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ABSTRACT 
 
The Quality of Service (QoS) of scheduling between latency-sensitive small data flows (a.k.a. mice) and 
throughput-oriented large ones (a.k.a. elephants) has become ever challenging with the proliferation of 
cloud-based applications. In light of this mounting problem, this work proposes a novel flow control 
scheme, HOLMES (HOListic Mice-Elephants Stochastic), which offers a holistic view of global congestion 
awareness as well as a stochastic scheduler of mixed mice-elephants data flows in Data Center Networks 
(DCNs). Firstly, we theoretically prove the necessity for partitioning DCN paths into sub-networks using a 
stochastic model. Secondly, the HOLMES architecture is proposed, which adaptively partitions the 
available DCN paths into low-latency and high-throughput sub-networks via a global congestion-aware 
scheduling mechanism. Based on the stochastic power-of-two-choices policy, the HOLMES scheduling 
mechanism acquires only a subset of the global congestion information, while achieves close to optimal 
load balance on each end-to-end DCN path. We also formally prove the stability of HOLMES flow 
scheduling algorithm. Thirdly, extensive simulation validates the effectiveness and dependability of 
HOLMES with select DCN topologies. The proposal has been in test in an industrial production 
environment. An extensive survey of related work is also presented. 
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1. INTRODUCTION  
 
The wide adoption of diverse cloud-based applications and services exacerbates the challenges 
the design and operation of Data Center Networks (DCNs). In a multi-tenant mode, long-lasting 
elephant and short-lived mouse flows share on DCN paths [15, 46, 60]. According to the results 
shown in [7], the sizes of the numerous short-lived flows are usually less than 10KB, and the 
average load of these mouse flows is typically less than 5% [7, 45, 46]. However, east-west traffic 
in the data center, between 75% and 95%, tends to require very low latency.  On the other hand, 
the long-lasting heavy DC flows are typically much larger than 100KB; although the number of 
these large flows is extremely small compared to that of the small flows [64, 65]. These elephant 
flows account for more than 80% of bandwidth in DCNs [45, 102, 110, 112].  
 

To provide high bisection bandwidth, DCN topologies are often multi-rooted topologies, e.g. Fat-
Tree, Leaf-Spine, characterized by a large degree of multipath [40, 41, 96]. There are multiple 
routes between any two DCN endpoints [1, 2, 105, 110]. However, a critical issue in such 
network topologies is to design an efficient scheduling mechanism to balance the load among 
multiple available paths, while satisfying different application requirements defined in the Service 
Level Agreements (SLAs). 
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The defector DCN flow scheduling scheme Equal Cost Multi-Path (ECMP [3]) cannot meet such 
dynamic performance requirements in data centers. Hash collisions in ECMP can cause 
congestions, degrading throughput [4-6, 105-107] as well as tail latency [7-9, 109-112] of DCN 
flows. To balance the load between DCN switches and paths, stateful schedulers have been 
proposed, e.g. Conga [10], Hedera [4], etc. They monitor the congestion state of each path and 
direct flows to less congested paths, hence more robust to asymmetry network without control 
plane reconfigurations [11, 12]. Since maintaining global congestion information at scale is 
challenging, local congestion-aware or stochastic scheduling schemes are proposed, e.g. 
Expeditus [12], Drill [13], Hula [14], etc. Using simple or local information collection, these 
mechanisms are more efficient and applicable for complex DCN architectures, e.g. 3-tier Clos 
topologies. However, the majority of these scheduling mechanisms focus on balancing the loads 
of DCN according to the congestion information, without any consideration of cloud applications 
or data center traffic patterns. 
 

 
 

Existing solutions to scheduling the mice-elephants hybrid DCN traffic fall into two categories. 
The first category deploys unified schedulers for both mice and elephants on shared paths, in spite 
of the competing performance requirements of the two. Based on the analysis of DC traffic 
patterns, these studies design novel scheduling algorithms or congestion signals [16, 17] and 
strike at the right balance between throughput and latency on shared DCN paths. The main 
challenge though is the interference between the elephant and mouse flows. The second category 
deploys network partition schemes that transfer the two types of flows over separate paths. [18, 
60-63, 100, 101, 103, 104] By isolating elephant and mouse flows, network partition solutions 
avoid the aforementioned interference. This is particularly attractive as hardware and system cost 
continues to drop.  Nonetheless, new policies are required to adaptively partition the DCN paths, 
given dynamic DC traffic patterns and varied DC architectures. 
 

This paper focuses on the second category, the network partition solutions.  Using a stochastic 
performance model, we first theoretically prove that the interference between mice and elephants 
are inevitable under the unified scheduling mechanism, indicating that network partition is a more 
appropriate solution for handling such hybrid DC traffic. We then propose a novel scheduling 
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scheme, HOLMES, for such hybrid traffic in data centers. HOLMES architecture partitions a 
DCN into high-throughput and low-latency sub-networks, decouples the two competing scenarios 
and eliminates the interference in the hybrid traffic. HOLMES further deploys a stochastic and 
global congestion-aware load balancing algorithm that optimizes the performance of each sub-
network. The stability of the HOLMES flow scheduling algorithm is also proved and validated in 
this paper. 

 
 
Fig. 1. HOLMES architecture: Based on the real-time monitor information, HOLMES AI module 
first analyzes the status or tendency of the DCN using machine learning models, and generates 
the learning results. Next, according to the analysis results, HOLMES control layer designs a 
network partition policy and a corresponding flow scheduling policy, and the policies are 
generated in the SDN controllers. Finally, the network partition as well as the flow scheduling 
operations will be executed on the DCN switches or hosts, under the guidance of the SDN 
controllers. 
 
2. HOLMES ARCHITECTURE  
 
Fig. 1 shows the HOLMES architecture in three layers: AI layer, control layer and the 
infrastructure layer. The HOLMES AI layer contains a cognitive computing cluster to implement 
the software AI module. The AI module collects the DCN state information from the DCN 
monitors, and applies the machine learning algorithms to generate some analysis results, e.g. 
networking tendency predictions, network outlier locations, etc. These learning results generated 
by the AI module provide a more comprehensive view of DCN behaviors.  They will be then used 
for network partition and flow scheduling operations. 
 
The HOLMES control layer is responsible for generating the network partition, congestion 
control, and local balancing policies, based on the monitoring information as well as the learning 
results generated by the AI module. The policies generated in the SDN are decomposed into a 
series of fine-grained partition and scheduling orders, which are transmitted to the DCN switches 
and end hosts for execution. Without deploying the HOLMES AI module, the functions provided 
by the control layer are the same as the traditional SDN controllers. 
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The HOLMES infrastructure layer executes the specific network partition as well as the flow 
scheduling operations. It is responsible for storing, forwarding and processing data packets. The 
detailed operation orders are transmitted and configured on the DCN switches. The DCN 
switches the first map each link to the high throughput network or the low latency sub-network, 
according to the network partition policies. When the elephant and mouse flow to arrive at a DCN 
switch, their packets are scheduled to the pre-partitioned paths separately. This process is 
managed by the HOLMES control layer.  
 
A. Application Scenarios for HOLMES Architecture 
 
Compared with the commonly used SDN architectures, a prominent feature of HOLMES is the 
implementation of the AI module and its machine learning algorithms. Machine learning methods 
have been widely used in network management [72-74, 95] and DC scheduling policy generation 
[75, 76, 96] operations. Those continuing learning and analysis results provide a comprehensive 
understanding of network features and behaviors, which benefits the designing of the 
corresponding network partition and flow scheduling policies. Therefore, the deep analysis and 
accurate AI prediction provided by the AI module enable the HOLMES architecture to perform 
more complex and intelligent operations. 
 
One typical application scenario for HOLMES architecture is the deployment of application 
driven-networks (ADN) [77], where a physical network is sliced into logically isolated sub-
networks to serve different types of applications. Each network slice in ADN can deploy its own 
architecture and corresponding protocols, to satisfy the requirements of the applications it serves. 
The key operations when implementing ADN are: (1) Constructing an application abstraction 
model to formulate the resource requirements of the applications; (2) mapping the distinct 
properties of applications to respective network resources. It is shown that the complexity and 
performance of these operations can be improved when some application features are pre-known 
[8]. Hence, the HOLMES AI module benefits the analysis of application features as well as the 
prediction of resource requirements, which further alleviate the complexity of application 
abstractions and mapping operations. Moreover, the design and implementation of network 
slicing mechanisms can also be realized by the cooperation of the control layer and the 
infrastructure layer.  
 
Similarly, HOLMES architecture is also applicable for some other intelligent or complex 
application scenarios, which demand a deep understanding of network or application features 
such as Internet of Vehicles (IoV) [78], co flow scheduling [79, 80] and some other network 
architecture based on network slicing or network partitions. With the immense proliferation of 
complex and diverse cloud-based applications, we expect such architecture to be the development 
trend in the future.  
 
B. Out-of-order vs. Efficiency 
 
While elephants contribute to the majority volume of DCN traffic, mice account for 80% of the 
number of instances. [45, 102]  Out-of-order scheduling done at host side may sacrifice efficiency. 
In addition, compatibility with legacy hardware has to be ensured. Therefore, one may still 
consider deploy conventional, sometimes oblivious, ECMP scheduling for in-order scheduling of 
mice. 
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3. HOLMES SCHEDULING ALGORITHMS  
 
Once the hybrid DC traffic is separated into different sub-networks, scheduling algorithms affect 
the performance of each sub-network. In this section, we discuss the aforementioned global 
congestion-aware scheduling algorithm and prove the stability of its stochastic policy. 
 
A. Deploying Stochastic Scheduling Algorithms 
 
Compared with the other state-aware flow scheduling algorithms, stochastic flow scheduling 
algorithms are more applicable for large-scale data centers according to the following reasons: 

 
1. Simplification of computing complexity 
 
One of the key factors that degrade the performance of the traditional ECMP mechanism is the 
lack of global congestion information. To overcome this limitation, a group of studies has 
designed new flow scheduling policies based on a global “macroscopic” view of the entire DCN, 
e.g. CONGA [10]. However, in large-scale and heavily loaded data centers, the global 
macroscopic load balancing algorithms introduce unacceptable computing complexity to deal 
with the massive information, and the control loops in these scenarios are much slower than the 
duration of the majority of congestion incidents in data centers [13]. Therefore deploying the 
stochastic algorithms to achieve micro load balancing is a more viable solution. The micro load 
balancing solutions require only limited congestion information, which simplifies the computing 
complexity and enables instant reactions to load variations in large-scale data centers. 
 
2. Optimization of storage complexity 
 
In data centers, 8 and 16-way multipathing are common, while there is growing interest in 
multipathing as high as 32 or even 64. Specifically, with 40 servers in a rack, there will be 40 
uplinks. Each flow can use a different subset of the 40 links, leading to 240 possible subsets. 
Keeping the state of each path in this scenario requires unacceptable storage resources, which is 
difficult to be implemented. On the contrary, stochastic scheduling algorithms are effective to 
cope with the optimization of storage complexity, as well as the small number of register reads. 
Edsall et al [26] deploy the stochastic power-of-two-choices hashing solution for balancing loads 
of DC routers.  The storage complexity of such a stochastic solution is logarithmically reduced. 
 
3. Better adaptability for heterogeneous DCNs 
 
A typical flow scheduling method in multi-rooted DCNs is equal traffic splitting based on 
hashing, as used in the traditional ECMP approach. However, the uniform hashing approach 
cannot achieve optimal load balance without the assumption of symmetric and fault-free topology 
[5, 10, 45, 46], which is not generally true in heterogeneous data centers. To provide better 
adaptability for heterogeneous DCNs, weighted traffic distribution methods have been widely 
adopted in the global macro load balancing solutions [11, 67]. In order to correct the imbalance 
caused by the even distribution approach and enable fair resource allocation, the weighted 
approaches distribute the traffic among available paths in proportion to the available link capacity 
of each path. The global weighted traffic distribution solutions have shown good adaptability to 
dynamically changing network topologies. However, these solutions still need real-time state 
information collection of all the paths, which introduces additional computing and storage 
complexity.  
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Stochastic flow scheduling algorithms can reduce the computing and storage overhead of 
weighted traffic distribution mechanisms, while maintaining the adaptability to heterogeneous 
DCN topologies. Consider the stochastic Power-of-Two-Choices: The algorithm only needs to 
record the states of the two randomly chosen paths; therefore, the storage and computing 
complexity are dramatically reduced. Moreover, the algorithm compares the load conditions of 
these two chosen paths, select the better one, hence performs a weighted operation in another 
form. Stochastic load balancing solutions have also been proved to be applicable for 
heterogeneous DCNs [13, 26]. Based on these justifications, we extend stochastic flow scheduling 
algorithms to our HOLMES mechanism. 
 
B. Flow Scheduling Algorithm in HOLMES 
 
We consider a stochastic scheduling policy, (d, m) policy: The input port chooses d random end-
to-end paths out of all the possible paths.  It finds the path with the minimum occupancy among 
all the d samples and m least loaded samples from the previous time slot. It then schedules the 
input packet to the selected end-to-end path.  
 

Increasing the value of d and m to >>2 and >>1 will degrade the performance since a large 
number of random samples makes it more likely to cause the burst of packet arrivals on the same 
path [13]. As a result, we set m=1 and d=2 in our scheduling model.  The detailed flow scheduling 
procedure is shown in Alg. 1. 
 

Using global congestion information, the algorithm reacts rapidly to the link or node failures. 
Moreover, the limited information used in the algorithm improves the scheduling efficiency while 
avoids the traffic bursts on the same switch ports. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1  Flow scheduling policy in HOLMES 
1: Input :  Load condition of each end-to-end path at time 

t:  
{ load(1), load(2), load(3),…} 

        Path number of the selected path at time t -1: 
s(t-1) 

        Output ports of the TOR and aggregate 
switches on each path: 

               
(1) (1) (2) (2){{ , },{ , },...}A T A TP P P P  

2: Output : Path number of the selected path at time t -1: 
s 

Output ports TOR and aggregate ports on the 
selected path: 
                     

( ) ( ){ , }A T
s sP P  

3: Initialize:� m �  2, d = 1; 
4: Initialize: loadOPT = load(s(t-1)); 
5: Random select m end-to-end paths {Path(1), 

Path(2), …, Path(m)} 
6: Construct candidate set: L � {Path(1), Path(2), …, 

Path(m)} � { s(t-1)} 
7: for  each path i (1 �� i �� m+1) in the candidate set L do 
8:    if  load(Path(i))  ��� � loadOPT  then 
9:        loadOPT �  load(Path(i)); 
10: end for 
11: Assign value: s = Path number of the path with 

load loadOPT: 
12: return  { pA

(s), pT(s) }  and s 
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C. Stability Analysis of HOLMES’s Scheduling Algorithm  
 

We prove the stability of this stochastic global congestion-aware scheduling algorithm in a two-
tier Clos DCN topology. We abstract an end-to-end path in a Clos network (Fig. 2A) as a serial 
queuing system consists of a series of queues (Fig. 2B). As a result, the whole Clos DCN 
topology is abstracted as a queuing network. We then evaluate the performance of a specific leaf-
to-spine DCN path using a stochastic queuing network model. 
 

We focus on analyzing the stability of the scheduling process from when a packet arrives at a 
TOR switch to when the packet reaches the spine switch. The packet experiences two queuing 
processes, at the TOR and the aggregate switch port, respectively.  The entire path from the TOR 
node to the spine node can also be modelled as a large queue. 
 

Based on the results of [53-56] and with a similar method shown in [57-59], we prove that 
HOLMES’s scheduling algorithm is stable for all uniform and non-uniform independent packet 
arrivals. Some key notations and definitions used in the scheduling model are illustrated in Table 
II. 

  
 

Fig. 2.  Abstraction of a leaf-to-spine path in a Close network (A) to a serial queuing system (B) 
 
We prove that the global (1, 1) policy is stable for all admissible parallel arrival process. We 
construct a Lyapunov function L as follows: 
 

* 2 2

1 1

( ) ( ( ) ( )) ( )
A ANN NN

i i
i i

L t Q t Q t Q t
= =

= - +� ��  

 
To prove the algorithm is stable, we show that there is a negative expected single-step drift in the 
Lyapnuov function, i.e., 
 

[ ( 1) ( ) | ( )] ( ) ( , 0)E L t L t L t L t k ke e+ - £ + >  
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We divide the Lyapunov function into two sub functions as: 
 

* 2
1

1

( ) ( ( ) ( ))
ANN

i
i

L t Q t Q t
=

= -� �    2
2

1

( ) ( )
ANN

i
i

L t Q t
=

= �  

 

Based on the above formulation, we prove that there exists a negative expected single-step drift in 
the Lyapnuov function in each possible case. Therefore, the global (1, 1) policy is stable. Based 
on the (d, m) policy, the HOLMES’s scheduling algorithm is also stable. Please see details of the 
proof in Appendix B. 
 

4. HOLMES PERFORMANCE EVALUATION  
 

We evaluate HOLMES using simulation based on OMNET++ [99]. We construct a test-bed 
simulation platform to simulate the data transmission process in symmetric and asymmetric fat-
tree DCNs. Similar to [10, 46, 52, 60, 62, 63], a heavy-tailed distribution is used to generate DC 
flow of different sizes. The hosts of the DCN run TCP applications. The flow request rate of each 
TCP connection satisfies the Poisson process.  
 
A. Evaluation of HOLMES Network Partition  
 
We evaluate the network partition policy of HOLMES in a scenario that hybrid elephant and 
mouse flows are scheduled in the same DCN with different scheduling schemes. The DCN 
topology deployed in this experiment is a Clos network with 2 and 4 leaf and spine switches 
respectively. We generate elephant and mouse flows to leaf switches with average sizes of 100KB 
and 1KB, respectively. The queue lengths of the switch ports are used as performance indicators. 
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Since the scale of the DCN in the simulation is not very large, HOLMES deploys the static policy 
that partitions the two sub-networks in advance. The buffer sizes of all the switch ports are set to 
be the same.  When the buffer of a switch port is full, all the upcoming input packets to that port 
will be dropped. We compare HOLMES against two start-of-the-art unified load balancing 
schemes: CONGA [10] and queue length gradient based scheduling. Similar to the delay gradient 
based congestion control policy used in [16, 66], we deploy the queue length gradient as the 
indicator and schedule the arrived packet to the port with the minimum length gradient. 
 

Figs. 3A-3C show the queue length variation of the four ports of a spine switch under the three 
scheduling schemes. The X-axis indicates the time period and the Y-axis denotes the queue length. 
We can see from Fig. 3A that using CONGA, the buffers of all the four ports are full after a 
period of time, indicating the throughput of the switch has been maximized, which benefits the 
transmission of the elephant flows. However, when a mouse flow arrives, all the packets in that 
flow have to wait for a long queuing time since all the output port are of heavy loads. 
Consequently, the latency of the mouse flow will increase and degrade the overall performance of 
the hybrid DC flows. 
 
Similarly, as shown in Fig. 3B, the buffers of the four output ports are also almost full after a 
period of time using the length gradient based policy. The results indicate that the length gradient 
based load balancing policy still suffers from the interference between the elephant flows and the 
mouse flows.  
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Fig. 3.  Queue length changing trends of a DCN spine node’s ports under policies CONGA (A), length 

gradient based policy (B) and HOLMES (C) 
 

Comparing Fig. 3A and Fig. 3B, we find that the load balancing condition of the gradient-based 
scheme is a little worse than CONGA. The reason is that the gradient-based scheme schedules the 
DC flow according to the changing trend but not the current state of the DCN. Finally, Fig. 3C 
shows that HOLMES has successfully isolated the elephant and mouse flows. Two of the ports 
have been partitioned to the low latency sub-network and used for transmitting the mouse flows. 
Fig. 3C shows that the buffers of the two ports are almost empty during the entire transmission 
procedure. Thus, packets in the mouse flows do not need to wait for additional queuing delays, 
and the low latency of the mouse flow is ensured. Moreover, the buffers of the other high 
throughput ports are also full filled, which satisfies the throughput requirements of elephant flows. 
Hence, by isolating the mixed traffic, HOLMES network partition policy successfully eliminated 
the interference of the elephant flows to the mouse flows. 
 
The main shortcoming of the network partition solution is the inefficient use of network resources. 
Although the isolation of the hybrid traffic avoids the interactions of the elephant and mouse 
flows, the spared network resource in the low latency paths has not been fully used since the 
buffers of these paths are almost empty. An effective solution is to improve the buffer allocation 
by limiting the buffer size of the low latency sub-network and assigning the spared buffers to the 
high throughput sub-network. This policy has been implemented in [61]. 
 
B. Stability Validation of HOLMES Scheduling Algori thm 
 
We evaluate the stability of HOLMES flow scheduling algorithm. We simulate the scenario that 
DC traffic are scheduled in a DC with asymmetric network topology. We combine two different 
sized Clos networks, and construct an asymmetric DCN architecture. One of the Clos network 
consists of 2 leaf switches and 4 spine switches. The other is a Clos network with 5 and 4 leaf and 
spine switches, respectively. 10 hosts are attached to each leaf switch. We concentrate on 
validating the stability of HOLMES flow scheduling algorithm, rather than the network partition 
mechanism in this scenario. Thus, we do not deploy the HOLMES network partition mechanism 
in the experiment and only execute the HOLMES flow scheduling algorithm. 
 
CONGA [10] and DRILL [13] are two load balancing solutions proven to be stable. Therefore, 
we compare them against HOLMES. All DC traffic is scheduled with the granularity of packet, 
and we focus on analyzing the stability of the three scheduling algorithms. When using the Power 
of Two Choices selections, we uniformly set d=2 and m=1. Similarly to the previous experiments, 
we deploy queue length as the load balance indicator to evaluate the overall load balancing 
condition of the DCN. 
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Figs. 4A-4C show the queue length changing trend of a specific leaf switch’s ports, under load 
balancing policies CONGA, DRILL and HOLMES. We can see from Fig. 4A that the queue 
length changing trends of all the ports in a leaf switch are almost overlapped under CONGA, 
indicating that the queue lengths of all the switch ports are almost the same at each time unit. 
Therefore, the load balancing condition under CONGA is optimal among all the three 
mechanisms, since CONGA makes each scheduling decision based on the global congestion 
information. Without considering the time used for obtaining congestion information, CONGA 
obtains the global optimal load balancing result.  
 

Fig. 4B shows the queue length changing trends of the same leaf switch ports under DRILL. 
Different with the former results, we find fluctuations in the queue length changing curve. In 
other words, the length difference of the longest queue and the shortest queue is clear. The reason 
is that the use of (d, m) policy in DRILL reduces the scale of the solution space, and the local 
optimal solutions affect the load balancing condition of the DCN. 
 

 

 
Fig. 4.  Queue length changing trends of a DCN leaf node’s ports under load balancing policies CONGA 

(A), DRILL (B) and HOLMES (C) 
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Fig. 4C shows the queue length changing trends of the same leaf switch ports under HOLMES 
scheduling algorithm. The fluctuations also exist in the curve of Fig. 4C, where the amplitude of 
the fluctuation is more obvious. This phenomenon is also caused by the use of (d, m) policy. 
Compared with DRILL, the global (d, m) policy used in HOLMES further limits the solution 
space, and exacerbates the fluctuations. However, although the fluctuations are more obvious 
when executing HOLMES flow scheduling algorithm, we can also find an upper bound (about 10 
packets) of the fluctuation amplitude, indicating that the length difference of the shortest and the 
longest queue is not infinite in HOLMES. Hence, our HOLMES flow scheduling algorithm is 
stable during the whole scheduling period. Moreover, limiting the solution exploration space 
reduces the time used to obtain the congestion information and make HOLMES more efficient 
and applicable for large-scale data centers. 
 
C. Adaptability for Heterogeneous  
 
As discussed earlier, both the stochastic flow scheduling algorithm and the weighted traffic 
splitting solutions can adapt to heterogeneous congestion states. We now evaluate the adaptability 
of the two solutions. 
 
We first theoretically compare the approximate adaptability of the two solutions, as shown a 
simple leaf-spine DCN topology with N paths available between two racks as shown in Fig. 5.  

 
Fig. 5.  Simple leaf-spine DCN topology for adaptability evaluations 

 
We show that when the load conditions of the DC paths are heavily heterogeneous, the (d, m) 
policy also needs to maintain plenty of load status information to keep its adaptability as good as 
the weighted traffic splitting solutions. The stochastic scheduling mechanism does not show 
obvious advantages in this scenario. 
 
Similar to the experiment in [97], we simulate the execution process of the coordinate approach 
as well as the Power-of-Two-Choices algorithm on a same switch. Fig. 6 shows the changing 
trend of the overall switch load as the modeling factor (d) increases. 
 
The load distribution of the switch ports is initialized exponentially in this experiment. We see 
from Fig. 6 that, as the value of d increases, the load condition of the switch is improved under 
the power of two choices policy ((d, m) policy); since a larger value of d increases the probability 
of choosing the lightest loaded output port. As we increase the value of d from 2 to 5, the power 
of two choices policy performs almost as well as the theoretical load optimal policy (d = 10), 
which validates our previous modeling results. On the contrary, when using the coordinated 
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approach, the switch attains optimal performance when the value of d is small (d = 2) and the load 
state of the switch is almost as good as the theoretical load optimal policy. This simulation result 
is in accordance with the analysis in [97]. However, as the value of d increases, the load state of 
the switch becomes worse: when assigning d = 10, the load balancing condition of the switch 
under the coordinated policy is even worse than the (2, 1) policy. 
 
Although the stochastic flow scheduling outperforms the weighted traffic splitting solution in 
most cases, it still has some limitations. The weighted traffic splitting solution maintains the load 
status of all the paths.  It dynamically adjusts the value of each weight according to the current 
load status of each path (the static weight configuration has proven to be not applicable in [10]). 
However, when deploying the (d, m) policy, the value of d and m are constant after the 
initializations. Thus, when the values are not appropriately assigned, (d, m) policy will not 
perform as well as the weighted traffic splitting solutions. Hence, the HOLMES AI module is 
responsible for analyzing the overall heterogeneity degree of a DCN, and guiding the flow 
scheduling algorithm to set appropriate values of the algorithm factors (d and m). The detailed 
design and implementation of the HOLMES AI module is our future work. 
 
D. Technical Challenges in Hardware Implementations  
 
Some technical challenges need to be considered to implement HOLMES in real-world data 
centers. We now summarize these challenges in hardware implementations. 
 
1. Handling the packet reordering  
 
The flow scheduling algorithm in HOLMES can be implemented with different data granularities: 
per packet scheduling, per flow scheduling or some intermediate data sizes, e.g. flow cell [24], 
flow let [10], etc. When using the TCP transmission protocol and implementing the per packet (or 
flow cell) scheduling, some studies have shown that this fine-grained traffic splitting techniques 
cause packet reordering and lead to severe TCP throughput degradations [23]. Therefore, the 
packet reordering problem needs to be considered when implementing the fine-grained HOLMES 
traffic scheduling algorithm. A viable solution is to deploy the JUGGLER [68] network stack in 
data center traffic transmissions. JUGGLER exploits the small packet delays in datacenter 
networks and the inherent traffic bursts to eliminate the negative effects of packet reordering 
while keeping state for only a small number of flows at any given time. This practical reordering 
network stack is lightweight and can handle the packet reordering efficiently. 

 
Fig. 6.  Changing trend of a switch’s overall traffic load under different policies 
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2. Design of DCN forwarding and state tables 
 
The design of the forwarding and state tables is also a noteworthy challenge. An appropriate 
approach should cope with the small time budget as well as the small register usage. We now 
propose a viable design to implement the per-flow scheduling algorithms of HOLMES. 
 
As shown in Fig. 7, a TOR switch maintains a flow table and a state table. The two tables work 
together to execute the load balancing policy attained from the SDN controller. Specifically, 
when a packet arrives, its flow ID is hashed to map the packet to a flow table entry. If the table 
entry is valid, the packet is dispatched to the path indicated by the stored hash applied to the 
packet’s flow ID. On the contrary, if the packet’s flow ID is not maintained in the flow table, the 
TOR switch will look up the destination TOR ID in the state table. After that, the (d, m) policy is 
applied to compare the load states of the three candidate end-to-end paths to the destination TOR 
(r1_metric, r2 metric and r3_metric), and assign the packet to the optimal path. Two of the three 
end-to-end paths are randomly selected.  The third one is the optimal path from the last selection. 
Finally, the flow ID and the hash of the chosen path will be inserted into the flow table. 

{
 

 
Fig. 7.  Overview of HOLMES forwarding and state tables: A new flow table entry is set up by applying 

the (2, 1) policy in the state table. The period timer of each table is triggered every time period T1 and T2 to 
age out inactive flows and update the load status of each candidate end-to-end path. 

  

The information of each table needs to be updated periodically to keep the real-time status of the 
traffic and paths. Thus, we associate an aging bit with each table entry. The aging bit of the flow 
table is responsible for marking inactive or idle flows: when a packet’s flow ID maps the 
information in the forwarding table, the aging bit is cleared to indicate that the flow entry is active. 
A timer process visits every table entry every aging timeout T1. When the timer process visits a 
table entry, it either turns on the aging bit or invalidates the entry if the aging bit is already on. In 
other words, T1 is the timeout threshold to age out inactive flows, which is proportional to the size 
of the scheduling unit e.g. per-flow, per-flow cell, etc. If the packet’s flow ID is not maintained in 
the flow table, the TOR switch will execute the (d, m) policy on the state table. Thus, T1 can also 
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be considered as the time period to trigger the execution of the HOLMES scheduling algorithm. 
On the other hand, another timer process runs together with the aging bit of the state table to 
update the load status of each candidate end-to-end path. The timeout threshold to age out the old 
status information in the state table is set to T2. To ensure that the latest load state information is 
used when executing the (d, m) policy, the value of T1 and T2 should satisfy: T1 �  T2. Moreover, in 
most cases, the global congestion control signals deployed in the flow scheduling algorithms are 
the feedback signals from the receivers of the end-to-end paths. Thus, we further get: T1 �  T2 �  
RTT. Key et al [93] have suggested that the policy that periodically sampling a random path and 
retaining the best paths may perform well. 
 

The periodically sampling of path congestion states in the state table makes the real-time 
collection of status information becomes a technical challenge. The state collection operations 
should not introduce obvious transmission overheads and performance penalties. Especially in the 
TCP in cast scenarios [69, 70] where multiple source nodes transmit traffic at the same time to a 
common destination node, the state collection operations introduce additional traffic and are 
prone to cause DCN throughput collapse [71]. A viable solution for collecting the real-time 
congestion status is deploying RepSYN as the signal to detect the load conditions of the multiple 
paths, as shown in [33]: before transmitting data among multi-rooted paths, multiple TCP 
connections are established; however, traffic is only transmitted using the first established 
connection and the other connections are ended immediately. The delay experienced by an SYN 
reflects the latest congestion condition of the corresponding path, and thus the congestion states 
can be collected. Moreover, this solution only replicates SYN packets to probe the network, 
which does not aggravate the TCP in cast in a DCN. 
 

The state table only needs to periodically maintain the congestion states of two randomly chosen 
paths and the congestion-optimal path in the latest time unit. Compared with some other 
congestion-aware solutions e.g., CONGA [10], RepFlow [32], the storage complexity has been 
dramatically optimized. In order to make the scheduling results of the (d, m) policy more effective, 
we choose the disjoint end-to-end paths (paths with different intermediate aggregate or spine 
switches) to avoid the scenario that the same local congestions is shared by multiple end-to-end 
paths. This implementation is applicable for more complex multi-tier Leaf-Spine topologies or 
asymmetric DCN topologies. 
 

3. Dealing with the stale information 
 

When implementing HOLMES scheduling algorithm with packet granularity, the transmission 
latency of a packet is so small that the information refresh rate in the state table cannot catch up 
with. Correspondingly, the load balancing algorithm has to use the stale information to make the 
scheduling decisions [94, 98] have pointed out that the delayed information leads to a herd 
behavior of the scheduling results: data will herd toward a previously light loaded path for much 
longer time than it takes to fulfill the path. Thus, another technical challenge is to deal with the 
stale information used in the load balancing algorithms. (More detail including Figure 8 is 
omitted due to limited space allowed.) 
 

Overall, the simulation experimental results validate the modeling results. They show that 
HOLMES load balancing algorithm is stable and adaptable in heterogeneous DCNs. 
 

5. RELATED WORK  
 

Latency and throughput optimization for DCN has attracted increasing attention. A series of 
solutions have proposed to improve the performance of the scale-out multipath data center 
topologies, such as Clos networks [1, 2, 19], Flattened Butterfly [20], HyperX [21], DragonFly 
[22], etc. In general, the performance optimization mechanisms can be classified into two 
categories: temporal solutions (i.e. congestion control mechanisms) and spatial solutions (i.e. load 
balancing mechanisms). Specifically, one can classify the existing solutions according to Fig. 8. 
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A. Congestion Control Mechanisms – Temporal Solutions 
 
DC congestion control is a deep studied topic. Generally, the congestion control mechanisms 
adjust the traffic transmission rates or the packet dropping strategies according to the feedback 
congestion signals. The control mechanisms can be implemented on either the end hosts or the in-
network equipments. 
 
1) Host-based congestion control mechanisms 
 

The optimization of the transport protocols are usually host-based solutions. Those newly 
proposed transport protocols are customized for DCNs. The host-based control mechanisms can 
be implemented on either the sender [7, 16] or the receiver of a transportation path [87]. Jain et al 
[88] study the general patterns of response time and throughput of a network as the network load 
increases. They describe the changing trend of network performance curve using two factors: cliff 
point and knee point. As shown in Fig. 2 of [88], the point of congestion collapse is defined as a 
cliff due to the fact that the throughput falls after this point (packets start getting lost); and the 
point after which the increase in throughput is small (buffers of a path start to be filled)  is 
described as a knee point. Correspondingly, the host-based congestion control policies can also be 
categorized using the two factors. 

 
 

Fig. 8.  Classification of DCN congestion control and load balancing mechanisms; the design space for 
HOLMES flow scheduling algorithm 

 

Cliff-based mechanisms: Most of the modified transportation protocols based on the traditional 
TCP protocol are cliff-based mechanisms, such as MPTCP [89], DCTCP [7], D2TCP [90], etc. 
The cliff-based mechanisms are loss-based solutions, which interpret packet losses as congestions 
and attempt to fulfill the buffers of the TCP paths while avoiding the occurrence of packet losses 
[66]. These solutions deploy different types of feedback information from the last time point as 
the congestion signals to guide the traffic control in current time point. For example, DCQCN [49] 
combines Explicit Congestion Notification (ECN [7]) markings with a QCN [50, 53-55] inspired 
rate-based congestion based control algorithm to control DCN flows. The cliff-based mechanisms 
are usually the throughput-optimal solutions. 
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Knee-based mechanisms: Cardwell et al [91] point out that the operating point of the cliff-based 
mechanisms is not optimal. They argue that when the scale of a DCN is large enough, there will 
be quantities of packets accumulated in the buffers of a path. Thus, compared with the data 
transmission time in the network links, the queuing time in the buffers tend to dominate the 
overall data transmission latency. Thus, the cliff-based solutions are not applicable for the 
optimization of the data transmission latency. Furthermore, they propose a novel congestion 
control mechanism BBR, which adjust the operating point from the cliff point to the knee point, 
to optimize the data transmission latency of a DCN. Therefore, the cliff-based congestion control 
mechanisms are usually the latency-optimal solutions. 
 
In-between: Different with the above two types of solutions that optimize the throughput or 
latency of a DCN respectively, a few mechanisms focus on handling the trade-off between 
latency and throughput, and attempt to find the right balance of  the two conflicting factors. 
Hayes et al [17] propose a delay gradient algorithm for TCP congestion control of wide-area 
networks. Similarly, taking inspiration from Compound [47] and FAST [48], TIMELY [16] also 
deploys delay gradient as the congestion signal and proposes a gradient-based algorithm to jointly 
optimize the latency and throughput of a DCN in different time periods. TIMELY mechanism 
works during the time period between the knee and cliff points, which dynamically adjusts the 
importance of the throughput and latency issues. 
 
2) In-network congestion control mechanisms 
 

Network congestion usually occurs in the in-network devices, e.g. switches and routers. Thus, 
compared with the end host based solutions, the in-network congestion control mechanisms 
achieve more accurate congestion information and react more quickly to congestions and failures. 
Taking this advantage into account, many researchers migrate some status monitoring and flow 
control functions from end hosts to in-network devices. Correspondingly, a series of in-network 
congestion control mechanisms have been proposed. 
 

Most of the in-network congestion control protocols adjust the congestion window size by 
managing the queues of the DCN routers. Quantities of Active Queue Management (AQM) 
algorithms have been proposed to generate congestion signals according to the real-time queue 
lengths in DCN routers, such as Adaptive RED [81, 82], Adaptive Virtual Queue (AVQ) [83], 
BLUE [84], etc. Hollot et al [85] apply classical control system techniques to design novel 
controllers that are better suited for AQM. Similarly, Firoiu et al [86] model the AQM RED 
algorithm as a feedback control system and discover fundamental laws governing the traffic 
dynamics in TCP/IP networks. pFrabic [51] preemptively schedules flows using packet 
forwarding priorities in switches and Detail [9] deploys a similar mechanism that give priorities 
to latency-sensitive mouse flows; however this simple control mechanism makes a mismatch 
between injection traffic and network capacity, results in packet loss and bandwidth wastage. 
These in-network solutions react quickly to the real-time congestions and failures; moreover, they 
can also generate feedback congestion signals to the end hosts, and cooperate with the host-based 
control mechanisms.  
 
B. Load Balancing Schemes – Spatial Solutions 
 
Different with the congestion control mechanisms, the load balancing schemes try to improve the 
DCN performance from a spatial aspect. This kind of solutions is especially applicable for the 
traditional multipath DCN topologies. 
 
Similarly to the traditional traffic engineering techniques, some studies deploy the centralized 
scheme to schedule the DC traffic. SWAN [27] and B4 [28] collect statistical information from 
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switches to a central controller, and push forwarding rules to balance the load for inter-datacenter 
WANs. Fastpass [42] deploys a centralized scheduling algorithm to ensure that the queues stay 
small while the queuing delay remains near optimal. Hedera [4] and MicroTE [29] also apply the 
centralized scheduling scheme and focus on the load balancing across multiple DC paths.  
 
The main shortcoming of these centralized solutions is that they suffer from high control-loop 
latency in large-scale data centers, which are not applicable for handling highly volatile DC 
traffic in time [14]. Addressing this issue, quantities of scalable distributed load balancing 
schemes have been proposed. One can further categorize these solutions as stateless solutions and 
congestion-aware solutions. 

  
Fig. 9.  Correlations between the DCN congestion controller and load balancer in a control theoretic model 
 
1) Stateless load balancing schemes 
 
ECMP [3] is a simple hash-based load balancing scheme that is widely used as the de facto 
scheme in switch ASICs today. The coarse-grained per-flow load balancing and the congestion 
agnostic hash collisions in ECMP have shown to cause performance degradation in asymmetric 
DCN topologies [10, 25, 26], during link failures.  
 

To overcome the above-mentioned shortcomings in ECMP, quantities of solutions have been 
proposed to improve the traffic splitting granularity or the load balancing algorithm. PLTS [23] 
and DRB [5] is per-packet load balancing schemes that schedule DC traffic with the granularity 
of the packet. Presto [24] splits traffic into 64KB sized TSO (TCP Segment Offload) segments. 
Round robin fashion [6] is deployed in DRB and Presto to spray DC packets or flow cells. Based 
on Valiant Load Balancing (VLB [37]), some other solutions have been put forwarded to improve 
the failure tolerance of homogeneous and heterogeneous network topologies [38, 39]. 
 

None of the above solutions are state-aware, which causes performance degradation during link 
failures. 
 

2) Congestion-ware load balancing schemes 
 

The main drawback of the stateless schemes is causing performance degradation during link 
failures. Addressing this issue, a series of congestion-aware load balancing schemes have been 
proposed. Based on global or local congestion information, the congestion-aware solutions are 
more applicable for asymmetric topologies or link/switch failure scenarios. 
 
Global congestion aware schemes: Global congestion-aware load balancing schemes deploy the 
end-to-end congestion signal as the feedback metric to schedule the DC traffic among multiple 
paths. TexXCP [30] and MATE [31] are adaptive traffic-engineering proposals that balance the 
load across multiple ingress-egress paths in the wide-area network, using the per-path congestion 
statistics. CONGA [10] proposes similar solutions for datacenters, by spraying DC traffic among 
multi-rooted networks based on the congestion state of each end-to-end DC path. RepFlow [32] 
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and RepNet [33] replicate each mouse flow to opportunistically use the less congested path, and 
reduce the overall flow completion time in DCNs. Inspired by the Minimum Delay Routing [34], 
HALO [35] studies load-sensitive adaptive routing and implements its solution in the router 
software. These solutions are aware of the overall congestion status of the DCN and react fast for 
local failures or congestions.  
 
Local congestion aware schemes: Using the global congestion-ware schemes to make load 
balancing decisions faces scalability challenges. Although the distributed architecture can 
improve the scalability of the scheduling schemes, they require coordination between switches or 
hosts. In large-scale data centers with high transmission rates, the continuously reacts to each 
congestion information introduce additional latencies and degrade the overall flow scheduling 
performance [13]. Consequently, the local congestion-aware solutions have drawn large interests. 
Local Flow [25] and Flare [36] study the switch-local solutions that balance the load on switch 
ports, without taking the global congestion information into account. Based on the Power-of-
Two-Choices model [43, 44], Ghorbani et al [13] propose a stochastic switch-local scheduling 
scheme that further reduces the polling range of local solutions, and improves the execution rate 
of the flow scheduling algorithm.  
 

As an improvement of CONGA[10], HULA [14] tracks the next hop for the best path and its 
corresponding utilization for a given destination, instead of maintaining per-path utilization 
congestion information. This novel strategy makes the load balancing scheme applicable for more 
complex DCN topologies, besides the two-tier Leaf-Spine topologies. Based on limited 
congestion information, the local congestion-aware solutions provide suboptimal routing 
decisions, while improve the overall policy execution rate. However, the stability and 
convergence of these switch-local solutions need to be ensured; worse more, as aforementioned, 
the local congestion-ware scheduling policies have been proved to react slowly to link failures 
[10, 14] and are prone to form congestion trees. 
 

The implementation of the deterministic congestion-aware load balancing schemes requires 
recording the real-time load status of all the available paths or links, to make the global or local 
optimal choices. As previously discussed in Section V, keeping the status information and 
calculating the optimal solution in large-scale datacenters introduce unacceptable storage and 
computing complexity. Taking inspiration from this issue, we deploy a probabilistic global 
congestion-aware load balancing algorithm in HOLMES, to optimize the storage complexity 
while improve the execution rate of the load balancing algorithm. 
 

C. Correlations between the Temporal and Spatial Solutions 
 

Both the temporal congestion control mechanisms and the spatial load balancing mechanisms aim 
to optimize the throughput or latency of a DCN. Next, we try to describe the correlations of the 
two types of solutions. Hollot et al [85], apply the classical control system techniques to design 
controllers and analyze the stability of the same network system under different congestion 
control mechanisms. Since the publication of the first seminal paper [92] by Kelly et al, the 
framework of Network Utility Maximization (NUM) has been widely applied in network resource 
allocation algorithms as well as the congestion control protocols. Inspired by these solutions, we 
design a control theoretic model to describe the correlations between the congestion control 
mechanisms and the load balancing mechanisms.  
 

As shown in Fig. 9, the closed-loop based control mechanisms are usually host-based 
mechanisms, which are generated in an end controller and will be executed later in the in-network 
devices. A congestion control mechanism typically operates on a single end-to-end path, and it 
concentrates on the performance optimization of one path. The main disturbance during the 
policy execution process is the traffic from other multi-rooted paths.  
 



International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018 

20 
 

The load balancing mechanisms focus on the multi-path scenarios, and schedule the traffic of 
multiple paths to improve the overall performance of all the end-to-end paths. Either solution 
needs a feedback signal to guide the traffic scheduling in the upcoming control loop. Thus, the 
feedback signal will be transmitted to both the congestion controller and the load balancer after 
each transmission loop. The load balancing mechanisms are often implemented together with the 
congestion control policies.  For example, MPTCP enables the parallelized TCP transmissions 
among multiple paths using its load balancing policies.  It still realizes the traffic congestion 
control using the traditional TCP congestion avoidance algorithms. Therefore, it can be 
considered as part of the closed-loop control system in Fig. 9. 
 
D. Architecture Improvements 
 
Some other researchers also try to improve the architecture of the scheduling schemes based on 
the DC traffic patterns or application features. Freeway [18] dynamically partitions the multiple 
DCN paths into low latency and high throughput paths, and schedules the elephant and mouse 
flows separately. DevoFlow [52] uses multipath and changes the design of OpenFlow switches to 
enable easier flow aggregation, improving DCN latency and throughput. ADN [77] devolves into 
the application level, which concentrates on serving the up layer applications. It deploys a novel 
architecture that slices the whole DCN into logically isolated sub-networks to serve different 
types of applications. The architecture improvements can be implemented together with the 
aforementioned load balancing and congestion control mechanisms, to provide a more 
comprehensive performance optimization scheme for DCNs [106, 108]. 
 
6. CONCLUSION  
 

This paper presents HOLMES, a novel DCN flow scheduling scheme, which tackles mixed (mice 
vs. elephants) data center traffic. Using a stochastic performance model, we first prove the 
necessity of isolating mice and elephants with a closed form. We then present the HOLMES 
architecture that partitions a DCN into high-throughput and low-latency sub-networks. We further 
design a stochastic and global congestion-aware load balancing algorithm that schedules the 
corresponding DC traffic to each sub-network. Simulation results show that HOLMES network 
partition policy can successfully eliminate the interference between the mouse and elephant data 
flows.  Finally, we prove that HOLMES flow scheduling algorithm is stable and scalable for 
large-scale data centers. 
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