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ABSTRACT

The Quality of Service (QoS) of scheduling betwatancy-sensitive small data flows (a.k.a. mice)l an
throughput-oriented large ones (a.k.a. elephan&$ become ever challenging with the proliferatidn o
cloud-based applications. In light of this mountipgoblem, this work proposes a novel flow control
scheme, HOLMES (HOListic Mice-Elephants Stochastibjch offers a holistic view of global congestion
awareness as well as a stochastic scheduler ofdnixiee-elephants data flows in Data Center Networks
(DCNSs). Firstly, we theoretically prove the necgs$br partitioning DCN paths into sub-networksnisia
stochastic model. Secondly, the HOLMES architectisreproposed, which adaptively partitions the
available DCN paths into low-latency and high-thgbiput sub-networks via a global congestion-aware
scheduling mechanism. Based on the stochastic pofatgro-choices policy, the HOLMES scheduling
mechanism acquires only a subset of the global estign information, while achieves close to optimal
load balance on each end-to-end DCN path. We atsmdlly prove the stability of HOLMES flow
scheduling algorithm. Thirdly, extensive simulativalidates the effectiveness and dependability of
HOLMES with select DCN topologies. The proposal he&gn in test in an industrial production
environment. An extensive survey of related wosksis presented.
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1.INTRODUCTION

The wide adoption of diverse cloud-based applicatiand services exacerbates the challenges
the design and operation of Data Center NetworkBNE). In a multi-tenant mode, long-lasting
elephant and short-lived mouse flows share on D@ti[15, 46, 60]. According to the results
shown in [7], the sizes of the numerous short-liflesvs are usually less than 10KB, and the
average load of these mouse flows is typically teas 5% [7, 45, 46]. However, east-west traffic
in the data center, between 75% and 95%, tendsgugre very low latency. On the other hand,
the long-lasting heavy DC flows are typically mdehger than 100KB; although the number of
these large flows is extremely small compared & ¢ the small flows [64, 65]. These elephant
flows account for more than 80% of bandwidth in DXJK5, 102, 110, 112].

To provide high bisection bandwidth, DCN topologée often multi-rooted topologies, e.g. Fat-
Tree, Leaf-Spine, characterized by a large degfeaauttipath [40, 41, 96]. There are multiple
routes between any two DCN endpoints [1, 2, 109)].1However, a critical issue in such
network topologies is to design an efficient schiedumechanism to balance the load among
multiple available paths, while satisfying diffet@pplication requirements defined in the Service
Level Agreements (SLAS).
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The defector DCN flow scheduling scheme Equal Gagti-Path (ECMP [3]) cannot meet such
dynamic performance requirements in data centeshHcollisions in ECMP can cause
congestions, degrading throughput [4-6, 105-107Apel as tail latency [7-9, 109-112] of DCN
flows. To balance the load between DCN switches paths, stateful schedulers have been
proposed, e.g. Conga [10], Hedera [4], etc. Theyitopthe congestion state of each path and
direct flows to less congested paths, hence mdrastoto asymmetry network without control
plane reconfigurations [11, 12]. Since maintainglgbal congestion information at scale is
challenging, local congestion-aware or stochastheduling schemes are proposed, e.g.
Expeditus [12], Drill [13], Hula [14], etc. Usingnsple or local information collection, these
mechanisms are more efficient and applicable fonmex DCN architectures, e.g. 3-tier Clos
topologies. However, the majority of these scheduiechanisms focus on balancing the loads
of DCN according to the congestion information,heiit any consideration of cloud applications
or data center traffic patterns.

TABLEI
SUMMARY OF KEY NOTATIONS AND DEFINTTIONS
Notations Definitions
b Number of packsts acknowladgad by a raceived ACK
P Probability that a packst in a flow is lost
E[W] Expacted average TCP window size
Liw) Probability that a packsat is lost whan the window size is w
Fx) Window size of a flow at time ¢
o Cruzusz langth of an end-to-2nd path at time ¢
FPis Steady-state probability of the slow start period
Pm Steady-state probability of the convergencs aveidancs
pariod
E(p) Average dats sending rate with the averags probability of
packst loss p
c Bottlsnack end-to-andlink capacity of an end-to-snd path
r4 Marking thrashold; when queus leangth excaeds this
thrazhold, a congsstion signal will be triggarad
W. Maximum window size of 2 TCP flow
T: Duration of ons TCF convergence avoidancs period
Ts Duration of ons TCP slow start period
Oz Maximum queus size of an end-to-and path
N Total amount of DC flows
D Amplitude of oscillation in window size of a singls flow
A Amplitude of qusue oscillations of an end-to-snd path

Pyr Probability that the meouseflows affect the slephant flows
Pry Probability that tha elaphant flows affect the mouse flows

Existing solutions to scheduling the mice-elephdmtsrid DCN traffic fall into two categories.
The first category deploys unified schedulers fathtmice and elephants on shared paths, in spite
of the competing performance requirements of the. tBased on the analysis of DC traffic
patterns, these studies design novel schedulingritighs or congestion signals [16, 17] and
strike at the right balance between throughput latehcy on shared DCN paths. The main
challenge though is the interference between tehaint and mouse flows. The second category
deploys network partition schemes that transfertthetypes of flows over separate paths. [18,
60-63, 100, 101, 103, 104] By isolating elephard amuse flows, network partition solutions
avoid the aforementioned interference. This isipaldrly attractive as hardware and system cost
continues to drop. Nonetheless, new policies egeired to adaptively partition the DCN paths,
given dynamic DC traffic patterns and varied DChaextures.

This paper focuses on the second category, theonetpartition solutions. Using a stochastic
performance model, we first theoretically provet tie interference between mice and elephants
are inevitable under the unified scheduling medranindicating that network partition is a more
appropriate solution for handling such hybrid D@&ffic. We then propose a novel scheduling
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scheme, HOLMES, for such hybrid traffic in data tees. HOLMES architecture partitions a

DCN into high-throughput and low-latency sub-netkgyrdecouples the two competing scenarios
and eliminates the interference in the hybrid tcafHOLMES further deploys a stochastic and
global congestion-aware load balancing algorithat thptimizes the performance of each sub-
network. The stability of the HOLMES flow schedialgorithm is also proved and validated in

this paper.
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Fig. 1. HOLMES architecture: Based on the real-timanitor information, HOLMES Al module
first analyzes the status or tendency of the DCiNgumachine learning models, and generates
the learning results. Next, according to the anslyssults, HOLMES control layer designs a
network partition policy and a corresponding flowheduling policy, and the policies are
generated in the SDN controllers. Finally, the retwpartition as well as the flow scheduling
operations will be executed on the DCN switcheshosts, under the guidance of the SDN
controllers.

2.HOLMES ARCHITECTURE

Fig. 1 shows the HOLMES architecture in three layehl layer, control layer and the
infrastructure layer. The HOLMES Al layer contaegognitive computing cluster to implement
the software Al module. The Al module collects th€N state information from the DCN
monitors, and applies the machine learning algorittto generate some analysis results, e.g.
networking tendency predictions, network outliecdtions, etc. These learning results generated
by the Al module provide a more comprehensive VieWCN behaviors. They will be then used
for network partition and flow scheduling operason

The HOLMES control layer is responsible for genietthe network partition, congestion
control, and local balancing policies, based onntlmaitoring information as well as the learning
results generated by the Al modulghe policies generated in the SDN are decompodedain
series of fine-grained partition and schedulingeosdwhich are transmitted to the DCN switches
and end hosts for execution. Without deployingll@MES Al module, the functions provided
by the control layer are the same as the traditiSBéN controllers.
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The HOLMES infrastructure layer executes the specietwork partition as well as the flow
scheduling operations. It is responsible for stpriiorwarding and processing data packets. The
detailed operation orders are transmitted and goréd on the DCN switches. The DCN
switches the first map each link to the high thigqug network or the low latency sub-network,
according to the network partition policies. Whia elephant and mouse flow to arrive at a DCN
switch, their packets are scheduled to the pratjpad paths separatelylhis process is
managed by the HOLMES control layer.

A. Application Scenarios for HOLMES Architecture

Compared with the commonly used SDN architectuegrominent feature of HOLMES is the
implementation of the Al module and its machinenéay algorithmsMachine learning methods
have been widely used in network management [7B5Hand DC scheduling policy generation
[75, 76, 96] operationsg’hose continuing learning and analysis results idepa comprehensive
understanding of network features and behaviorsjctwibenefits the designing of the
corresponding network partition and flow schedulpdicies. Therefore, the deep analysis and
accurate Al prediction provided by the Al moduleable the HOLMES architecture to perform
more complex and intelligent operations.

One typical application scenario for HOLMES arctiitee is the deployment of application
driven-networks (ADN) [77], where a physical netwads sliced into logically isolated sub-
networks to serve different types of applicatidéach network slice in ADN can deploy its own
architecture and corresponding protocols, to satie# requirements of the applications it serves.
The key operations when implementing ADN are: (bn&ructing an application abstraction
model to formulate the resource requirements of dpplications; (2) mapping the distinct
properties of applications to respective networsoteceslt is shown that the complexity and
performance of these operations can be improvechwbme application features are pre-known
[8]. Hence, the HOLMES Al module benefits the asayof application features as well as the
prediction of resource requirements, which furtladleviate the complexity of application
abstractions and mapping operatioMoreover, the design and implementation of network
slicing mechanisms can also be realized by the emadpn of the control layer and the
infrastructure layer.

Similarly, HOLMES architecture is also applicabler fsome other intelligent or complex
application scenarios, which demand a deep undelisigz of network or application features
such as Internet of Vehicles (loV) [78], co flowhsduling [79, 80] and some other network
architecture based on network slicing or networkitians. With the immense proliferation of
complex and diverse cloud-based applications, wpeebsuch architecture to be the development
trend in the future.

B. Out-of-order vs. Efficiency

While elephants contribute to the majority volume of DEaffic, mice account for 80% of the
number of instances. [45, 102] Out-of-order scliadudone at host side may sacrifice efficiency.
In addition, compatibility with legacy hardware hts be ensured. Therefore, one may still
consider deploy conventional, sometimes oblivideSMP scheduling for in-order scheduling of
mice.
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3.HOLMES SCHEDULING ALGORITHMS

Once the hybrid DC traffic is separated into difer sub-networks, scheduling algorithms affect
the performance of each sub-network. In this sactise discuss the aforementioned global
congestion-aware scheduling algorithm and provestalkility of its stochastic policy.

A. Deploying Stochastic Scheduling Algorithms

Compared with the other state-aware flow scheduéifgprithms, stochastic flow scheduling
algorithms are more applicable for large-scale datders according to the following reasons

1. Simplification of computing complexity

One of the key factors that degrade the performafiche traditional ECMP mechanism is the
lack of global congestion information. To overcommés limitation, a group of studies has
designed new flow scheduling policies based orobail“macroscopic” view of the entire DCN,
e.g. CONGA [10]. However, in large-scale and hegevibaded data centers, the global
macroscopic load balancing algorithms introducecoeptable computing complexity to deal
with the massive information, and the control logpshese scenarios are much slower than the
duration of the majority of congestion incidentsdata centers [13]. Therefore deploying the
stochastic algorithms to achieve micro load balagngs a more viable solution. The micro load
balancing solutions require only limited congestioformation, which simplifies the computing
complexity and enables instant reactions to loadtians in large-scale data centers.

2. Optimization of storage complexity

In data centers, 8 and 16-way multipathing are comnwhile there is growing interest in
multipathing as high as 32 or even @hpecifically, with 40 servers in a rack, there viié 40
uplinks. Each flow can use a different subset @ 40 links, leading to ‘2 possible subsets.
Keeping the state of each path in this scenariaires) unacceptable storage resources, which is
difficult to be implemented. On the contrary, stastic scheduling algorithms are effective to
cope with the optimization of storage complexity,veell as the small number of register reads.
Edsallet al [26] deploy the stochastic power-of-two-choicestiag solution for balancing loads
of DC routers. The storage complexity of suchoglsastic solution is logarithmically reduced.

3. Better adaptability for heterogeneous DCNs

A typical flow scheduling method in multi-rooted DI€ is equal traffic splitting based on
hashing, as used in the traditional ECMP appro&twever, the uniform hashing approach
cannot achieve optimal load balance without theragsion of symmetric and fault-free topology
[5, 10, 45, 46], which is not generally true in dregeneous data centers. To provide better
adaptability for heterogeneous DCNs, weighted itratistribution methods have been widely
adopted in the global macro load balancing solgtidri, 67]. In order to correct the imbalance
caused by the even distribution approach and entieresource allocation, the weighted
approaches distribute the traffic among availallihpin proportion to the available link capacity
of each pathThe global weighted traffic distribution solutiohave shown good adaptability to
dynamically changing network topologies. Howevdrese solutions still need real-time state
information collection of all the paths, which iotluces additional computing and storage
complexity.
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Stochastic flow scheduling algorithms can reduce domputing and storage overhead of
weighted traffic distribution mechanisms, while ntaining the adaptability to heterogeneous
DCN topologies. Consider the stochastic Power-ob¥@hoices: The algorithm only needs to
record the states of the two randomly chosen pdatesefore, the storage and computing
complexity are dramatically reduced. Moreover, #fgorithm compares the load conditions of
these two chosen paths, select the better oneghmerforms a weighted operation in another
form. Stochastic load balancing solutions have dtsen proved to be applicable for
heterogeneous DCNSs [13, 26]. Based on these patiifns, we extend stochastic flow scheduling
algorithms to our HOLMES mechanism.

B. Flow Scheduling Algorithm in HOLMES

We consider a stochastic scheduling policy,nf) policy: The input port choosesrandom end-
to-end paths out of all the possible paths. Kdgithe path with the minimum occupancy among
all thed samples andh least loaded samples from the previous time #iadhen schedules the
input packet to the selected end-to-end path.

Increasing the value a andm to >>2 and >>1 will degrade the performance siackrge
number of random samples makes it more likely tecseahe burst of packet arrivals on the same
path [13]. As a result, we set=1 andd=2 in our scheduling model. The detailed flow skiig
procedure is shown in Alg. 1.

Using global congestion information, the algoritmeacts rapidly to the link or node failures.
Moreover, the limited information used in the aigfan improves the scheduling efficiency while
avoids the traffic bursts on the same switch ports.

Algorithm 1 Flow scheduling policy in HOLMES

1: Input: Load condition of each e-to-end path at tim
t:

{load(1), load(2), load(3),...}
D Path number of the selected path at tinle
Output ports of the TOR and aggregate
switches on each path:
{R R Ry Rh-)
2: Output: Path number of the selected path at timg:
s
Output ports TOR and aggregate ports on the
selected path:
{R5 R
: Initialize: m  2,d =1,
: Initialize: loadypr = load(s"™);
: Random select m end-to-end paths Rath1),
Path(2), ..., Path(m)}
6: Construct candidate set: {Path(1), Path2), ...,
Path(m)} {s*}

a b~ w

7: for each path (1 i m+1) in the candidate sktdo

8: if load(Path(i)) loadypr then

9: loadopr load(Path(i));

10: end for

11: Assign value:s = Path number of the path with
loadloadypr:

12: return { p”g, pTg} ands
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C. Stability Analysis of HOLMES's Scheduling Algorithm

We prove the stability of this stochastic globahgestion-aware scheduling algorithm in a two-
tier Clos DCN topology. We abstract an end-to-eathpn a Clos network (Fig. 2A) as a serial
gueuing system consists of a series of queues @By. As a result, the whole Clos DCN
topology is abstracted as a queuing network. We é&waluate the performance of a specific leaf-
to-spine DCN path using a stochastic queuing nétwardel.

We focus on analyzing the stability of the schauylprocess from when a packet arrives at a
TOR switch to when the packet reaches the spin&lswihe packet experiences two queuing

processes, at the TOR and the aggregate switchrpspectively. The entire path from the TOR

node to the spine node can also be modelled agadaeue.

Based on the results of [53-56] and with a simiteethod shown in [57-59], we prove that
HOLMES's scheduling algorithm is stable for all fonm and non-uniform independent packet
arrivals. Some key notations and definitions usethe scheduling model are illustrated in Table
I.

TAELEII
SUMMARY OF KEY NOTATIONS AND DEFINTTIONS IN SCHEDULING MODEL
Notations Definitions
Fi Average data arrival rats in the ithlsaf-to-spins path
& Average data procassingrats ofthe TOR port in the ithleaf-
to-spina path
Wy Averages dataarrival rate ofthe agerapata port in the ithlaaf-
to-spine path
I Averages data procassing rate of the agersgate port in the
ithl=af-to-spine path
10k S N The number of tha TOE and ageragats switchas in a ped
( :- o Ni The number of spine switchas commectad by 2ach ageraeats
I\ switch
:1 —B (3] The number of sccumulated packets in the buffer of the
\ jusay) kthlzaf-to-spins path at tims ¢
a6 The numbear of accummilated packets in the buffar of theend-
- to-end pathchosa byths ith input port using HOLMES at
time 1

o The number ofths accumulatad packsts in the global l=ast
loadad lzaf-to-spine path at time ¢

O The number ofths accurmulated packsats on the TOR port of
tha ithleaf-to-spins path, at tims ¢

0.41) The number of the accumulated packsts on the ageregate
port of the ithlzaf-to-spins path, at time ¢
i) The number ofthe accumulated packets on the TOR port of
A tha global lzast loadad lzaf-to-spins path at tims ¢
. ] . o The numbear of the accumulated packsts on the ageresate
@ il e H]:D“ m]}.® port of the global laast loadad lzaf-to-spine path at timea ¢

=]

Fig. 2. Abstraction of a leaf-to-spine path inlage network (A) to a serial queuing system (B)

We prove that the global (1, 1) policy is stable & admissible parallel arrival process. We
construct a Lyapunov functidnas follows:

N

NA NN,
L) = QM- Q@3+ QO

i=1 i=1

To prove the algorithm is stable, we show thatehsra negative expected single-step drift in the
Lyapnuov function, i.e.,

E[L(t+1) - L(t)| L(t)IE eL(t)+ k (g k> 0)
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We divide the Lyapunov function into two sub fuocis as:

Ni

LO= QO-QOF LO=

NI

Q@

Based on the above formulation, we prove that theigts a negative expected single-step drift in
the Lyapnuov function in each possible case. Theeefthe global (1, 1) policy is stable. Based
on the €I, m) policy, the HOLMES’s scheduling algorithm is alstable. Please see details of the
proof in Appendix B.

4.HOLMES PERFORMANCE EVALUATION

We evaluate HOLMES using simulation based on OMNET$9]. We construct a test-bed
simulation platform to simulate the data transnoisgbrocess in symmetric and asymmetric fat-
tree DCNs. Similar to [10, 46, 52, 60, 62, 63],eavVy-tailed distribution is used to generate DC
flow of different sizes. The hosts of the DCN ru8H applications. The flow request rate of each
TCP connection satisfies the Poisson process.

A. Evaluation of HOLMES Network Partition

We evaluate the network partition policy of HOLMHES a scenario that hybrid elephant and
mouse flows are scheduled in the same DCN withewdifft scheduling schemes. The DCN
topology deployed in this experiment is a Clos rmekwwith 2 and 4 leaf and spine switches
respectively. We generate elephant and mouse tioveaf switches with average sizes of 100KB
and 1KB, respectively. The queue lengths of theckwports are used as performance indicators.

Notation

s Definitions
Af Average data amival rate in the ith leaf-to-spine
path
ai Average data processing rate of the TOR portin
the ith leaf-to-spine path
Wi Awerage data amival rate of the aggregate port
in the ith leaf-to-spine path
Bi Average data processing rate of the aggregate

port in the ith leaf-to-spine path
N The number of the TOE. and aggregate switches

mapod
N The number of spine switches connected by
each aggregate switch
Ol The number of accumulated packets in the
buffer of the ith leaf-to-spine path at time ¢
0.1 The number of accumulated packets in the

buffer of the end-to-end path chosen by the ith
mput port using HOLMES at time ¢

o) The number of the accumulated packets in the

global least loaded leaf-to-spine path at time ¢

Qi) The number of the accumulated packets on the
TOE port of the ith leaf-to-spine path, at time ¢

(D) The number of the accumulated packets on the

aggregate port of the jth leaf-to-spine path, at

time ¢

Kby The number of the accumulated packets on the

TOF. port ofthe global leastloaded leaf-to-spine
path at time 7

e The number of the accurmulated packets on the

aggregate port of the global least loaded leafto-
spine path at time ¢
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Since the scale of the DCN in the simulation isvest large, HOLMES deploys the static policy
that partitions the two sub-networks in advances hffer sizes of all the switch ports are set to
be the same. When the buffer of a switch portlis &l the upcoming input packets to that port
will be dropped. We compare HOLMES against two tstéthe-art unified load balancing
schemes: CONGA [10] and queue length gradient bageelduling. Similar to the delay gradient
based congestion control policy used in [16, 66}, deploy the queue length gradient as the
indicator and schedule the arrived packet to thiewgith the minimum length gradient.

Figs. 3A-3C show the queue length variation of fthe ports of a spine switch under the three
scheduling schemes. The X-axis indicates the tien®g@ and the Y-axis denotes the queue length.
We can see from Fig. 3A that using CONGA, the bsffef all the four ports are full after a
period of time, indicating the throughput of theitslv has been maximized, which benefits the
transmission of the elephant flows. However, whanaause flow arrives, all the packets in that
flow have to wait for a long queuing time since #ie output port are of heavy loads.

Consequently, the latency of the mouse flow witlrgase and degrade the overall performance of
the hybrid DC flows

Similarly, as shown in Fig. 3B, the buffers of thoeir output ports are also almost full after a

period of time using the length gradient basedgyoll he results indicate that the length gradient
based load balancing policy still suffers from ihierference between the elephant flows and the
mouse flows.
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Fig. 3. Queue length changing trends of a DCNespivde’s ports under policies CONGA (A), length
gradient based policy (B) and HOLMES (C)

Comparing Fig. 3A and Fig. 3B, we find that thedd@alancing condition of the gradient-based
scheme is a little worse than CONGA. The reasahdsthe gradient-based scheme schedules the
DC flow according to the changing trend but not ¢toerent state of the DCNrinally, Fig. 3C
shows that HOLMES has successfully isolated thphelet and mouse flows. Two of the ports
have been partitioned to the low latency sub-netvemd used for transmitting the mouse flows.
Fig. 3C shows that the buffers of the two portsaneost empty during the entire transmission
procedure. Thus, packets in the mouse flows doneetl to wait for additional queuing delays,
and the low latency of the mouse flow is ensuredrddver, the buffers of the other high
throughput ports are also full filled, which satsfthe throughput requirements of elephant flows.
Hence, by isolating the mixed traffic, HOLMES netWw@artition policy successfully eliminated
the interference of the elephant flows to the mdioses.

The main shortcoming of the network partition solutis the inefficient use of network resources.
Although the isolation of the hybrid traffic avoidlse interactions of the elephant and mouse
flows, the spared network resource in the low legepaths has not been fully used since the
buffers of these paths are almost empty. An effectolution is to improve the buffer allocation
by limiting the buffer size of the low latency snbtwork and assigning the spared buffers to the
high throughput sub-network. This policy has beaplemented in [61].

B. Stability Validation of HOLMES Scheduling Algorithm

We evaluate the stability of HOLMES flow schedulialgiorithm. We simulate the scenario that
DC traffic are scheduled in a DC with asymmetribanmek topology. We combine two different
sized Clos networks, and construct an asymmetri®l & hitecture. One of the Clos network
consists of 2 leaf switches and 4 spine switchbs.dther is a Clos network with 5 and 4 leaf and
spine switches, respectively. 10 hosts are attadhedach leaf switch. We concentrate on
validating the stability of HOLMES flow scheduliraggorithm, rather than the network partition
mechanism in this scenario. Thus, we do not degileyHOLMES network partition mechanism
in the experiment and only execute the HOLMES femleduling algorithm.

CONGA [10] and DRILL [13] are two load balancingl@ions proven to be stable. Therefore,
we compare them against HOLMES. All DC traffic cheduled with the granularity of packet,
and we focus on analyzing the stability of the ¢hseheduling algorithms. When using the Power
of Two Choices selections, we uniformly se2 andm=1. Similarly to the previous experiments,
we deploy queue length as the load balance indidatevaluate the overall load balancing
condition of the DCN.

10



International Journal of Computer Networks & Comications (IJCNC) Vol.10, No.5, September 2018

Figs. 4A-4C show the queue length changing trend specific leaf switch’s ports, under load
balancing policies CONGA, DRILL and HOLMES. We caee from Fig. 4A that the queue
length changing trends of all the ports in a leaitch are almost overlapped under CONGA,
indicating that the queue lengths of all the swipchits are almost the same at each time unit.
Therefore, the load balancing condition under CON@A optimal among all the three
mechanisms, since CONGA makes each schedulingiailedimsed on the global congestion
information. Without considering the time used &@dtaining congestion information, CONGA
obtains the global optimal load balancing result.

Fig. 4B shows the queue length changing trendshefsame leaf switch ports under DRILL.
Different with the former results, we find fluctiets in the queue length changing curve. In
other words, the length difference of the longesug and the shortest queue is clear. The reason
is that the use ofd( m) policy in DRILL reduces the scale of the solutigpace, and the local
optimal solutions affect the load balancing comditof the DCN.

Il
THNIEE T PNEED I Lz}
1l TN R lrll1-Ill|"
L RE R Bl 0 4
R e e A e R

Fig. 4. Queue length changing trends of a DCN theafe’'s ports under load balancing policies CONGA
(A), DRILL (B) and HOLMES (C)
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Fig. 4C shows the queue length changing trenddefsame leaf switch ports under HOLMES
scheduling algorithm. The fluctuations also existhie curve of Fig. 4C, where the amplitude of
the fluctuation is more obvious. This phenomenoml$® caused by the use af (M) policy.
Compared with DRILL, the globald( m) policy used in HOLMES further limits the solution
space, and exacerbates the fluctuations. HoweltbQugh the fluctuations are more obvious
when executing HOLMES flow scheduling algorithm, gan also find an upper bound (about 10
packets) of the fluctuation amplitude, indicatihgttthe length difference of the shortest and the
longest queue is not infinite in HOLMES. Hence, (i®OLMES flow scheduling algorithm is
stable during the whole scheduling period. MorepvVianiting the solution exploration space
reduces the time used to obtain the congestionnr#ton and make HOLMES more efficient
and applicable for large-scale data centers.

C. Adaptability for Heterogeneous
As discussed earlier, both the stochastic flow dolieg algorithm and the weighted traffic

splitting solutions can adapt to heterogeneous estimn states. We now evaluate the adaptability
of the two solutions.

We first theoretically compare the approximate #alaifity of the two solutions, as shown a
simple leaf-spine DCN topology witk paths available between two racks as shown ing-ig.

Core 1 Core 2 Core 3 Core N

Fig. 5. Simple leaf-spine DCN topology for adajiigbevaluations

We show that when the load conditions of the DChpatre heavily heterogeneous, tdenf)
policy also needs to maintain plenty of load stamfisrmation to keep its adaptability as good as
the weighted traffic splitting solutions. The stastic scheduling mechanism does not show
obvious advantages in this scenario.

Similar to the experiment in [97], we simulate #iaeecution process of the coordinate approach
as well as the Power-of-Two-Choices algorithm ogame switch. Fig. 6 shows the changing
trend of the overall switch load as the modelinggda(d) increases.

The load distribution of the switch ports is iniitted exponentially in this experiment. We see
from Fig. 6 that, as the value dfincreases, the load condition of the switch isrimwpd under
the power of two choices policyd|(m) policy); since a larger value dfincreases the probability
of choosing the lightest loaded output port. Asimerease the value affrom 2 to 5, the power
of two choices policy performs almost as well as theoretical load optimal policyl & 10),
which validates our previous modeling results. @a tontrary, when using the coordinated
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approach, the switch attains optimal performancemthe value ofl is small ¢l = 2) and the load
state of the switch is almost as good as the tkiealdéoad optimal policy. This simulation result
is in accordance with the analysis in [97]. Howewer the value o increases, the load state of
the switch becomes worse: when assigrdrg 10, the load balancing condition of the switch
under the coordinated policy is even worse thar{2hé) policy.

Although the stochastic flow scheduling outperfortne weighted traffic splitting solution in
most cases, it still has some limitations. The Wigd traffic splitting solution maintains the load
status of all the paths. It dynamically adjusts talue of each weight according to the current
load status of each path (the static weight condigon has proven to be not applicable in [10]).
However, when deploying thed,(m) policy, the value ofd and m are constant after the
initializations. Thus, when the values are not appately assigned,d( m) policy will not
perform as well as the weighted traffic splittingugions. Hence, the HOLMES Al module is
responsible for analyzing the overall heterogendiéggree of a DCN, and guiding the flow
scheduling algorithm to set appropriate valueshef @lgorithm factorsd(and m). The detailed
design and implementation of the HOLMES Al modgl®ur future work.

D. Technical Challenges in Hardware Implementations

Some technical challenges need to be considerechptement HOLMES in real-world data
centers. We now summarize these challenges in laaedmplementations.

1. Handling the packet reordering

The flow scheduling algorithm in HOLMES can be iemplented with different data granularities:
per packet scheduling, per flow scheduling or sémermediate data sizes, e.g. flow cell [24],
flow let [10], etc. When using the TCP transmisgiwatocol and implementing the per packet (or
flow cell) scheduling, some studies have shown thiat fine-grained traffic splitting techniques
cause packet reordering and lead to severe TCRighpot degradations [23]. Therefore, the
packet reordering problem needs to be considerashwhplementing the fine-grained HOLMES
traffic scheduling algorithmA viable solution is to deploy the JUGGLER [68] wetk stack in
data center traffic transmissions. JUGGLER exploits small packet delays in datacenter
networks and the inherent traffic bursts to elinénthe negative effects of packet reordering
while keeping state for only a small number of foat any given time. This practical reordering
network stack is lightweight and can handle thekpaeordering efficiently

Load states a same switch under different scheduling policies
> T T : .

@ power of two choices (d=2)

@@ power of two choices (d=5)
: @@ power of two choices (d=10)

14 re ¥ +-% coord (d=2) I

% coord (d=5)
- coord (d=10)

Overall Traffic Load
@

10 20 30 40 50 60
Time Unit

Fig. 6. Changing trend of a switch’s overall tratbad under different policies
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2. Design of DCN forwarding and state tables

The design of the forwarding and state tables $® @ noteworthy challenge. An appropriate
approach should cope with the small time budgewvels as the small register usage. We now
propose a viable design to implement the per-floleduling algorithms of HOLMES.

As shown in Fig. 7, a TOR switch maintains a fl@abkle and a state table. The two tables work
together to execute the load balancing policy rghifrom the SDN controller. Specifically,
when a packet arrives, its flow ID is hashed to nteppacket to a flow table entiy.the table
entry is valid, the packet is dispatched to thehpatlicated by the stored hash applied to the
packet’s flow ID. On the contrary, if the packei@w ID is not maintained in the flow table, the
TOR switch will look up the destination TOR ID inet state table. After that, the, () policy is
applied to compare the load states of the thredidate end-to-end paths to the destination TOR
(r1_metric, r2 metric and r3_metric), and assign packet to the optimal path. Two of the three
end-to-end paths are randomly selected. The @medis the optimal path from the last selection.
Finally, the flow ID and the hash of the choserhpaill be inserted into the flow table.

DCN

SDN Controller

\ NV etwork Partition
\ Results

——r————— e e - — 1
I . ) Reset aging bit = false
Partition Table Aging Flow Table A\ <+— Dispatch P according to the I
I hash function of flowID
| High |
Throughput| 3
P”f/\-p Flow ID ni¢ /' A ging State Table A A A I
I Source Index TORID N
I Aging Bit "]1 ’"d&_“ : I
Valid Bi rl_metric
Valid Bit M 72 index \ Power of Two Choices I
I Low Index ; 72 metric { | Stochastic load balancing I
Latenc 3 7 " 1
ﬁ an-y 73 index j
r3_metric ; I
Packet I \/ Aging Bit
I
I Periodic aging timer T; Periodic aging timer T3 |
I If aging bit == false 1f aging bit == false
Set aging bit = true Set aging bit — true I
| Else Else
Reset valid flag = false Reset 1 _metric, r2_metric, r3_metric I
I Set aging bit = false 1

Fig. 7. Overview of HOLMES forwarding and statblés: A new flow table entry is set up by applying
the (2, 1) policy in the state table. The periodeti of each table is triggered every time perip@fid T, to
age out inactive flows and update the load staftesoh candidate end-to-end path.

The information of each table needs to be updatemdically to keep the real-time status of the
traffic and paths. Thus, we associate an aginwitit each table entry. The aging bit of the flow
table is responsible for marking inactive or idlewls: when a packet's flow ID maps the
information in the forwarding table, the agingisitleared to indicate that the flow entry is aetiv
A timer process visits every table entry every ggimeoutT;. When the timer process visits a
table entry, it either turns on the aging bit oralidates the entry if the aging bit is already lon.
other words(T; is the timeout threshold to age out inactive flowkich is proportional to the size
of the scheduling unit e.g. per-flow, per-flow ¢etc. If the packet’s flow ID is hot maintained in
the flow table, the TOR switch will execute thk i) policy on the state table. Thug, can also

14



International Journal of Computer Networks & Comications (IJCNC) Vol.10, No.5, September 2018

be considered as the time period to trigger thewi@n of the HOLMES scheduling algorithm.
On the other hand, another timer process runshegetith the aging bit of the state table to
update the load status of each candidate end-tga&tid The timeout threshold to age out the old
status information in the state table is seftolo ensure that the latest load state information is
used when executing thd, fn) policy, the value of; andT, should satisfyT; T,. Moreover, in
most cases, the global congestion control signafdogied in the flow scheduling algorithms are
the feedback signals from the receivers of theterehd pathsThus, we further gefl; T,

RTT. Key et al [93] have suggested that the policy that peridicGampling a random path and
retaining the best paths may perform well.

The periodically sampling of path congestion stateshe state table makes the real-time
collection of status information becomes a tecHnatellenge. The state collection operations
should not introduce obvious transmission overheadisperformance penalties. Especially in the
TCP in cast scenarios [69, 70] where multiple seurcdes transmit traffic at the same time to a
common destination node, the state collection djmers introduce additional traffic and are
prone to cause DCN throughput collapse [71]. A Makolution for collecting the real-time
congestion status is deploying RepSYN as the signdétect the load conditions of the multiple
paths, as shown in [33]: before transmitting damaorsg multi-rooted paths, multiple TCP
connections are establishedpwever, traffic is only transmitted using the ffirsstablished
connection and the other connections are ended diatedy. The delay experienced by an SYN
reflects the latest congestion condition of theesponding path, and thus the congestion states
can be collected. Moreover, this solution only iegies SYN packets to probe the network,
which does not aggravate the TCP in cast in a DCN.

The state table only needs to periodically maintagncongestion states of two randomly chosen
paths and the congestion-optimal path in the latesé unit. Compared with some other
congestion-aware solutions e.g., CONGA [10], RepF]82], the storage complexity has been
dramatically optimizedin order to make the scheduling results of ther) policy more effective,
we choose the disjoint end-to-end paths (paths different intermediate aggregate or spine
switches) to avoid the scenario that the same looagjestions is shared by multiple end-to-end
paths. This implementation is applicable for mooenplex multi-tier Leaf-Spine topologies or
asymmetric DCN topologies.

3. Dealing with the stale information

When implementing HOLMES scheduling algorithm wjihcket granularity, the transmission
latency of a packet is so small that the infornratiefresh rate in the state table cannot catch up
with. Correspondingly, the load balancing algorithm ltasde the stale information to make the
scheduling decisions [94, 98] have pointed out that delayed information leads to a herd
behavior of the scheduling resultata will herd toward a previously light loadedtp&ir much
longer time than it takes to fulfill the path. Thasother technical challenge is to deal with the
stale information used in the load balancing athons. (More detail including Figure 8 is
omitted due to limited space allowed.)

Overall, the simulation experimental results vakdahe modeling results. They show that
HOLMES load balancing algorithm is stable and adlaletin heterogeneous DCNs.

5.RELATED WORK

Latency and throughput optimization for DCN hagaatied increasing attention. A series of
solutions have proposed to improve the performasfc¢he scale-out multipath data center
topologies, such as Clos networks [1, 2, 19], Eiredtl Butterfly [20], HyperX [21], DragonFly
[22], etc. In general, the performance optimizatimechanisms can be classified into two
categories: temporal solutions (i.e. congestiortrobmechanisms) and spatial solutions (i.e. load
balancing mechanisms). Specifically, one can diatisé existing solutions according to Fig. 8.
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A. Congestion Control Mechanisms — Temporal Solutias

DC congestion control is a deep studied topic. @Galye the congestion control mechanisms
adjust the traffic transmission rates or the packepping strategies according to the feedback
congestion signals. The control mechanisms campémented on either the end hosts or the in-
network equipments.

1) Host-based congestion control mechanisms

The optimization of the transport protocols are aligyuhost-based solutionsThose newly
proposed transport protocols are customized for Clthe host-based control mechanisms can
be implemented on either the sender [7, 16] ordheiver of a transportation path [87]. Jairal

[88] study the general patterns of response tingetroughput of a network as the network load
increasesThey describe the changing trend of network peréoroe curve using two factors: cliff
point and knee poinAs shown in Fig. 2 of [88], the point of congesticollapse is defined as a
cliff due to the fact that the throughput fallseafthis point (packets start getting lost); and the
point after which the increase in throughput is Ibrttauffers of a path start to be filled) is
described as a knee poiftorrespondingly, the host-based congestion coptilities can also be
categorized using the two factors.

DCN Performance Optimization

C ion Control Mech
(temporal solutions)

n-Network
(e.g. Active Queue Management)
RED, ECN, AVQ algorithms
Guarantee of fairness
Sender-Based Receiver-Based
Easier to implement (e.g. TCP Real, TCP Mhra)
‘ More accurate signal

Host-Based

Centralized
(e.g. Hedera, B4)
High control-loop latency

Load Balancing Mechanisms
(spatial solutions)

Distributed
Scalable policies

In-Network Host-Based

Hard 1o deploy

\ | \
Cliff-Based
(e.g. MPTCP, TCP Vegas)

Knee-Based In-B
(e.g. BBR) (e.g. TIMELY)
Latency Optimal Throughput & latency

Stateless
(e.g. ECMP, Presto)
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Fig. 8. Classification of DCN congestion controtidoad balancing mechanisms; the design space for
HOLMES flow scheduling algorithm

Cliff-based mechanism#lost of the modified transportation protocols dzh®n the traditional
TCP protocol are cliff-based mechanisms, such a3GHP[89], DCTCP [7], D2TCP [90], etc.
The cliff-based mechanisms are loss-based solytrdnish interpret packet losses as congestions
and attempt to fulfill the buffers of the TCP patiisile avoiding the occurrence of packet losses
[66]. These solutions deploy different types ofdieack information from the last time point as
the congestion signals to guide the traffic contmadurrent time point. For example, DCQCN [49]
combines Explicit Congestion Notification (ECN [fjarkings with a QCN [50, 53-55] inspired
rate-based congestion based control algorithmner@abDCN flows.The cliff-based mechanisms
are usually the throughput-optimal solutions.
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Knee-based mechanisnGardwellet al [91] point out that the operating point of theffdiased
mechanisms is not optimalhey argue that when the scale of a DCN is largaigh, there will

be quantities of packets accumulated in the bufédra path. Thus, compared with the data
transmission time in the network links, the queutimge in the buffers tend to dominate the
overall data transmission latencyhus, the cliff-based solutions are not applicatue the
optimization of the data transmission latenBwrthermore, they propose a novel congestion
control mechanism BBR, which adjust the operatiomipfrom the cliff point to the knee point,
to optimize the data transmission latency of a DTherefore, the cliff-based congestion control
mechanisms are usually the latency-optimal solstion

In-between Different with the above two types of solutiortgat optimize the throughput or
latency of a DCN respectively, a few mechanismsusoon handling the trade-off between
latency and throughput, and attempt to find thdtrigalance of the two conflicting factors.
Hayeset al [17] propose a delay gradient algorithm for TCRgestion control of wide-area
networks.Similarly, taking inspiration from Compound [47]dRAST [48], TIMELY [16] also
deploys delay gradient as the congestion signapamgoses a gradient-based algorithm to jointly
optimize the latency and throughput of a DCN irfediént time periods. TIMELY mechanism
works during the time period between the knee difdpoints, which dynamically adjusts the
importance of the throughput and latency issues.

2) In-network congestion control mechanisms

Network congestion usually occurs in the in-netwdgvices, e.g. switches and routers. Thus,
compared with the end host based solutions, theetwork congestion control mechanisms
achieve more accurate congestion information aacdt more quickly to congestions and failures.
Taking this advantage into account, many reseascimggrate some status monitoring and flow
control functions from end hosts to in-network @ed. Correspondingly, a series of in-network
congestion control mechanisms have been proposed.

Most of the in-network congestion control protoceldjust the congestion window size by
managing the queues of the DCN routers. Quantdfesctive Queue Management (AQM)
algorithms have been proposed to generate congesioals according to the real-time queue
lengths in DCN routers, such as Adaptive RED [&], &daptive Virtual Queue (AVQ) [83],
BLUE [84], etc. Hollotet al [85] apply classical control system techniques é&sigh novel
controllers that are better suited for AQM. SinifarFiroiu et al [86] model the AQM RED
algorithm as a feedback control system aligtover fundamental laws governing the traffic
dynamics in TCP/IP networks. pFrabic [51] preemgliiv schedules flows using packet
forwarding priorities in switches and Detail [9]paleys a similar mechanism that give priorities
to latency-sensitive mouse flows; however this $&mgontrol mechanism makes a mismatch
between injection traffic and network capacity,utesin packet loss and bandwidth wastage.
These in-network solutions react quickly to thd-teae congestions and failures; moreover, they
can also generate feedback congestion signal®etertti hosts, and cooperate with the host-based
control mechanisms.

B. Load Balancing Schemes — Spatial Solutions

Different with the congestion control mechanisrg, lbad balancing schemes try to improve the
DCN performance from a spatial aspelhis kind of solutions is especially applicable foe
traditional multipath DCN topologies.

Similarly to the traditional traffic engineeringcteniques, some studies deploy the centralized
scheme to schedule the DC traffic. SWAN [27] and[B8] collect statistical information from
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switches to a central controller, and push forwagdiles to balance the load for inter-datacenter
WANSs. Fastpass [42] deploys a centralized schedulingritthgoe to ensure that the queues stay
small while the queuing delay remains near optitdaidera [4] and MicroTE [29] also apply the
centralized scheduling scheme and focus on theldakshcing across multiple DC paths.

The main shortcoming of these centralized solutisnthat they suffer from high control-loop
latency in large-scale data centers, which areapmiicable for handling highly volatile DC
traffic in time [14]. Addressing this issue, qudéies of scalable distributed load balancing
schemes have been proposed. One can further daeefeese solutions as stateless solutions and
congestion-aware solutions.

Disturbance

(DC traffics from Load Balancer (In-Network)
other paths) —m8w— ——
Controller Policy e Multi-path  \
(Host-Based) Executor | — !
_ ~
= Congestion Control ownd Load Balancing } SN — } Output
Mechanisms + Mechanisms | _: > j }
- N
\ RN
N
Feedback signal
(e.g. ECN, loss)

Congestion Senosor

Fig. 9. Correlations between the DCN congestiartratier and load balancer in a control theoretimdeel
1) Stateless load balancing schemes

ECMP [3] is a simple hash-based load balancing mehthat is widely used as the de facto
scheme in switch ASICs today. The coarse-grainedlpw load balancing and the congestion
agnostic hash collisions in ECMP have shown to egqesformance degradation in asymmetric
DCN topologies [10, 25, 26], during link failures.

To overcome the above-mentioned shortcomings in ECljuantities of solutions have been
proposed to improve the traffic splitting granukaror the load balancing algorithm. PLTS [23]
and DRB [5] is per-packet load balancing schemas sbhedule DC traffic with the granularity
of the packetPresto [24] splits traffic into 64KB sized TSO (T&@gment Offload) segments.
Round robin fashion [6] is deployed in DRB and Rydée spray DC packets or flow cells. Based
on Valiant Load Balancing (VLB [37]), some othetwgmns have been put forwarded to improve
the failure tolerance of homogeneous and heterageneetwork topologies [38, 39].

None of the above solutions are state-aware, wbéelses performance degradation during link
failures.

2) Congestion-ware load balancing schemes

The main drawback of the stateless schemes isngpysrformance degradation during link
failures. Addressing this issue, a series of camgesware load balancing schemes have been
proposedBased on global or local congestion informatiore dongestion-aware solutions are
more applicable for asymmetric topologies or limktsh failure scenarios.

Global congestion aware schem&lobal congestion-aware load balancing schempbydhe
end-to-end congestion signal as the feedback mietrschedule the DC traffic among multiple
paths. TexXCP [30] and MATE [31] are adaptive faBngineering proposals that balance the
load across multiple ingress-egress paths in te-area network, using the per-path congestion
statistics CONGA [10] proposes similar solutions for dataeest by spraying DC traffic among
multi-rooted networks based on the congestion stheach end-to-end DC path. RepFlow [32]
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and RepNet [33] replicate each mouse flow to oppostically use the less congested path, and
reduce the overall flow completion time in DCNsspired by the Minimum Delay Routing [34],
HALO [35] studies load-sensitive adaptive routingdaimplements its solution in the router
software. These solutions are aware of the oveoalfestion status of the DCN and react fast for
local failures or congestions.

Local congestion aware schemddsing the global congestion-ware schemes to mniakd
balancing decisions faces scalability challeng&khough the distributed architecture can
improve the scalability of the scheduling schentlesy require coordination between switches or
hosts.In large-scale data centers with high transmissaigs, the continuously reacts to each
congestion information introduce additional latesceand degrade the overall flow scheduling
performance [13]. Consequently, the local congaséware solutions have drawn large interests.
Local Flow [25] and Flare [36] study the switchdbsolutions that balance the load on switch
ports, without taking the global congestion infotima into accountBased on the Power-of-
Two-Choices model [43, 44], Ghorbaet al [13] propose a stochastic switch-local scheduling
scheme that further reduces the polling range @dllsolutions, and improves the execution rate
of the flow scheduling algorithm.

As an improvement of CONGA[10], HULA [14] tracksetmext hop for the best path and its
corresponding utilization for a given destinationstead of maintaining per-path utilization
congestion information. This novel strategy makeslbad balancing scheme applicable for more
complex DCN topologies, besides the two-tier Lepifh® topologies. Based on limited
congestion information, the local congestion-awa@utions provide suboptimal routing
decisions, while improve the overall policy exeoutirate. However, the stability and
convergence of these switch-local solutions nedaetensured; worse more, as aforementioned,
the local congestion-ware scheduling policies hiagen proved to react slowly to link failures
[10, 14] and are prone to form congestion trees.

The implementation of the deterministic conges@are load balancing schemes requires
recording the real-time load status of all the ke paths or links, to make the global or local
optimal choices. As previously discussed in Sectignkeeping the status information and
calculating the optimal solution in large-scaleadanters introduce unacceptable storage and
computing complexity. Taking inspiration from thissue, we deploy a probabilistic global
congestion-aware load balancing algorithm in HOLMES optimize the storage complexity
while improve the execution rate of the load bailag@lgorithm.

C. Correlations between the Temporal and Spatial Sotions

Both the temporal congestion control mechanismstla@dpatial load balancing mechanisms aim
to optimize the throughput or latency of a DOWext, we try to describe the correlations of the
two types of solutions. Hollogt al [85], apply the classical control system techngytee design
controllers and analyze the stability of the saneéwork system under different congestion
control mechanismsSince the publication of the first seminal pape2][8y Kelly et al, the
framework of Network Utility Maximization (NUM) halseen widely applied in network resource
allocation algorithms as well as the congestionrabmrotocols.Inspired by these solutions, we
design a control theoretic model to describe theetations between the congestion control
mechanisms and the load balancing mechanisms.

As shown in Fig. 9, the closed-loop based contra@cimanisms are usually host-based
mechanisms, which are generated in an end contesit will be executed later in the in-network
devices. A congestion control mechanism typicajherates on a single end-to-end path, and it
concentrates on the performance optimization of path. The main disturbance during the
policy execution process is the traffic from othaulti-rooted paths.
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The load balancing mechanisms focus on the mutlti-gaenarios, and schedule the traffic of
multiple paths to improve the overall performandeald the end-to-end paths. Either solution
needs a feedback signal to guide the traffic sdiveglin the upcoming control loop. Thus, the
feedback signal will be transmitted to both thegmsiion controller and the load balancer after
each transmission looffhe load balancing mechanisms are often implemeogether with the
congestion control policies. For example, MPTCRI¢es the parallelized TCP transmissions
among multiple paths using its load balancing pedic It still realizes the traffic congestion
control using the traditional TCP congestion avoia algorithms. Therefore, it can be
considered as part of the closed-loop control systeFig. 9.

D. Architecture Improvements

Some other researchers also try to improve thdatactbre of the scheduling schemes based on
the DC traffic patterns or application featuresedway [18] dynamically partitions the multiple
DCN paths into low latency and high throughput patind schedules the elephant and mouse
flows separately. DevoFlow [52] uses multipath ahdnges the design of OpenFlow switches to
enable easier flow aggregation, improving DCN layeand throughput. ADN [77] devolves into
the application level, which concentrates on sgrthre up layer applications. It deploys a novel
architecture that slices the whole DCN into lodicasolated sub-networks to serve different
types of applications. The architecture improversecen be implemented together with the
aforementioned load balancing and congestion cbntmechanisms, to provide a more
comprehensive performance optimization scheme @N®[106, 108].

6. CONCLUSION

This paper presents HOLMES, a novel DCN flow scliagwscheme, which tackles mixed (mice
vs. elephants) data center traffic. Using a stdahgmerformance model, we first prove the
necessity of isolating mice and elephants with asedi form. We then present the HOLMES
architecture that partitions a DCN into high-thrbpgt and low-latency sub-networks. We further
design a stochastic and global congestion-aware bEdancing algorithm that schedules the
corresponding DC traffic to each sub-network. Satioh results show that HOLMES network
partition policy can successfully eliminate theenfiérence between the mouse and elephant data
flows. Finally, we prove that HOLMES flow schedi algorithm is stable and scalable for
large-scale data centers.
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