
International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.1/2/3, July 2019

Another Simple but Faster Method for 2D

Line Clipping

Dimitrios Matthes and Vasileios Drakopoulos

Department of Computer Science and Biomedical Informatics,
School of Science, University of Thessaly,

Lamia 35131, Greece

Abstract. The majority of methods for line clipping make a rather large number of comparisons
and involve a lot of calculations compared to modern ones. Most of the times, they are not so
efficient as well as not so simple and applicable to the majority of cases. Besides the most popular
ones, namely, Cohen-Sutherland, Liang-Barsky, Cyrus-Beck and Nicholl-Lee-Nicholl, other line-
clipping methods have been presented over the years, each one having its own advantages and
disadvantages. In this paper a new computation method for 2D line clipping against a rectangular
window is introduced. The proposed method has been compared with the afore-mentioned ones as
well as with two others; namely, Skala and Kodituwakku-Wijeweera-Chamikara, with respect to
the number of operations performed and the computation time. The performance of the proposed
method has been found to be better than all of the above-mentioned methods and it is found to
be very fast, simple and can be implemented easily in any programming language or integrated
development environment.

Keywords: 2D Computer Graphics; Computer Graphics Education; Geometry; Line Clipping;
Programming Education; Computation method

1 Introduction and historical background

In computer graphics, any procedure that eliminates those portions of a picture that
are either inside or outside a specified region of space is referred to as a clipping
algorithm or simply clipping. The region against which an object is to be clipped
is called a clipping object. In two-dimensional clipping, if the clipping object is an
axis-aligned rectangular parallelogram, it is often called the clipping window or clip
window. Usually a clipping window is a rectangle in standard position, although we
could use any shape for a clipping application. For a three-dimensional scene it is
called a clipping region; see [9].

Line clipping is the process of removing lines or portions of lines outside an area
of interest. Typically, any line or part thereof which is outside of the viewing area
is removed (Fig. 1). Most of the times, this process uses mathematical equations
or formulas for removing the unecessary parts of the line. The programmer draws
only the part of the line which is visible and inside the desired region by using, for
example, the slope-intercept form y = mx+b, where m is the slope or gradient of the

DOI: 10.5121/ijcga.2019.9301 1

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 1. Region before (left) and after (right) 2D line clipping.

line, b is the y-intercept of the line and x is the independent variable of the function
y = f(x) or just the vector equation. The most common application of clipping is
in the viewing pipeline, where clipping is applied to extract a designated portion
of a scene (either two-dimensional or three-dimensional) for display on an output
device. Clipping methods are also used to antialias object boundaries, to construct
objects using solid-modelling methods, to manage a multiwindow environment and
to allow parts of a picture to be moved, copied, or erased in drawing and painting
programs; see for example [8] or [4].

There are four primary methods for line clipping: Cohen-Sutherland, Cyrus-
Beck [2], Liang-Barsky [15] and Nicholl-Lee-Nicholl [18]. Over the years, other algo-
rithms for line clipping appeared, like Fast Clipping [29], Dörr [5], Andreev and Sofi-
anska [1], Day [3], Sharma and Manohar [24], Skala [25] [26] [27], Slater and Barsky
[28], Ray [23], [22] but many of them are variations of the first two ones; see [21] or
[14] for a different approach. In general, the existing line-clipping algorithms can
be classified into three types: the encoding approach (with the Cohen-Sutherland
algorithm as a representative), the parametric approach (with the Liang-Barsky
and the Cyrus-Beck algorithms as representatives) and the Midpoint Subdivision
algorithms.

The algorithm of Danny Cohen and Ivan Sutherland was developed in 1967
during the making of a flight simulator. It is considered to be one of the first
line-clipping algorithms in the computer graphics history. According to this, the
2D space in which the line resides is divided into nine regions. The algorithm
determines first in which regions the two points that define the line are in and then
performs complete, partial or no drawing of the line at all; see for example [6], p.
113 or [7] (Fig. 2). The method that is used to decide if a line is suitable for clipping
or not performs logical AND operation with the region codes or outcodes of the line
end points. After the logical AND, if the result is not 0000, the line is completely
outside the clipping region [10]. This technique is also referred to as Encoding and
Code Checking in [16].

2

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 2. The nine regions of the Cohen-Sutherland algorithm in the 2D space.

The method of Mike Cyrus and Jay Beck is a general line-clipping algorithm,
but it introduces extra floating point operations for determining the value of a
parameter corresponding to the intersection of the line to be clipped with each
window edge [11]. It is of O(N) complexity, where N is a number of facets, and
is primarily intended for clipping a line in the parametric form against a convex
polygon in two dimensions or against a convex polyhedron in three dimensions.

Midpoint subdivision algorithm is an extension of the Cyrus-Beck algorithm
and follows a divide and conquer strategy. It is mainly used to compute visible
areas of lines that are present in the view port of the sector or the image. It
follows the principle of the bisection method and works similarly to the Cyrus-
Beck algorithm by bisecting the line into equal halves. But unlike the Cyrus-Beck
algorithm, which only bisects the line once, Midpoint Subdivision Algorithm bisects
the line numerous times. The Midpoint Subdivision algorithm is not efficient unless
it is implemented in hardware.

On the other hand, You-Dong Liang and Brian Barsky have created an algo-
rithm that uses floating-point arithmetic for finding the appropriate end points with
at most four computations [19]. This algorithm uses the parametric equation of the
line and solves four inequalities to find the range of the parameter for which the
line is in the viewport [15]. The method of Liang-Barsky is very similar to Cyrus-
Beck line-clipping algorithm. The difference is that Liang-Barsky is a simplified
Cyrus-Beck variation that was optimised for a rectangular clip window; see Fig. 3.
In general, the Liang-Barsky algorithm is more efficient than the Cohen-Sutherland
line-clipping algorithm.

The Nicholl-Lee-Nicholl algorithm is a fast line-clipping algorithm that reduces
the chances of clipping a single line segment multiple times, as may happen in

3

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 3. Defining the line for clipping with the Liang-Barsky algorithm.

the Cohen-Sutherland algorithm. The clipping window is divided into a number
of different areas, depending on the position of the initial point of the line to be
clipped.

The algorithm of Skala [27] is based on homogeneous coordinates and duality.
It can be used for line or line-segment clipping against a rectangular window as
well as against a convex polygon. The algorithm is based on classifying a vertex
of the clipping window against a half-space given by a line p : ax + by + c = 0.
The result of the classification determines the edges intersected by the line p. The
algorithm is simple, easy to implement and extensible to a convex window as well.
The line or line segment p can be computed from points r1, r2 given in homogeneous
coordinates directly using the cross product as

p = r1 × r2 = (x1, y1, w1)× (x2, y2, w2)

or as
p = r1 × r2 = (x1, y1, 1)× (x2, y2, 1).

In 2013, a fast line clipping algorithm with slightly different approach from the
above ones was introduced by Kodituwakku-Wijeweere-Chamikara [13]. It is newer
and performs better than the Cohen-Sutherland and Liang-Barsky algorithms. It
checks every boundary of the clipping area (top, bottom, left, right) and performs

4

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

line clipping by using the equation of the line. Moreover, it checks if the line segment
is just a point or parallel to principle axes.

Depending on the programming language or integrated development environ-
ment, the implementation of each algorithm varies in speed. For example, the im-
plementation of the Cohen-Sutherland algorithm in Scratch requires a relatively
large number of bitwise AND operations for determining the regions that the line
resides. However, bitwise AND is not embedded in Scratch so the programmer
should have to create a function for this task which greatly impedes the algorithm.
Sometimes, it is difficult to implement or teach to others a line-clipping algorithm
because it uses either advanced mathematical concepts, like the Liang-Barsky, or it
is complicated by using many conditions and comparisons (if..then..else..) like the
Kodituwakku-Wijeweere-Chamikara.

The difficulties of the previous line-clipping algorithms seem to be overcomed
by the proposed one; see also [17]. Although it uses the main concept of the
Kodituwakku-Wijeweere-Chamikara algorithm, it avoids many unecessary compar-
isons like the parallel lines or the dots. It aims at simplicity and speed and does
only the necessary calculations in order to determine whether the beginning as well
as the end of the line are inside the clipping region. Moreover, it uses the minimum,
for all the tested algorithms, number of variables.

This article has the following structure. Section 2 presents the proposed line-
clipping method, Section 3 presents the results after comparing the proposed with
six other line-clipping algorithms (Cohen-Sutherland, Liang-Barsky, Cyrus-Beck,
Nicholl-Lee-Nicholl, Skala and Kodituwakku-Wijeweere-Chamikara) all implemented
in C++ with OpenGL, Section 4 presents the conclusions derived from the study
and usage of the algorithm in practice as well as suggestions for improvement and,
finally, Section 5 summarises all the findings reported above.

2 The proposed line-clipping algorithm

2.1 Methodology

Assume that we want to clip a line inside a rectangle region or window that is defined
by the points (xmin, ymax) and (xmax, ymin). This region is depicted in Fig. 4. Given
two points (x1, y1) and (x2, y2) on the line that we want to clip, the slope m of the
line is constant and is defined by the ratio

m =
y2 − y1
x2 − x1

. (1)

For an arbitrary point (x, y) on the line, the previous ratio can be written as

m =
y − y1
x− x1

.

5

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 4. Line-clipping region.

Solving for y
y − y1 = m(x− x1)⇔ y = y1 + m(x− x1).

By replacing m in this equation with Eq. (1)

y = y1 +
y2 − y1
x2 − x1

(x− x1). (2)

Solving for x, the equation becomes

x = x1 +
x2 − x1
y2 − y1

(y − y1). (3)

Equations (2) and (3) are two mathematical representations of the line equation
y = mx + b and will be used later by the algorithm in order to determine the part
of the line that is inside the clipping window.

2.2 The basic steps

Suppose that the line which has to be clipped is defined by the points (x1, y1) and
(x2, y2).

Step 1 The first step of the algorithm checks, if both points are outside the line
clipping window and at the same time in the same region (top, bottom, right, left).
If one of the following occurs, then the entire line is being rejected and the algorithm
draws nothing (see Fig. 5):

6

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

x1 < xmin AND x2 < xmin (line is left to the clipping window)
x1 > xmax AND x2 > xmax (line is right to the clipping window)
y1 < ymin AND y2 < ymin (line is under the clipping window)
y1 > ymax AND y2 > ymax (line is over the clipping window)

Fig. 5. Lines A,B,C,D are rejected according to the first step of the algorithm.

Step 2 In the second step, the algorithm compares the coordinates of the two
points along with the boundaries of the clipping window. It compares each of the
x1 and x2 coordinates with the xmin and xmax boundaries respectively, as well as
each one of the y1 and y2 coordinates with the ymin and ymax boundaries. If any
of these coordinates are out of bounds, then the specific boundary is used in the
equation that determines the line in order to achieve clipping (see Fig. 6).

For each of the coordinates of the two points and according to Equations (2)
and (3), the comparisons and changes made are:

– If xi < xmin, then

xi = xmin

yi = y1 +
y2 − y1
x2 − x1

(xmin − x1)

7

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 6. Selecting the points of the line that are inside the clipping area.

– If xi > xmax, then
xi = xmax

yi = y1 +
y2 − y1
x2 − x1

(xmax − x1)

– If yi < ymin, then
yi = ymin

xi = x1 +
x2 − x1
y2 − y1

(ymin − x1)

– If yi > ymax, then
yi = ymax

xi = x1 +
x2 − x1
y2 − y1

(ymax − x1)

where i = 1, 2.

Step 3 The third and final step checks, if the new points, after the changes, are
inside the clipping region and, if so, a line is being drawn between them.

2.3 The algorithm in pseudo-code

The representation of the algorithm in pseudo-code follows:

// x1 , y1 , x2 , y2 , xmin , ymax , xmax , ymin //

i f not (x1<xmin and x2<xmin) and not (x1>xmax and x2>xmax) then
i f not (y1<ymin and y2<ymin) and not (y1>ymax and y2>ymax) then

x [1]= x1
y [1]= y1
x [2]= x2
y [2]= y2
i=1

8

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

repeat
i f x [i] < xmin then

x [i] = xmin
y [i] = ((y2−y1)/(x2−x1))∗ (xmin−x1)+y1

e l s e i f x [i] > xmax then
x [i] = xmax
y [i] = ((y2−y1)/(x2−x1))∗ (xmax−x1)+y1

end i f
i f y [i] < ymin then

y [i] = ymin
x [i] = ((x2−x1)/(y2−y1))∗ (ymin−y1)+x1
e l s e i f y [i] > ymax then
y [i] = ymax
x [i] = ((x2−x1)/(y2−y1))∗ (ymax−y1)+x1

end i f
i = i + 1

un t i l i>2
i f not (x [1]<xmin and x [2]<xmin) and not (x [1]>xmax and x [2]>xmax) then

drawLine (x [1] , y [1] , x [2] , y [2])
end i f

end i f
end i f

3 Evaluation of the proposed algorithm

Preparation

In order to determine the efficiency of the proposed algorithm we decided to com-
pare it with the six others: Cohen-Sutherland, Liang-Barsky, Cyrus-Beck, Nicholl-
Lee-Nicholl, Skala and Kodituwakku-Wijeweere-Chamikara.

The combination of C++ and OpenGL was a good choice for evaluating the
proposed algorithm for the following reasons: a) C++ along with OpenGL is a
professional programming environment in computer graphics, b) OpenGL uses ef-
ficiently the computer’s hardware as well as the graphics adapter, c) C++ is faster
than many other programming languages, d) OpenGL is a portable language and
the code can be tested easily in other operating systems or computers [9].

The experiment The experiment was the following: Each one of the six eval-
uated algorithms would have to create a large number of arbitrary lines in a
two-dimensional space. Such a space is determined by the points (−960, 720) and
(960,−720). The line-clipping window should be at the centre of the screen and
defined by the points (−100, 75) and (100,−75), in other words 200 pixels in width
and 150 pixels in height (see Fig. 7). As someone may notice, the proportion of
the screen and the clipping window is the same for both horizontal and vertical
axis. The lines would be randomly generated anywhere in the 2D space and each
algorithm would have to draw only the visible part of the lines inside the clipping
window.

The time that each algorithm needs to clip and draw this large number of lines
is recorded in every execution. The whole process is repeated 10 times and at the
end the average time is being calculated.

9

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 7. Defining the 2D space for creating random line as well as definition of the line-clipping
window.

Hardware and software specifications For realistic results, an average com-
puter system was used for the experiment. The hardware as well as the software
specifications were: a) Intel Core2Duo @ 2.60GHz CPU, b) RAM 2GB, c) AMD
Radeon HD 5450 GPU, d) Windows 10 Professional operating system, e) Microsoft
Visual C++ 2017 Enterprise Edition with OpenGL and glut v3.7 library.

Results We decided that each algorithm should draw 1,000,000 lines in every
execution. The results are shown in Table 1.

Table 1. Execution times of each algorithm when creating 1,000,000 lines in C++ with OpenGL

Exec. CS LB CB NLN Skala KWC Prop.
(sec) (sec) (sec) (sec) (sec) (sec) (sec)

1 1.302 1.264 1.446 1.577 1.234 1.216 1.182

2 1.362 1.233 1.425 1.376 1.313 1.224 1.125

3 1.453 1.225 1.471 1.437 1.299 1.196 1.097

4 1.359 1.460 1.530 1.446 1.239 1.271 1.176

5 1.407 1.263 1.519 1.455 1.337 1.297 1.151

6 1.286 1.233 1.418 1.505 1.256 1.268 1.216

7 1.295 1.182 1.439 1.427 1.352 1.275 1.076

8 1.446 1.205 1.658 1.332 1.365 1.223 1.209

9 1.420 1.218 1.423 1.448 1.248 1.217 1.214

10 1.319 1.272 1.462 1.450 1.456 1.251 1.199

Avg: 1.365 1.256 1.479 1.445 1.310 1.244 1.165

10

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Finally, for a better evaluation of the previous results, the algorithms were
executed again in C++ with OpenGL but this time 10,000,000 lines had to be
clipped. The average time was noted down and the results can be seen in Table 2.

Table 2. Execution times of each algorithm when creating 10,000,000 lines in C++ with OpenGL

Exec. CS LB CB NLN Skala KWC Prop.
(sec) (sec) (sec) (sec) (sec) (sec) (sec)

1 12.141 11.450 13.253 12.862 11.693 11.358 10.414

2 11.717 11.628 12.990 13.273 11.823 11.717 10.138

3 12.064 11.783 13.047 13.836 11.644 11.091 10.370

4 11.605 11.359 13.978 12.763 11.819 11.779 10.757

5 11.693 10.978 13.268 12.707 11.579 10.741 10.517

6 11.643 10.953 14.269 13.043 11.739 10.885 10.351

7 11.733 11.224 13.597 12.723 12.114 10.823 10.423

8 11.880 11.009 13.805 13.010 11.820 11.102 10.451

9 11.917 10.948 13.350 12.825 11.754 11.114 10.473

10 12.221 10.936 13.811 12.649 11.757 10.756 10.387

Avg: 11.861 11.227 13.537 12.969 11.774 11.137 10.428

4 Conclusions

In Fig. 8 the graph of each case by using all data from the previous tables is
illustrated. By using the average time of the algorithms executed in C++ with
OpenGL for 1,000,000 lines and

|proposed− previous|
proposed

× 100

we can see that that the proposed algorithm is 17.17% faster than the Cohen-
Sutherland, 7.81% faster than the Liang-Barsky, 26.95% faster than the Cyrus-
Beck, 24.03% than the Nicholl-Lee-Nicholl, 12.45% than the Skala and 6.78% faster
than the Kodituwakku-Wijeweere-Chamikara algorithm. When the number of lines
increases to 10,000,000, these time percentages are more or less the same; see Fig. 9.
To be more specific, the proposed algorithm is 13.74% faster than the Cohen-
Sutherland, 7.66% faster than the Liang-Barsky, 29.81% faster than the Cyrus-
Beck, 24.37% than the Nicholl-Lee-Nicholl, 12.91% than the Skala and 6.80% faster
than the Kodituwakku-Wijeweere-Chamikara algorithm.

As mentioned before, each algorithm has advantages and disadvantages. The
Cohen-Sutherland algorithm is the oldest of all algorithms, it has an average per-
formance comparing to the other five but it is difficult to implement in some pro-
gramming environments, e.g. Scratch, due to the bitwise AND operations that it
requires.

11

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 8. Graph with the average time of each algorithm for 1,000,000 in C++ with OpenGL (from
lower to higher value).

The Liang-Barsky algorithm performs very well and is almost as fast as the
Kodituwakku-Wijeweere-Chamikara algorithm which was the faster algorithm af-
ter the proposed one. Liang-Barsky’s main drawback is that it is slightly more
difficult than the others to understand since it contains more advanced mathemat-
ical concepts.

The Cyrus-Beck algorithm looks like the Liang-Barksy, has the worst perfor-
mance comparing to all the others and uses advanced mathematical concepts, too.
But why should someone use this algorithm? A quick answer to this question could
be: Because it can be modified very easily in order to clip polygons instead of lines.

The Nicholl-Lee-Nicholl algorithm is rather slow since it is faster only than the
Cyrus-Beck. It uses a large number of subcases and subroutines for clipping a simple
line and, as a result, it produces very long programs with many lines of code. An
advantage of this algorithm is that it is easier to understand than others and thus
to implement.

Finally, Skala as well as Kodituwakku-Wijeweere-Chamikara algorithm use a
different approach than the popular ones, although fast they use a lot of conditions
which make them more complicated and slower than the proposed one.

5 Summary

There are many line-clipping algorithms in computer graphics. Each one has advan-
tages and disadvantages. Cohen-Sutherland is the simplest line-clipping algorithm,
but the Liang-Barsky algorithm is more efficient, since intersection calculations
are reduced. Overall, the afore-mentioned experimental results indicate that the
proposed algorithm is simpler, faster and it certainly performs better than other
known 2D line-clipping algorithms. It uses only a small number of variables and it

12

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

Fig. 9. Graph with the average time of each algorithm for 10,000,000 in C++ with OpenGL (from
lower to higher value).

is very easy to implement in any programming language or integrated development
environment. Both the Cohen-Sutherland and Liang-Barsky algorithms can be ex-
tended to three-dimensional clipping. Nicholl-Lee-Nicholl cannot extend to three-
dimensional clipping. An interesting extension of the proposed algorithm would be
clipping in three dimensions; see [12], [20].

References

1. R. Andreev and Elena Sofianska. New algorithm for two-dimensional line clipping. Comput.
Graph., 15(4):519–526, 1991.

2. M. Cyrus and J. Beck. Generalized two- and three-dimensional clipping. Comput. Graph.,
3:23–28, 1978.

3. J. D. Day. An algorithm for clipping lines in object and image space. Comput. Graph.,
16(4):421–426, 1992.

4. S. C. Dimri. A simple and efficient algorithm for line and polygon clipping in 2-D computer
graphics. International Journal of Computer Applications, 127(3):31–34, 2015.

5. M. Dörr. A new approach to parametric line clipping. Comput. Graph., 14(3/4):449–464,
1990.

6. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics Principles and
Practice. Addison-Wesley, Reading, MA, 2nd edition, 1990.

7. A. P. Godse and Deepali A. Godse. Computer Graphics. Technical Publications, 2008.

8. D. Hearn and M. P. Baker. Computer Graphics C Version. Prentice Hall, 2nd edition, 1997.

9. D. Hearn, M. Pauline Baker, and W. R. Carithers. Computer Graphics with Open GL. Pearson
Education Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, 4th edition, 2014.

10. M. S. Iraji, A. Mazandarami, and H. Motameni. An efficient line clipping algorithm based on
Cohen-Sutherland line clipping algorithm. American Journal of Scientific Research, 14:65–71,
2011.

11. S. Kaijian, J. A. Edwards, and D. C. Cooper. An efficient line clipping algorithm. Comput.
Graph., 14(2):297–301, 1990.

13

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

12. S. R. Kodituwakku, K. R. Wijeweera, and M. A. P. Chamikara. An efficient line clipping
algorithm for 3D space. International Journal of Advanced Research in Computer Science and
Software Engineering, 2(5):96–101, 2012.

13. S. R. Kodituwakku, K. R. Wijeweera, and M. A. P. Chamikara. An efficient algorithm for line
clipping in computer graphics programming. Ceylon Journal of Science (Physical Sciences),
1(17):1–7, 2013.

14. Prastut Kumar, Fenil Patel, and Rajesh Kanna. An efficient line clipping algorithm for circular
windows using vector calculus and parallelization. International Journal of Computer Graphics
& Animation (IJCGA), 8(1/2):1–8, 2018.

15. Y-D. Liang and B. A. Barsky. A new concept and method for line clipping. tog, 3(1):1–22,
1984.

16. G. Lu, X. Wu, and Q. Peng. An efficient line clipping algorithm based on adaptive line
rejection. Computers and Graphics, 26:409–415, 2002.

17. D. Matthes and V. Drakopoulos. A simple and fast line-clipping method as a scratch extension
for computer graphics education. Computer Science and Information Technology, 7(2):40–47,
2019.

18. Tina M. Nicholl, D.T. Lee, and Robin A. Nicholl. An effective new algorithm for 2-D line
clipping: Its development and analysis. Comput. Graph., 21(4):253–262, 1987.

19. Nisha. Comparison of various line clipping algorithms: Review. International Journal of
Advanced Research in Computer Science and Software Engineering, 7(1):68–71, 2017.

20. Nisha. A review: Comparison of line clipping algorithms in 3D space. International Journal
of Advanced Research, 5(1):2377–2379, 2017.

21. A. Pandey and S. Jain. Comparison of various line clipping algorithms for improvement.
International Journal of Modern Engineering Research, 3(1):69–74, 2013.

22. B. K. Ray. An alternative algorithm for line clipping. Journal of Graphic Tools, 16(1):12–24,
2012.

23. B. K. Ray. A line segment clipping algorithm in 2D. International Journal of Computer
Graphics, 3(2):51–76, 2012.

24. N. C. Sharma and S. Manohar. Line clipping revisited: Two efficient algorithms based on
simple geometric observations. Comput. Graph., 16(1):51–54, 1992.

25. V. Skala. An efficient algorithm for line clipping by convex polygon. Comput. Graph.,
17(4):417–421, 1993.

26. V. Skala. O(lgN) line clipping algorithm in E2. Comput. Graph., 18(4):517–524, 1994.
27. V. Skala. A new approach to line and line segment clipping in homogeneous coordinates.

Visual Comput., 21:905–914, 2005.
28. Mel Slater and Brian A. Barsky. 2d line and polygon clipping based on space subdivision.

Visual Comput., 10:407–422, 1994.
29. M. S. Sobkow, P. Pospisil, and Y. Yang. A fast two-dimensional line clipping algorithm via

line encoding. Comput. Graph., 11(4):459–467, 1987.

Authors

Vasileios Drakopoulos received a B.S. degree in Mathematics, an M.S. degree in
Informatics & Operations Research and a doctorate in Informatics and Computer
Science from the National and Kapodistrian University of Athens, in 1990, 1992 and
1999, respectively. He began studying dynamic systems and fractals during his grad-
uate studies and received a scholarship from the Bodossaki Foundation as financial
support for doctorate studies. After completing his Ph.D., he received a Postdoc-
toral Scholarship from the (Greek) State Scholarships Foundation (I.K.Y) and has

14

International Journal of Computer Graphics & Animation (IJCGA) Vol.9, No.4, July 2019

worked on parallel visualisation methods. He has taught a number of courses in
Tertiary as well as in Secondary Education. Currently, he is an Assistant Profes-
sor in the Department of Computer Science and Biomedical Informatics at the
University of Thessaly and a Research Fellow in the Department of Informatics &
Telecommunications at the National and Kapodistrian University of Athens. His
scientific area of interests include Fractal and Computational Geometry, Computer
Graphics, Dynamic Systems, Computational Complex Analysis, Image Processing
and Compression, Human-Computer Interaction as well as Didactics of Informat-
ics, Computer Science and ICT.

Dimitrios I. Matthes graduated from the Department of Computer Systems, TEI
of Piraeus in 2002 and obtained an M.S. diploma entitled “Information Technology
with Management” in 2009. He has worked in many IT companies from 2002 until
2005. From 2005 onwards he works as a teacher of Informatics in secondary educa-
tion. He has also worked as a part time teacher in several universities and institutes.
Currently, he is pursuing his Ph.D. degree in Computer Science and Biomedical In-
formatics from the University of Thessaly. His research interests include Computer
Graphics, Computational Geometry and ICT.

15

