
International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

DOI : 10.5121/ijcga.2016.6301 1

ADAPTIVE POSITION-BASED FLUIDS:

IMPROVING PERFORMANCE OF FLUID

SIMULATIONS FOR REAL-TIME APPLICATIONS

Marcel Köster and Antonio Krüger

German Research Center for Artificial Intelligence, Saarland Informatics Campus,

Saarbruecken, Germany

ABSTRACT

The Position Based Fluids (PBF) method is a state-of-the-art approach for fluid simulations in the context

of real-time applications like games. It uses an iterative solver concept that tries to maintain a constant

fluid density (incompressibility) to realize incompressible fluids like water. However, larger fluid volumes

that consist of several hundred thousand particles (e.g. for the simulation of oceans) require many

iterations and a lot of simulation power. We present a lightweight and easy-to-integrate extension to PBF

that adaptively adjusts the number of solver iterations on a fine-grained basis. Using a novel adaptive-

simulation approach, we are able to achieve significant improvements in performance on our evaluation

scenarios while maintaining high-quality results in terms of visualization quality, which makes it a perfect

choice for game developers. Furthermore, our method does not weaken the advantages of prior work and

seamlessly integrates into other position-based methods for physically-based simulations.

KEYWORDS

Fluid simulation, Adaptive fluid simulation, Position based fluids, Adaptive position-based fluids, SPH,

PCISPH, Constraint fluids, Position based dynamics

1. INTRODUCTION

Modern games leverage real-time physics simulations to provide a realistic experience. In

particular, fluid simulations that can interact with other physical objects in the scene have become

more and more popular [1,2,3].The approach of Position Based Fluids (PBF) by Macklin et al. [4]

has relaxed previous limitations while maintaining stability. It uses position-based dynamics and

constraint functions based on Smoothed Particle Hydrodynamics (SPH) [5, 6].Moreover, it allows

for a seamless integration into other position-based methods that are widely spread in the scope of

real-time applications [7].

However, fluids require a notion of incompressibility (constant fluid density) for a realistic

simulation. In the scope of PBF, this requirement is realized by an iterative approach that tries to

adjust particle positions to reach the desired incompressibility. This iterative process suffers from

low convergence rates when simulating large volumes with a large number of particles. In these

cases, the required solver iterations have to be increased significantly, implying a huge impact on

the runtime of the overall simulation.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

In this paper, we demonstrate a novel adaptive approach for the simulation of fluids using

position-based constraint functions, called

is very easy to integrate into other position

further restrictions compared to

performance, which is desirable for games.

Depending on the situation and camera setup during runtime, our method can adaptively adjust

the particle positions of the fluid via fine

The LOD information is then used to adap

particle in the fluid (Figure 1)

different areas. Our approach is also able to achieve high

fluid volumes. The evaluation itself is based on different scenarios that are mainly compared on

the basis of visual quality (visible differences) and performance.

Figure 1. Images from the second evaluation scenario with different methods and number of

iterations �.The variants in the top row

(left, red) and � � 10 (right,

2. RELATED WORK

2.1. Fluid Simulations

Müller et al. use SPH-based quantities, which form the basis for the computation of an

acceleration vector (force-based)

particles in every time step. Their

compressibility in many situations

in every time step for particle

problematic for interactive applications as described

approach from [11] can be circumvented by

variations. However, WCSPH suffers from

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

In this paper, we demonstrate a novel adaptive approach for the simulation of fluids using

based constraint functions, called Adaptive Position-Based Fluids (APBF).Our concept

is very easy to integrate into other position-based simulation frameworks and does not impose

further restrictions compared to PBF.Furthermore, it allows for considerable increases in

desirable for games.

Depending on the situation and camera setup during runtime, our method can adaptively adjust

the particle positions of the fluid via fine-grained level-of-detail (LOD) information per

information is then used to adaptively adjust the number of solver iterations for each

(Figure 1).This allows to trade simulation precision for performance in

approach is also able to achieve high-quality results with respect to rendered

evaluation itself is based on different scenarios that are mainly compared on

the basis of visual quality (visible differences) and performance.

Images from the second evaluation scenario with different methods and number of

in the top row were simulated using Position Based Fluids with

, orange). Our adaptive method is presented in the bo

(green) and uses � ∈ �5,… ,10
.

based quantities, which form the basis for the computation of an

based) [8, 9].This vector is used to update the particle move

step. Their approach is responsible for a fairly high amount of

compressibility in many situations [10].Premoze et al. [11] solve the Poisson equation iteratively

in every time step for particle-based fluids to ensure incompressibility. However

problematic for interactive applications as described by Becker et al. [10].The expensive solver

can be circumvented by WCSPH [4], which allows for small density

suffers from time-step (Δ�) restrictions.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

2

In this paper, we demonstrate a novel adaptive approach for the simulation of fluids using

).Our concept

based simulation frameworks and does not impose

.Furthermore, it allows for considerable increases in

Depending on the situation and camera setup during runtime, our method can adaptively adjust

) information per particle.

tively adjust the number of solver iterations for each

.This allows to trade simulation precision for performance in

quality results with respect to rendered

evaluation itself is based on different scenarios that are mainly compared on

Images from the second evaluation scenario with different methods and number of

were simulated using Position Based Fluids with � � 5

in the bottom row

based quantities, which form the basis for the computation of an

.This vector is used to update the particle movement of all

approach is responsible for a fairly high amount of

solve the Poisson equation iteratively

incompressibility. However, this is

.The expensive solver

, which allows for small density

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

3

An alternative to WCSPH is PCISPH [12].PCISPH weakens the time-step restrictions and also

achieves good results compared to WCSPH.The authors use an iterative algorithm to predict the

next position and next velocity in each iteration.Ihmsen et al. further improved SPH-based fluid

simulation in terms of time-step restrictions and performance with IISPH [13].A recent advance

in the direction of interactive and incompressible fluid simulations is the paper Position Based

Fluids (PBF) by Macklin et al. [4].It describes the modelling of incompressible fluids with the

help of position-based constraints in the context of the Position Based Dynamics framework by

[14, 15].Those constraints are solved iteratively in every time step.

2.2. Adaptive Fluid Simulations

Adams et al. introduced an adaptive sampling model, which is based on heterogeneous particle

sizes [16].The sampling condition is based on visual importance of affected regions with respect

to near object geometry. This allows for a reduction in the number of particles inside a fluid

volume. One of the main contributions is the adaptive sampling approach that describes merging

and splitting of particles. The decision on merging or splitting is based on the so-called extended

local feature size. From a high-level point of view, this can be seen as the distance to the surface

and next obstacle in the scene.

Hong et al. use a hybrid grid and particle-based method and introduce a multi-layer approach in

which the simulation domain is split into four layers (based on the distance to the surface) [17,

18].Related to the previously presented approach, the authors also use different particle sizes in

different layers. Every layer has its unique rules on whether to split or merge particles. This

approach is also similar to the one by Zhang et al. who also perform splitting and merging based

on several conditions [19].

Another adaptive simulation is the Two-Scale Particle-Simulation by Solenthaler et al. [20].They

are using two differently scaled simulations in parallel, which remove the need for splitting and

merging. The larger-scaled simulation acts as a base simulation of the fluid domain. This

simplifies neighbour search and related computations. Horvath et al. extended this approach to an

arbitrary number of levels with smooth collision-detection support [21].The LOD can be adapted

according to camera-dependent properties, such as the distance to the used camera.

Goswami et al. [22] differentiated between active and inactive particles that are subject to

different position-adjustment steps. Inactive particles remain in a sleeping state (not moving) until

they become reactivated. The decision on the activity state of a particle is based on the

observation that not all particles contribute significantly to the overall visual appearance: particles

(or particles in their surroundings) that are moving fast or are close to the boundary of the fluid

are most important for visual quality.

There have also been a huge variety of approaches to select the time-steps adaptively.Goswami et

al. [23] introduced an approach for WCSPH that groups particles into regions. Those receive

different time-steps and are updated at different frequencies in order to improve

performance.Ihmsen et al. [24] introduced adaptive time-steps for PCISPH, also to improve

performance. In contrast to these methods, our approach does not run multiple differently-scaled

particle simulations in parallel and does not use different particle sizes or adaptive time steps.

Instead, we manipulate the number of solver iterations per particle to improve performance while

preserving a high visual quality. The approach most similar to our method is the one by Goswami

et al. [22], since it also differentiates between active and inactive particles and uses a similar LOD

criterion.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

4

3. INCOMPRESSIBILITY IN PBF

Position based fluids rely on the Position Based Dynamics (PBD) principle [15].In general, PBD

uses a set of non-linear constraint functions that work on positions
�, their mass �� and their

weighting �� � �
��

, where � refers to the �-th point.These constraint functions are then solved in

an iterative manner.In contrast to the PBD concept that uses an inherently sequential Gauss-

Seidel solver, PBF leverages a parallel Jacobi-style solver.

PBD tries to find a position-correction configuration Δ
� that manipulates the positions in order

to satisfy constraints of the form [14]:

 ���
 + Δ
� � 0 and ���
 + Δ
� ≤ 0, (1)

where �� refers to the �-th constraint and
 describes the concatenated vector of positions.In order

to solve for the position-correction configuration Δ
, we can approximate �� via Taylor

expansion:

 ���
 + Δ
� ≈ ���
� + ∇
���
� ⋅ Δ
. (2)

By choosing the correction to be in the direction of the gradient ∇�� and weighting according to

the masses, we receive

 Δ
 � ���∇
���
�, (3)

with � being a scaling factor along the gradient.Following the rewriting steps in [15], we receive

the formula for the scaling factor

 λ � − "#�$�
∑ &'(∇
')��
�(*+

. (4)

PBF uses this general concept with the help of a density constraint by [25]:

 ���
� � ,�
,-

− 1 � 0, (5)

with ./being the rest density of the fluid and .� the current mass density.From a PBD's point of

view, this equality constraint is inserted for every particle in the simulation, which results in an

evaluation of .� at the location of every �-th particle.For this purpose, we can leverage the default

SPH-based density estimator [26]:

 .� � ∑ �01�
� −
0 , ℎ�0 , (6)

where 1 is the smoothing kernel and ℎ is the smoothing length of the kernel.In our scenes, we

typically choose a fixed smoothing length ℎ, and kernels 1 with finite support.The gradient of

the density constraint based on SPH can be computed using the general SPH-based gradient

formulation by [27].Using ��, we can formulate the position correction Δ
� as

 Δ
� � ��
�
,-

∑ 3�� + �04∇1�
� −
0 , ℎ�0 . (7)

By applying the position correction Δ
� to all particles in every iteration, we can propagate the

influences of the density constraint to all neighboring particles.This implies a low convergence

rate with a large number of particles, since the corrections are only propagated to the direct

neighbors in every iteration.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

4. ITERATION-ADAPTIVE

A higher number of solver iterations implies a better approximation of the used density

constraint, and thus, of the desired incompressibility.

significantly influences the runtime of the simulation.

Choose the number of iterations adaptively.

of incompressibility depending on the situation.

required, allowing an adjustment on a per

level that represents the level of detail per particle (

where 5� refers to the position of the

This definition is somewhat similar to other adaptive approaches.

that is greater or equal to the currently processed one have to be considered at the same time

during a solver step. Otherwise, a particle with a higher

specific solver step in the future, and misses the previous adjustment steps for the rest of the

particles. This would lead to instability and too

Hence, we will call a particle with index

to be considered in the current iteration of the solver loop:

where 6 is ∈ 7.For simplicity, we assume that the level can be directly mapped to the

iterations.In order to reason about all particles that are active with respect to a specific iteration

we define the set 89 as

Particles that are already finished and do not need to be considered in future

by

A visualization of these definitions can be found in Figure

Figure 2. Schematic visualizations of three adaptive iterations

3). Particles in red will not be considered for further iterations and remain fixed at their position.

Blue particles will still be considered and adjusted accordingly. For

the top row has at least a LOD of 3, since it is cons

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

DAPTIVE POSITION-BASED FLUIDS

solver iterations implies a better approximation of the used density

constraint, and thus, of the desired incompressibility. The number of iterations, however,

significantly influences the runtime of the simulation. The general idea is straight forward:

oose the number of iterations adaptively. Doing so results in a lower or higher approximation

of incompressibility depending on the situation. For this reason, a fine-grained approach is

required, allowing an adjustment on a per-particle basis. First, we require a notion of a particle

level that represents the level of detail per particle (LOD).This level information is defined as

6:�5�� ∶ 7 → �1, … , �9
 ⊂ 7,

refers to the position of the �-th particle and �9 to the maximum LOD.

definition is somewhat similar to other adaptive approaches. All particles with a certain level

that is greater or equal to the currently processed one have to be considered at the same time

Otherwise, a particle with a higher LOD would only be considered in a

specific solver step in the future, and misses the previous adjustment steps for the rest of the

This would lead to instability and too-coarse-grained approximations (Section

ith index � with respect to a given solver iteration 6 active

to be considered in the current iteration of the solver loop:

?@�5� , 6� ∶� 6:�5�� A 6,
.For simplicity, we assume that the level can be directly mapped to the

iterations.In order to reason about all particles that are active with respect to a specific iteration

89 ≔ �5�|?@�5� , 6�
.

Particles that are already finished and do not need to be considered in future iterations are given

89D ≔ E ∅, 6 ≤ 1
8� \89 , 6 H 1.J

A visualization of these definitions can be found in Figure 2.

Schematic visualizations of three adaptive iterations (from left to right: iterations 1 to

onsidered for further iterations and remain fixed at their position.

onsidered and adjusted accordingly. For instance, the right particle in

of 3, since it is considered in all shown iterations (1 to

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

5

solver iterations implies a better approximation of the used density

The number of iterations, however,

The general idea is straight forward:

Doing so results in a lower or higher approximation

grained approach is

equire a notion of a particle

).This level information is defined as

(8)

All particles with a certain level

that is greater or equal to the currently processed one have to be considered at the same time

would only be considered in a

specific solver step in the future, and misses the previous adjustment steps for the rest of the

grained approximations (Section 4.3.).

active if it has

(9)

.For simplicity, we assume that the level can be directly mapped to the number of

iterations.In order to reason about all particles that are active with respect to a specific iteration 6,

(10)

iterations are given

(11)

(from left to right: iterations 1 to

onsidered for further iterations and remain fixed at their position.

instance, the right particle in

to 3).

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

6

4.1. Adaption Models

The required LOD information per particle can be computed using an analysis based on particle

data or rendering information. We choose the rendering-feedback approach to reduce additional

overhead by reusing information that is used for visualization purposes. We have integrated and

evaluated two possible approaches to compute the LOD information per particle. The first

approach uses the distance to the camera (DTC) of every particle, which can be computed using

the particle locations and the camera transformations (Figure 3).

Figure 3. Sample LOD visualizations of the first evaluation scenario for different APBF models.

Top left: high-LOD particles classified by DTVS. Top right: low-LOD particles classified by

DTVS. Bottom: DTC classification.Color coding: green, high LOD; yellow, lower LOD; red, low

LOD.

The second model realizes a camera-based distance-to-the-visible-surface approach (DTVS).In

comparison to the actual distance of a particle to the surface of the fluid volume, we will treat

particles as surface particles if they are directly visible from the camera (Figure 3).We then

compute the distance of a particle to its nearest surface particle along a ray from the camera.

Figure 4 shows a schematic classification according to the DTVS approach. Dynamic changes of

the camera position are implicitly reflected in the LOD computation, since the LOD per particle is

updated in every frame.

The actual LOD information is determined from the distances in both cases via linear

interpolation between the maximum and minimum distance and the lowest and highest LOD.For

customization purposes of the simulation quality, the distances for the actual interpolation can

either be user-defined or automatically resolved. Moreover, multiple camera perspectives in

parallel can be handled by blending multiple LOD information per particle.

4.2. Incompressibility

When adjusting the number of iterations adaptively, the worst-case approximation is the one with

the lowest LOD, which still involves a single simulation step in general. In the best case, the

approximation is equal to maximum LOD.The computed LOD-distribution depends on the used

LOD model (Section 4.1.) and how it influences a particular region of the simulation.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

Figure 4. Sample classification according to the

(indicated by black arrows). High

Note that linear interpolation of the distances avoids significant differences of

to neighboring particles.

Related to the density distribution, there can be regions with a lower den

higher density. However, the average density across the whole simulation domain remains

comparable to the computed average density of

particles with a higher LOD can compensate for ov

from particles with lower LOD

models, the integrated linear-interpolation scheme between the different

distribution of the LOD across the whole simulation domain (Figure

amount of particles can always compensate for coarse approximations from lower

in our scenarios. Changing the

assignment (e.g. non-linear LOD

changes in the average density and the visualization.

Figure 5. Adjustment of active particles (blue) in the neighborhood of inactive particles (red) and

active ones. The green circles refer to the

indicate the direction vector of

approximations of the density of inactive ones that lie in their smoothing radii.

4.3. Stability and Robustness

PBF is stable after a single simulation step assuming a valid configuration in terms of time

size number of iterations. Every

during a simulation run.APBF explicitly manipulates possible further iterations and adjustments

per particle, which implies modified

set 89D will not be updated any more after iteration

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

Sample classification according to the DTVS model and the given viewing direction

(indicated by black arrows). High-LOD particles are bluish and low-LOD particles are

Note that linear interpolation of the distances avoids significant differences of LOD

Related to the density distribution, there can be regions with a lower density and regions with a

, the average density across the whole simulation domain remains

comparable to the computed average density of PBF.This is caused by our solver approach, where

can compensate for over- and under-approximations of the density

LOD in further iterations (Figure 5).Using the presented adaption

interpolation scheme between the different LOD allows for an even

across the whole simulation domain (Figure 4).Therefore, a sufficient

amount of particles can always compensate for coarse approximations from lower-LOD

the LOD-computation strategy to a non-evenly distributed

LOD assignment from the raw depth buffer) can cause noticeable

changes in the average density and the visualization.

Adjustment of active particles (blue) in the neighborhood of inactive particles (red) and

active ones. The green circles refer to the SPH-based smoothing radii and the black arrows

indicate the direction vector of Δ
. In this way, active particles can compensate coarse

approximations of the density of inactive ones that lie in their smoothing radii.

4.3. Stability and Robustness

is stable after a single simulation step assuming a valid configuration in terms of time

rations. Every further simulation step does not introduce or cause instability

explicitly manipulates possible further iterations and adjustments

per particle, which implies modified Δ
 updates in each other iteration.Inactive particles from the

will not be updated any more after iteration 6 − 1, and their position remains fixed.Position

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

7

model and the given viewing direction

particles are reddish.

LOD assignments

sity and regions with a

, the average density across the whole simulation domain remains

.This is caused by our solver approach, where

approximations of the density

).Using the presented adaption

allows for an even

).Therefore, a sufficient

LOD particles

evenly distributed LOD

assignment from the raw depth buffer) can cause noticeable

Adjustment of active particles (blue) in the neighborhood of inactive particles (red) and

based smoothing radii and the black arrows

compensate coarse-grained

is stable after a single simulation step assuming a valid configuration in terms of time-step

further simulation step does not introduce or cause instability

explicitly manipulates possible further iterations and adjustments

particles from the

, and their position remains fixed.Position

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

updates of active particles are adjusted according to the other active and inactive ones

5).Since all particles in the set 8989 cannot cause instability with respect to each other (see

cannot introduce instability with particles in

also implies that particles transitioning from low

introduce instability.

However, low-LOD particles can become poorly adjusted in relation to non

rough approximation of position adjustments for a subset of particles in the simulation domain

can cause insufficiently solved contact constraints (Figure 6

on these non-desired particle locations will cause additional

particles, which in turn causes visual artifacts to

we apply the concept of pre-stabilization

case moves particles out of obstacles by adjusting the predicted as well a

before the actual constraint-solving step

Figure 6. A high-LOD (blue) and a low

Due to coarse-grained approximations, the low

the obstacle. The applied position corrections in the next step will move the red parti

predicted location (center). Hence, it will be accelerated out of the obstacle, w

artifacts (right).

5. ALGORITHM

The main simulation algorithm is shown in

comparison to the PBF algorithm, and

We first perform an application of external forces

particles in 89 .Afterwards, we discover neighboring particles and contact collisions (with

obstacles) for all particles in 8�.We apply a user

all contact constraints that manipulate particles in the set of

value between 1 and �9 .

Inside the main simulation loop, we perform all operations on active particles in the s

8�KLM.Contact constraints that affect the current particle

Δ
�.In the final step, all particles in

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

updates of active particles are adjusted according to the other active and inactive ones

9 are always considered at the same time in iteration

cannot cause instability with respect to each other (see PBF method).Since those particles also

cannot introduce instability with particles in 89D , no particles in 89 can introduce instability. This

also implies that particles transitioning from low LOD to high LOD and vice versa cannot

particles can become poorly adjusted in relation to non-fluid particles. This

rough approximation of position adjustments for a subset of particles in the simulation domain

ed contact constraints (Figure 6).Performing the default solver steps

desired particle locations will cause additional velocity to be added to the affected

particles, which in turn causes visual artifacts to appear. In order to compensate for these artifacts,

stabilization [7] to a subset of the particles.Pre-stabilization in our

obstacles by adjusting the predicted as well as the current positions

solving step (Figure 6).

(blue) and a low-LOD particle (red) at the beginning of a frame (left

d approximations, the low-LOD particle was not completely moved out of

the obstacle. The applied position corrections in the next step will move the red parti

). Hence, it will be accelerated out of the obstacle, which c

The main simulation algorithm is shown in Figure7.Regions in red indicate chan

algorithm, and green regions (line 7 and lines 9 to 11) indicate new

first perform an application of external forces fLOK and a prediction of new positions for all

.Afterwards, we discover neighboring particles and contact collisions (with

.We apply a user-defined number of pre-stabilization iterations for

all contact constraints that manipulate particles in the set of 8PD , where Q is also a user

Inside the main simulation loop, we perform all operations on active particles in the s

affect the current particle � will be solved during the calculation of

.In the final step, all particles in 8� will be modified according the concept of PBD

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

8

updates of active particles are adjusted according to the other active and inactive ones (Figure

are always considered at the same time in iteration 6, particles in

method).Since those particles also

instability. This

and vice versa cannot

particles. This

rough approximation of position adjustments for a subset of particles in the simulation domain

Performing the default solver steps

velocity to be added to the affected

order to compensate for these artifacts,

stabilization in our

s the current positions

) at the beginning of a frame (left).

particle was not completely moved out of

the obstacle. The applied position corrections in the next step will move the red particle to its

hich causes visible

indicate changed parts in

indicate new parts.

and a prediction of new positions for all

.Afterwards, we discover neighboring particles and contact collisions (with

stabilization iterations for

is also a user-defined

Inside the main simulation loop, we perform all operations on active particles in the set

will be solved during the calculation of

PBD.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

9

6. IMPLEMENTATION DETAILS

We realized our adaptive fluid-simulation solver in C++ AMP for GPUs [28].We use signed-

distance fields for collision detection and leverage the counting-sort based approach by [29] for

efficient neighbor discovery on GPUs, in contrast to other methods for CPUs [30].Since particles

are reordered during the neighbor-discovery phase, memory coherence during the evaluation of

the density constraint is greatly improved.

The adaption models are based on renderer information that is retrieved by analyzing the depth

image of the scene without occlusions by scene geometry. The depth information can be directly

resolved by rendering all particles as splatted spheres, which is also used by our and other

common screen-space based rendering approaches for particle fluids [2, 31].Furthermore, a single

pass over all particles is used to compute and propagate the LOD information.

1: for all particles � ∈ 8�do

2: apply forces R� ⇐ R� + Δ� fLOK
3: predict position T�∗ ⇐ T� + Δ� :�
4: end for

5: for all particles � ∈ 8�do

6: find neighboring particles ���T�∗�

7: find contacts for pre-stabilization

8:

end for

9: while iter<stabilIterations do

10: perform contact responses for contact ��
with �V ∈ � � |particles��� ∈ 8PD ,

11: end while

12: while iter<�9 do

13: for all particles � ∈ 8�KLMdo

14: calculate ��
15: end for

16: for all particles � ∈ 8�KLMdo

17: calculate Δ
�
18: perform contact responses

19: end for

20: for all particles � ∈ 8�KLMdo

21: update positions T�∗ ⇐ T�∗ + Δ
�
22: end for

23: end while

24: for all particles � ∈ 8�do

25: update velocity R� ⇐ �
WK �T�∗ − T��

26: update positionT� ⇐ T�∗

27: end for

Figure 7. APBF-simulation loop based on PBF

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

10

7. EVALUATION

The overall evaluation is based on the pure version of PBF and our adaptive version and focuses

on the visual quality of the simulation: Selected frames of the PBF simulation are visually

compared to the APBF versions. Rendering of fluids relies on direct semi-transparent particle

visualization in the form of non-distorted spheres in order to properly compare certain regions in

the images. Furthermore, we do not apply any smoothing operations (e.g. Laplacian smoothing)

to the particle data before rendering and make use of a single camera in every scenario.

The evaluation is performed on three scenarios, which make use of differently configured fluid

setups. The fluid and scene configuration is then fixed for all performance and visual-quality

evaluations for PBF and APBF.All scenarios use a frame time of Δ� � 0.0016 seconds andtwo

time-steps per frame. For every scenario, a minimum (required for an acceptable result) and a

default number of iterations (for an appealing result) based on PBF are determined. The number

of iterations was determined by analyzing the density information to ensure a proper

representation of the modeled fluid. An appealing result achieves a reasonable density

distribution across the whole simulation domain, in contrast to the much coarser approximation in

the case of an acceptable result. Note that an increase in the number of iterations also implies an

increase in apparent viscosity in our scenarios, which is an inherit side effect of PBF.This,

however, can be avoided by using an unilateral density constraint in combination with force-

based cohesion viscosity [7, 32].

Performance tests were executed on two different GPUs from different vendors: a GPU from

NVIDIA (GeForce GTX 680) and a GPU from AMD (Radeon HD7850).A performance

measurement is the median execution time of 1000 simulation steps and 100 application

executions (see Table 1).

Table 1. Performance results for the presented evaluation scenarios on an NVIDIA GeForce GTX 680 and

an AMD Radeon HD7850

Scenario Particles Configuration Iterations
Frame time in

milliseconds

Performance

Improvement
NVIDIA AMD NVIDIA AMD

Dam

Break

216k PBF

PBF

APBF (DTC)

APBF (DTVS)

3

6

{3,…6}

{3,…6}

20

39

24

23

25

46

30

29

-

-

63%

70%

-

-

53%

59%

Double

Dam

Break

673k PBF

PBF

APBF (DTC)

APBF (DTVS)

5

10

{5,…10}

{5,…10}

194

410

241

232

238

476

290

281

-

-

70%

77%

-

-

64%

69%

Multi

Dam

Break

225k PBF

PBF

APBF (DTC)

APBF (DTVS)

4

8

{4,…8}

{4,…8}

28

54

38

34

35

67

48

46

-

-

42%

59%

-

-

40%

46%

7.1. Dam Break

The scene consists of a single dam-break location of a water-like fluid, which is released after the

start. It contains 216,000 particles and uses a number of iterations � � 3 for an acceptable

density approximation and � � 6 for an appealing result in terms of density.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

Figure 8 shows the visualized simulation during the collision of the fluid with the

case of PBF with � � 3, many particles are only loosely connect

causes visible holes in the fluid surface in the

also influenced and affected by this

much smoother fluid surface, as

front of the scene looks smooth and evenly distributed compared to the reference

the case of DTC, smaller holes and a non

However, DTVS creates an overall appealing visualization, which also represents fine

details like the vortex in the front right.

Figure 9 (top left) shows the influence on the average density in percent across all particles in the

simulation during the time of the selected

shifted versions of the reference simulation

around 4% compared to the reference algorithm

Figure 8. Comparison of the evaluation images for the

low quality (left, red, � � 3) and h

�3, … ,6
� with DTC (left, blue) and DTVS

highlighted.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

shows the visualized simulation during the collision of the fluid with the

, many particles are only loosely connected to their neighbors, which

causes visible holes in the fluid surface in the front. Some regions in the back of the scene are

also influenced and affected by this issue. Increasing the number of iterations to � �
much smoother fluid surface, as well as the absence of holes. When using DTC and

front of the scene looks smooth and evenly distributed compared to the reference simulation. In

, smaller holes and a non-smooth fluid surface in the back are clearly

creates an overall appealing visualization, which also represents fine

details like the vortex in the front right.

) shows the influence on the average density in percent across all particles in the

simulation during the time of the selected images. All APBF graphs appear to be scaled and/or

shifted versions of the reference simulation-density graph. The most significant deviation is

compared to the reference algorithm.

Comparison of the evaluation images for the dam-break scenario. Upper row:

) and high quality (right, yellow, � � 6); lower row:

with DTC (left, blue) and DTVS (right, green). Differences between the methods are

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

11

shows the visualized simulation during the collision of the fluid with the walls. In the

ed to their neighbors, which

regions in the back of the scene are

� 6 ensures a

and DTVS, the

simulation. In

smooth fluid surface in the back are clearly visible.

creates an overall appealing visualization, which also represents fine-grained

) shows the influence on the average density in percent across all particles in the

graphs appear to be scaled and/or

nt deviation is

Upper row: PBF with

); lower row: APBF (� ∈
(right, green). Differences between the methods are

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

12

Figure 9. Most significant average-density deviations for the evaluation scenarios (limited

amount of time). Our method has density deviations that are less than 4% on the evaluation

scenarios. In general, APBF achieves comparable densities to PBF.Color coding: Black, rest

density. Red, APBF with the DTC model (dotted). Green, APBF with the DTVS model (dashed).

Gray, the original PBF approach (solid).

7.2 Double Dam Break

This setting uses two dam-break volumes of a high-density, inviscid fluid. It contains two dams

with 336,400 particles each (= 672,800 particles) and uses � � 5 and � � 10 for the PBF

versions.

Concerning visual quality, the two PBF fluid configurations in Figures 1 and 10 can be easily

distinguished from each other in both cases: The low LOD version of the PBF method (with

� � 5) shows unevenly distributed particles at the boundaries.Furthermore, the central

intersection volume contains hole-like structures due to an insufficient approximation of the

densities.The higher-quality version (with � � 10) ensures a smooth-looking simulation and

does not suffer from such artifacts. The adaptive versions with DTC and DTVS realize a high-

quality simulation in the front. Again, the DTVS configuration achieves the best results in terms

of visual quality compared to the reference version with � � 10.

The measured density deviations are below 1.5% in this case (Figure 9 top right).This deviation

was measured during the intersection of both fluid volumes and represents the worst case in this

scenario. As before, the graphs of our method appear to be similar compared to the reference

method.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

Figure 10. Comparison of the evaluation images for the

PBF with low quality (left, red

APBF (� ∈ �5,… ,10
) with DTC

methods are highlighted.

7.3. Multi Dam Break

Four small initial volumes with 56,350

particles in total are used in this case (Figure

The fluid is configured as a medium

for the PBF versions. The chosen rendered frame for this scenario presents the collision between

the walls, the central cone and the fluid

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

Comparison of the evaluation images for the double-dam-break scenario. Upper row:

with low quality (left, red, � � 5) and high quality (right, yellow, � � 10); lower row:

DTC (left, blue) and DTVS (right, green). Differences betw

our small initial volumes with 56,350 particles each that sum up to a number of 225,400

particles in total are used in this case (Figure 11).

The fluid is configured as a medium-density and highly viscous fluid that uses � �
chosen rendered frame for this scenario presents the collision between

the walls, the central cone and the fluid volumes. Increasing the number of PBF iterations from

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

13

break scenario. Upper row:

); lower row:

(right, green). Differences between the

ach that sum up to a number of 225,400

4 and � � 8

chosen rendered frame for this scenario presents the collision between

iterations from

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

Figure 11. Comparison of the evaluation images for the

PBF with low quality (left, red, �
(� ∈ �4, … ,8
� with DTC (left, blue) and

are highlighted.

� � 4 to � � 8 results in a better simulation of the modeled fluid.In particular, the fluid peaks in

the front are preserved. All adaptive approaches reach an overall good visual quality: The results

are very similar to that of the reference version with

Figure 9 (bottom) displays the average

frame. Similar to the previous scenario, the density deviations are around

7.4. Performance

As presented in Table 1, the performance degrades noticeably when increasing the number of

iterations per frame on both GPU

reveals that we are able to increase the performance on every scenario by at least

measured maximum improvement in performance was

on the Radeon HD7850.Overall, the

the DTC model in terms of performance in image quality.

However, the benefit depends on the scenario and the adaption

cases, we used settings that preserve high

performance, the runtime speed can be further improved.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

Comparison of the evaluation images for the multi-dam-break scenario. Upper row:

� � 4) and high quality (right, yellow, � � 8); lower row: APBF

(left, blue) and DTVS (right, green). Differences between

results in a better simulation of the modeled fluid.In particular, the fluid peaks in

adaptive approaches reach an overall good visual quality: The results

are very similar to that of the reference version with � � 8.

displays the average-density measurement during the time of the analyzed

cenario, the density deviations are around 1.5% in the worst case.

the performance degrades noticeably when increasing the number of

GPUs.Comparing the original PBF method against our

reveals that we are able to increase the performance on every scenario by at least

measured maximum improvement in performance was 77% on the GeForce GTX 680

.Overall, the DTVS adaption model performs slightly better compared to

model in terms of performance in image quality.

However, the benefit depends on the scenario and the adaption-model configurations

cases, we used settings that preserve high-quality simulation results. When trading quality against

performance, the runtime speed can be further improved.

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

14

break scenario. Upper row:

); lower row: APBF

een the methods

results in a better simulation of the modeled fluid.In particular, the fluid peaks in

adaptive approaches reach an overall good visual quality: The results

density measurement during the time of the analyzed

in the worst case.

the performance degrades noticeably when increasing the number of

method against our approach

reveals that we are able to increase the performance on every scenario by at least 40%.The

GeForce GTX 680 and 69%

better compared to

model configurations used. In our

quality against

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

15

8. CONCLUSION AND FUTURE WORK

We presented a novel approach for adaptive fluid simulations using position-based constraints. It

is a lightweight extension to the method by [4] that can be easily included in an existing position-

based solver. Using LOD-based particle sets, we are able to achieve significant improvements in

performance of up to 77% on the evaluation scenarios, in comparison to the reference method. In

terms of visual quality, the results remain nearly the same using the adaptive concept. Comparing

the two evaluated adaption models, namely DTVS and DTC, DTVS results in a better simulation

quality and runtime performance. Our method is also capable of maintaining a similar average

density of the simulated fluids compared to PBD.Other more sophisticated adaption models for

the computation of LOD information might also be beneficial. However, changing the adaption

model to assign LOD in a non-linear way might break the preservation of the average-density and

stability.

In the current algorithm, we only consider additional contact constraints that are also solved

adaptively in a particle-focused way. In the future, we would like to investigate other adaptive

approaches, such as adaptive particle sizes. Furthermore, integration into a unified solver, e.g. a

parallel successive over-relaxation solver [7], might reveal new insights.

ACKNOWLEDGEMENTS

We would like to thank Nane Neu for her support and advises related to images and design.

Furthermore, we would like to thank Michael Schmitz.

REFERENCES

[1] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. Versatile Rigid-Fluid Coupling

for Incompressible SPH. ACM Transactions on Graphics, 2012.

[2] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. SPH Fluids in Computer

Graphics. 2014.

[3] A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw. Two-way Coupling of fluids to

Rigid and Deformable Solids and Shells. ACM Transactions on Graphics, 2008.

[4] M.Macklin and M. Müller. Position Based Fluids. ACM Transactions on Graphics, 2013.

[5] R. A. Gingold and J. J. Monaghan. Smoothed Particle Hydrodynamics-Theory and Application to

Nonspherical Stars. Notices of the Royal Astronomical Society, 1977.

[6] L. B. Lucy. A Numerical Approach to the Testing of the Fission Hypothesis. Astronomy Journal,

1977.

[7] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Unified Particle Physics for Real-Time

Applications. ACM Transactions on Graphics, 2014.

[8] M. Müller, D. Charypar, and M. Gross. Particle-Based Fluid Simulation for Interactive Applications.

In Symposium on Computer Animation, 2003.

[9] M. Müller, B. Solenthaler, R. Keiser, and M. H. Gross. Particle-Based Fluid-Fluid Interaction. In

Symposium on Computer Animation, 2005.

[10] M. Becker and M. Teschner. Weakly Compressible SPH for Free Surface Flows. In Symposium on

Computer Animation, 2007.

[11] S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker. Particle-Based Simulation of

Fluids. In Proceedings of Eurographics, Computer Graphics Forum, 2003.

[12] B. Solenthaler and R. Pajarola. Predictive-Corrective Incompressible SPH. In ACM Siggraph, 2009.

[13] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner. Implicit Incompressible SPH.

Visualization and Computer Graphics, IEEE Transactions on, 2014.

[14] M. Müller. Hierarchical Position Based Dynamics. In Vriphys. Eurographics Association, 2008.

[15] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position Based Dynamics. Journal of Visual

Communication and Image Representation, 2007

International Journal of Computer Graphics & Animation (IJCGA) Vol.6, No.3, July 2016

16

[16] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively Sampled Particle Fluids. ACM

Transactions on Graphics, 2007.

[17] W. Hong, D. H. House, and J. Keyser. Adaptive Particles for Incompressible Fluid Simulation. The

Visual Computer, 2008.

[18] W. Hong, D. H. House, and J. Keyser. An Adaptive Sampling Approach to Incompressible Particle-

Based Fluid. In Theory and Practice of Computer Graphics, 2009.

[19] Y. Zhang, B. Solenthaler, and R. Pajarola. Adaptive Sampling and Rendering of Fluids on the GPU.

In Proceedings of Eurographics / IEEE VGTC Conference on Point-Based Graphics, 2008.

[20] B. Solenthaler and M. Gross. Two-Scale Particle Simulation. In ACM Siggraph, 2011.

[21] C. J. Horvath and B. Solenthaler. Mass Preserving Multi-Scale SPH. Pixar Technical Memo 13-04,

Pixar Animation Studios, 2013.

[22] P. Goswami and R. Pajarola. Time Adaptive Approximate SPH. In Workshop in Virtual Reality

Interactions and Physical Simulation, 2011.

[23] P. Goswami and C. Batty. Regional Time Stepping for SPH. In Eurographics 2014 - Short Papers.

The Eurographics Association, 2014.

[24] M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner. Boundary Handling and Adaptive Time-stepping

for PCISPH, 2010.

[25] K. Bodin, C. Lacoursiere, and M. Servin. Constraint Fluids. IEEE Transactions on Visualization and

Computer Graphics, 2012.

[26] J. J. Monaghan. Smoothed Particle Hydrodynamics. In Annual Review of Astronomy and

Astrophysics, 1992.

[27] J. J. Monaghan. SPH without a Tensile Instability. Journal of Computational Physics, 2000.

[28] K. Gregory and A. Miller. C++ AMP: Accelerated Massive Parallelism with Microsoft Visual C++.

Microsoft Press, 2012.

[29] R. Hoetzlein. Fast Fixed-Radius Nearest Neighbors: Interactive Million-Particle Fluids. GPU

Technology Conference, 2014.

[30] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner. A Parallel SPH Implementation on Multi-Core

CPUs. Computer Graphics Forum, 2011.

[31] W. van der Laan, S. Green, and M. Sainz. Screen Space Fluid Rendering with Curvature Flow. In

Proceedings of the Symposium on Interactive 3D Graphics and Games, 2009.

[32] N. Akinci, G. Akinci, and M. Teschner. Versatile Surface Tension and Adhesion for SPH Fluids.

ACM Trans. Graph., 2013.

