 

) and high quality (right, yellow, � � 6); lower row: 

with DTC (left, blue) and DTVS (right, green). Differences between the methods are 
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shows the visualized simulation during the collision of the fluid with the walls. In the 

ed to their neighbors, which 

regions in the back of the scene are 

� 6 ensures a 

and DTVS, the 

simulation. In 

smooth fluid surface in the back are clearly visible. 

creates an overall appealing visualization, which also represents fine-grained 

) shows the influence on the average density in percent across all particles in the 

graphs appear to be scaled and/or 

nt deviation is 

 

Upper row: PBF with 

); lower row: APBF (� ∈
(right, green). Differences between the methods are 
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Figure 9.  Most significant average-density deviations for the evaluation scenarios (limited 

amount of time). Our method has density deviations that are less than 4% on the evaluation 

scenarios. In general, APBF achieves comparable densities to PBF.Color coding: Black, rest 

density. Red, APBF with the DTC model (dotted). Green, APBF with the DTVS model (dashed). 

Gray, the original PBF approach (solid). 

 

7.2 Double Dam Break 

 
This setting uses two dam-break volumes of a high-density, inviscid fluid. It contains two dams 

with 336,400 particles each (= 672,800 particles) and uses � � 5 and � � 10 for the PBF 

versions. 

 

Concerning visual quality, the two PBF fluid configurations in Figures 1 and 10 can be easily 

distinguished from each other in both cases: The low LOD version of the PBF method (with 

� � 5) shows unevenly distributed particles at the boundaries.Furthermore, the central 

intersection volume contains hole-like structures due to an insufficient approximation of the 

densities.The higher-quality version (with � � 10) ensures a smooth-looking simulation and 

does not suffer from such artifacts. The adaptive versions with DTC and DTVS realize a high-

quality simulation in the front. Again, the DTVS configuration achieves the best results in terms 

of visual quality compared to the reference version with � � 10. 

 

The measured density deviations are below 1.5% in this case (Figure 9 top right).This deviation 

was measured during the intersection of both fluid volumes and represents the worst case in this 

scenario. As before, the graphs of our method appear to be similar compared to the reference 

method. 
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Figure 10.  Comparison of the evaluation images for the

PBF with low quality (left, red

APBF (� ∈ �5,… ,10
) with DTC

methods are highlighted. 

 

 

 

7.3. Multi Dam Break 

 
Four small initial volumes with 56,350

particles in total are used in this case (Figure 

 

The fluid is configured as a medium

for the PBF versions. The chosen rendered frame for this scenario presents the collision between 

the walls, the central cone and the fluid 
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Comparison of the evaluation images for the double-dam-break scenario. Upper row: 

with low quality (left, red, � � 5) and high quality (right, yellow, � � 10); lower row: 

DTC (left, blue) and DTVS (right, green). Differences betw

our small initial volumes with 56,350 particles each that sum up to a number of 225,400 

particles in total are used in this case (Figure 11). 

The fluid is configured as a medium-density and highly viscous fluid that uses � �
chosen rendered frame for this scenario presents the collision between 

the walls, the central cone and the fluid volumes. Increasing the number of PBF iterations from 
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break scenario. Upper row: 

); lower row: 

(right, green). Differences between the 

ach that sum up to a number of 225,400 

4 and � � 8 

chosen rendered frame for this scenario presents the collision between 

iterations from  
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Figure 11.  Comparison of the evaluation images for the 

PBF with low quality (left, red, �
(� ∈ �4, … ,8
� with DTC  (left, blue) and 

are highlighted. 

 

� � 4 to � � 8 results in a better simulation of the modeled fluid.In particular, the fluid peaks in 

the front are preserved. All adaptive approaches reach an overall good visual quality: The results 

are very similar to that of the reference version with 

 

Figure 9 (bottom) displays the average

frame. Similar to the previous scenario, the density deviations are around 

 

7.4. Performance 

 
As presented in Table 1, the performance degrades noticeably when increasing the number of 

iterations per frame on both GPU

reveals that we are able to increase the performance on every scenario by at least 

measured maximum improvement in performance was 

on the Radeon HD7850.Overall, the 

the DTC model in terms of performance in image quality.

 

However, the benefit depends on the scenario and the adaption

cases, we used settings that preserve high

performance, the runtime speed can be further improved.
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Comparison of the evaluation images for the multi-dam-break scenario. Upper row: 

� � 4) and high quality (right, yellow, � � 8); lower row: APBF

(left, blue) and DTVS (right, green). Differences between

results in a better simulation of the modeled fluid.In particular, the fluid peaks in 

adaptive approaches reach an overall good visual quality: The results 

are very similar to that of the reference version with � � 8. 

displays the average-density measurement during the time of the analyzed 

cenario, the density deviations are around 1.5% in the worst case.

the performance degrades noticeably when increasing the number of 

GPUs.Comparing the original PBF method against our

reveals that we are able to increase the performance on every scenario by at least 

measured maximum improvement in performance was 77% on the GeForce GTX 680

.Overall, the DTVS adaption model performs slightly better compared to 

model in terms of performance in image quality. 

However, the benefit depends on the scenario and the adaption-model configurations 

cases, we used settings that preserve high-quality simulation results. When trading quality against 

performance, the runtime speed can be further improved. 
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break scenario. Upper row: 

); lower row: APBF 

een the methods 

results in a better simulation of the modeled fluid.In particular, the fluid peaks in 

adaptive approaches reach an overall good visual quality: The results 

density measurement during the time of the analyzed 

in the worst case. 

the performance degrades noticeably when increasing the number of 

method against our approach 

reveals that we are able to increase the performance on every scenario by at least 40%.The 

GeForce GTX 680 and 69% 

better compared to 

model configurations used. In our 

quality against 
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8. CONCLUSION AND FUTURE WORK 

 
We presented a novel approach for adaptive fluid simulations using position-based constraints. It 

is a lightweight extension to the method by [4] that can be easily included in an existing position-

based solver. Using LOD-based particle sets, we are able to achieve significant improvements in 

performance of up to 77% on the evaluation scenarios, in comparison to the reference method. In 

terms of visual quality, the results remain nearly the same using the adaptive concept. Comparing 

the two evaluated adaption models, namely DTVS and DTC, DTVS results in a better simulation 

quality and runtime performance. Our method is also capable of maintaining a similar average 

density of the simulated fluids compared to PBD.Other more sophisticated adaption models for 

the computation of LOD information might also be beneficial. However, changing the adaption 

model to assign LOD in a non-linear way might break the preservation of the average-density and 

stability. 

 

In the current algorithm, we only consider additional contact constraints that are also solved 

adaptively in a particle-focused way. In the future, we would like to investigate other adaptive 

approaches, such as adaptive particle sizes. Furthermore, integration into a unified solver, e.g. a 

parallel successive over-relaxation solver [7], might reveal new insights. 
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