
International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

DOI: 10.5121/ijcnc.2019.11504 59

ENERGY EFFICIENT COMPUTING FOR SMART

PHONES IN CLOUD ASSISTED ENVIRONMENT

Nancy Arya1 Sunita Choudhary1 and S.Taruna2

1 Department of Computer Science, Banasthali Vidyapith, Rajasthan, India

2 Department of Computer Science, JK Lakshmipat University, Rajasthan, India

ABSTRACT

In recent years, the employment of smart mobile phones has increased enormously and are concerned as

an area of human life. Smartphones are capable to support immense range of complicated and intensive

applications results shortened power capability and fewer performance. Mobile cloud computing is the

newly rising paradigm integrates the features of cloud computing and mobile computing to beat the

constraints of mobile devices. Mobile cloud computing employs computational offloading that migrates the

computations from mobile devices to remote servers. In this paper, a novel model is proposed for dynamic

task offloading to attain the energy optimization and better performance for mobile applications in the

cloud environment. The paper proposed an optimum offloading algorithm by introducing new criteria such

as benchmarking for offloading decision making. It also supports the concept of partitioning to divide the

computing problem into various sub-problems. These sub-problems can be executed parallelly on mobile

device and cloud. Performance evaluation results proved that the proposed model can reduce around 20%

to 53% energy for low complexity problems and up to 98% for high complexity problems.

KEYWORDS

Mobile Cloud Computing, Mobile Computing, Computational Offloading, Dynamic Task Offloading,

Energy Optimization.

1. INTRODUCTION

The revolution in technology has led to the number of individuals using smart mobile phones.

These smartphones are not only used as a mode for communication but also provides support for

complex applications that needs a high computational power. These applications can be offline or

web-based. Power saving, high computation capability and storage capacity are the most desired

features of a smartphone [13].

Mobile cloud computing provides a framework for portable applications where preparation and

capacity of information are moved from mobile phones to remote servers. It is the technology that

incorporates the concept of distributed computing with the high features to overcome the

challenges related to mobile phones such as performance, environment and security [11].

According to the report of Allied Business Intelligence (ABI), up to 240 million corporations

utilized the services of cloud through smart phones in 2015 that push the business of smart

mobile phones to $5.2 billion. The constraints of mobile phones such as processing power,

bandwidth, and limited storage can overcome with the usage of services of cloud computing.

Now, smart phones are efficient to process a huge range of resource demanding applications

which evacuate the power swiftly. According to Nokia survey report, the power capacity of smart

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

60

phones is one of the primary concern for customers. It is the restricting factor in the development

and deployment of portable applications. This also restricts the phones to process computational

applications. The hardware components such as bigger displays, CPU, Bluetooth, memory, GPS

and network technologies such as 3G, 4G and Wi-Fi also need higher power. The energy

consumption of any application is the sum of the consumed energy by several hardware

components at the time of execution of the application.

To overcome these issues, computational offloading provides a better concept which transmitted

the computational data to available cloud servers that have rich resources for computation and

then process and return the results to the client [2],[3]. This approach can speed up the processing

of computation as well as optimize the energy of power-limited devices. However, the migration

of intensive tasks to the remote servers is a popular concept since the computer networks were

developed.

The decision of computational offloading that which part requires to be offload based on certain

parameters like network bandwidth, application type, size of application, architecture and storage

limit etc. [7]. Offloading can be of static type in which the parameters of decision are defined at

the time of development as well as of dynamic type in which parameters are defined at run time.

Mobile computation offloading comes from the area of networking technologies such as Wi-Fi,

3G and 4G. However, these technologies enable offloading but consumes lot of energy in

connecting.

Several offloading techniques and models exist to enhance the execution capability and energy

optimization in mobile cloud environment but each of these has their own advantages and

limitations. Conventional offloading frameworks used adaptive algorithms that transfer serious

computations to the remote servers. These frameworks employ different levels for offloading

applications at runtime but it includes migration cost of the computational components of the

mobile application. Many state-of-the-art frameworks employ profiling and partitioning method

that increases the overall execution time and energy consumption of local devices. Various

frameworks do not focus on the additional overhead of partitioning and run time offloading.

However, these frameworks emphasized on limiting the overheads of offloading and ensure to

maintain the overall benefit of offloading.

The paper is emphasized on novel proposed framework for dynamic task offloading to achieve

energy optimization and augment the performance. To achieve this, it proposed a suitable

algorithm for optimum offloading by introducing new criteria and parameters in offloading

decision making. It also introduces a partitioning concept to divide the computing problem into

various subproblems. These subproblems can be executed parallelly on local mobile devices and

cloud.

The main objective of this framework is to find the best optimum solution to offload intensive

applications with proper utilization of assets so that the energy efficiency can be augmented. The

proposed framework focuses on the decision that which parts of the application should offload,

how they offloaded and where to offload. It also focused on to reduce the increased overhead of

runtime component migration.

The experiment is performed in different phases: (I) Identification of problem and data

generation. (II) Design and development of experiments for framework verification (III)

Experiments will carried out. (IV) Validation and optimization of the framework. A set of

experiments incudes two types of computational algorithms for different size of data to achieve

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

61

the efficiency in the proposed framework. The selected algorithms are merge sort and quick sort

(sorting algorithms) as these are problem of low time complexity and matrix multiplication, the

problem of high time complexity. However, in the case of merge sort and quick sort, the impact is

small for small size data and is highly visible for a large size data. In the case of matrix

multiplication, the impact is much visible even for the smaller size data. Analysis proved that the

proposed framework achieved up to 20% energy efficiency for merge sort, around 53% energy

efficiency for quicksort and up to 98% energy efficiency for high complexity problem such as

matrix multiplication.

The paper is organized as follows - Section II describes the related work for offloading in mobile

cloud computing. Section III discussed about the proposed framework, algorithm, its features and

experimental setup. Section IV discussed about the results and performance evaluation and

finally, Section V presents the conclusion and future scope.

2. RELATED WORK

Mobile cloud computing provides an infrastructure to extend the assets of the mobile devices

over the network for mobile users and network operators [20]. It is the integration of various

technologies such as mobile computing, cloud computing and wireless networks. Author

described in [4] the various advantages of combination of the mobile computing and the cloud

technology. However, mobile devices have several benefits, but also have some constraints.

related to resources such as power, hardware components such as memory and storage, security,

bandwidth and mobility [17]. Resource poverty is a main reason behind the issues related to

Quality of Service (QoS) in mobile networks. These issues related to low bandwidth, unrealistic

communication, heterogeneity and computation capability [24]. Mobile phones have limited

battery capacity. The number of solutions has been proposed to optimize the energy by

augmenting the efficiency of computation and proper management of the storage and the level of

the display as described by [16], [23]. But these changes require modifications in hardware which

increase the cost.

Offloading is a technique that migrates the time-consuming complex computations from the local

device to the cloud. This reduces the energy consumption on mobile devices. Several of

offloading frameworks [9],[25],[27] have emphasized on the efficiency of the process of

offloading by including one or more parameters related to optimization such as computation time,

energy consumption. According to [19], it is possible to save energy by migrating computations

to the cloud server. But it is not necessary that an application takes less energy when it is

migrated to the remote server. There are few other parameters that has to be consider while

offloading the applications. These are energy overheads for reliability, security and data

communications. An application should migrate only if the balance of energy is positive after

considering all of these parameters. The Mathematical Arithmetic Unit and Interface (MAUI)

architecture [10] has proposed for offloading to reduce the overall energy consumption for mobile

gaming applications in cloud-based environment. This architecture reduces almost 27% of energy

consumption on the mobile device. In [14], authors have proposed a dynamic algorithm based on

lyapunov optimization for offloading computation to cloud. This algorithm decides which

components of the software should be executed on cloud instead of local. This algorithm provides

the low complexity for the solution of face recognition problems and saves 50% energy in

simulation. Offloading also depends on the size of file. Authors have proposed an offloading

algorithm [5] that depends on file sizes. The experiments of this work shown that there was no

benefit in offloading of file size of up to 3 MB. However, for file sizes of 5 MB or more than 5

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

62

MB, there was advantage seen in energy efficiency as well as execution time. This is very

effective model for taking decision for the offloading. In [18], authors proposed a framework for

mobile devices known as Think Air for dynamic resource allocation and code offloading to the

cloud server. It provides method-level offloading for computation and supports parallel execution

of methods on different virtual machines. It also keeps track of energy for various hardware

components. The model µcloud [8] is an energy saving model for mobile cloud computing. It is

based on self-contained application components that are decoupled from each other. However,

this model can execute only a single application partition at a time. In energy efficient multisite

offloading algorithm [19], authors proposed a solution to visualize the range of tasks, tasks size,

and dependency between these tasks of mobile application to increase the energy efficiency.

Authors proposed [1] a framework for ultra-dense network environment to achieve the offloading

for computational task. It is capable to reduce execution time by 20% and power consumption by

30%. Energy Efficient Computational Offloading Framework (EECOF) [26] proposed for the

processing of complex mobile applications by using the cloud services with the migration of the

minimum number of instances of application at runtime. The authors used bubble sort and matrix

multiplication as an application to validate energy efficiency. This framework works on separate

upload and download manager to synchronize the transmission and conserve the energy. The

framework has tested with state-of-the-art frameworks and the results shows it is capable to

reduce the size of data transmission around 84 % and power consumption by 69%.”

MobiCloud [6] is a framework that supports Service-Oriented Architecture (SOA) for mobile ad-

hoc networks. This framework considers every node as a service node in the network and creates

replicas in the cloud. Authors proposed offloading [15] for mobile edge computing which is

highly popular and useful concept for applications. In this concept, mobile devices can outsource

their computations on the edges to save time and energy. It takes into account multiple tasks for

each mobile client that is computation intensive. In [21], a framework has proposed for the

adaptive partitioning and selective dynamic offloading for the selection of right category of cloud

(central clouds and cloudlets) for which mobile applications should offloaded. The framework

also works to minimize the execution cost during the decision of offloading. Authors proposed an

algorithm in [30] for offloading of tasks in a heterogeneous mobile cloud environment. The

algorithm addressed the problem of task offloading and task scheduling as a heterogeneous

problem in this work. It is proposed to resolve the issues of energy utilization, time failure and

execution cost for mobile devices. Compass-mobile framework [22] developed for high-

performance applications in a distributed mobile cloud environment. The framework provides an

energy-aware transparent model for developers to write code for regular android applications.

These applications are then offloaded to the cloud as a computation. Authors have used merge

sort as an application to validate the energy efficiency of the framework. Authors in [12] have

proposed an algorithm that works for dynamic offloader to offload the computations from mobile

to cloud environment. This offloader analyses the computations and migrates only intensive

methods to the remote server to improve the energy efficiency. The algorithm has used

applications such as quick sort and word count to validate the efficiency of the algorithm. They

have used arrays of size from 100 to 100000 numbers and measured the computation time and

power consumption for all these applications.

Authors proposed an offloading framework [29] for AHead-Of-Time (AHOT). This framework

used the services of the cloud data centers to provide offloading as a service for mobile users.

Experiments proved that this has been capable to reduce the execution time by 75% and energy

consumption up to 76% for the number of applications. Authors used matrix multiplication of

1000x1000 for validating the criteria of an android-based offloading decision. In [28], the authors

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

63

proposed a mobile cloud environment offloading criteria depend on game theory which analyzes

the effect of various parameters on offloading. The authors have focused on multisite risk

offloading that takes the decision on the basis of risk evaluation. The decision criteria used matrix

multiplication as an operation to decide the offloading.

3. PROPOSED FRAMEWORK

The research work is an attempt to proposed the framework to optimize the energy efficiency and

execution time achieved during offloading by addressing new criteria in offloading decision

making. Conventional frameworks processed cloud-based applications in three phases involving

offloading initialization, computation offloading and application execution on cloud. In addition,

the proposed framework also supported partitioning that divides the task equally on both mobile

and cloud environments. As a result, overall energy consumption as well as execution time can be

optimized. The main goal is the appropriate selection and offloading of computational tasks from

the mobile environment to the cloud on the basis of their estimated energy and time. The

framework employs an IaaS model (Infrastructure-as-a-Service) with SaaS (Software-as-a-

Service) to reduce the energy consumption.

3.1. Architecture

The architecture of the proposed model consists of two components, mobile device environment,

and cloud environment. The mobile device environment consists of any smart mobile device that

can handle computing locally on the target operating system such as android, windows and i-

phones. These devices are portable and constrained devices with limitations on memory,

bandwidth, storage, power etc. As shown in figure 1, it consists of various components:

Figure 1. Architecture diagram of proposed framework

Task Manager is responsible to handle the computing problems requested by the user and put

them in a queue in First-In-First-Out (FIFO) order. It takes the decision for benchmarking that

calculates the sample values used to estimate the time and energy required for a computation.

Asset Handler handles the resources required for computation and offloading such as memory

and network resources. Decision Making Engine is the main control system of this environment

 Mobile Device (android,windows,i-phones) Cloud Environment

 Mobile Application Offloaded module/Application

Reliable TCP

Connection

Task Manager

Decision Making Engine

Task Partitioning Manager

Energy Handler

Asset Handler

Connection Manager

Task Monitor

Task Handler

Result Manager

Connection Manager

Asset Tracker

Task Queue

Task Handler

I/O ManagerTask Migration I/O Manager

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

64

which takes the decision for offloading based on the input parameters and algorithm used to

decide the appropriate location of the computation whether it executes on mobile or offload to the

cloud. It interacts with other subcomponents to take the proper offloading decision. Task

Partitioning Manager is responsible to examine the input problem and identifies those problems

that can be divided into multiple sub problems and can be distributed across the local and cloud-

based environments. After taking appropriate decisions, the sub-problems are offloaded to the

decided locations for computing. The results are then combined to present a single output to the

end user. Energy Handler is responsible to estimate the value of energy consumption for a given

partition of problem. It provides this information to the decision-making engine to take the

decision on optimum partitioning. Task Handler manages multiple operations like read, write and

network connect etc. It also provides synchronization between multiple activities performed by

the mobile client. Connection Manager on the mobile environment is responsible to manage the

network connections and it is the control part for cloud environment. The used cloud services for

computation is actually transparent to the end mobile user and it is managed by this component.

Task Migration is the process that initiated after the decision of partitioning the problems into

sub-problems. I/O Manager handles all the file and network input and output of mobile

application.

On the other hand, the cloud environment, consists of remotely located computing resources.

These resources are available on pay-as-you-go. The resources available on cloud are huge as it

contains pool of large servers that can be allocated on demand. The cloud environment also

consists of various subcomponents. Task Monitor is responsible to take care of all the process of

problem migration across different locations and also handles the I/O functions. Asset Tracker is

the module that is responsible to keep track of the resources required for various operations. Task

Handler manages multiple tasks like read, write and network connect. It provides synchronization

between multiple activities done by the cloud. Task Queue is responsible for receiving the

problems from the mobile and scheduled them for execution. Connection Manager on the cloud

side manages the connections between distributed locations. All the network connectivity is

managed by the connection manager and is transparent to the other task execution engines. Result

Manager handles all the results generated on cloud during execution of the computation problem

and return these results to the mobile user to combined with the mobile device results. I/O

manager is the important component of cloud that manages all the file and network input-output

for the cloud application.

3.2 Proposed Algorithm

1. For a computational problem of size >10N, the benchmarking has done and average

values are calculated. Calculate the time of computation, transmission time, time for

reading and writing, energy consumption, energy for network transmission for unit

amount of data. The unit time for mobile and cloud is calculated relative to the measured

complexity of the algorithm. For example, if the complexity of the algorithm used during

benchmarking is O(nlogn) and the total time for n no. of elements is t, then the unit time

per element is t/nlogn. Benchmarking coefficients are also calculated for mobile and

cloud environment for taking the decision of execution either on local or offload it to

cloud completely or partially.

2. Inputs are available as a problem or set of problems P = {P1, P2, …., Pn}.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

65

3. The next step is the selection of computational problems. Selection is based on time

complexity such as problem of low complexity, average complexity and high complexity.

If the problem can divide into multiple sub problems is considered as non-monolithic in

this algorithm and these subproblems executed simultaneously on mobile and cloud

environments and then the obtained results with the respective environment are combined

to produce final result. The size of subproblems would depend on the computation

capacity of the mobile device which is obviously less than cloud.

The concept of partitioning is helpful to improve the overall efficiency of the execution.

Divide and Conquer strategy provides the best sorting complexity since they involve

dividing the problems into subproblems and then compute the solutions to sub problems

independently. In this work, merge sort and quick sort has considered as non-monolithic

task to perform the experiment. The overall complexity of these algorithms is O(nlogn)

which is efficient as compared to other sorting algorithms. If the problem is monolithic

and cannot be divided into sub problems such as matrix multiplication, then the decision

of executing the problem either completely on local environment or offloading it to the

remote server. The time complexity of matrix multiplication is O(n3) which is higher as

compared to sorting algorithms. However, matrices can be divided into subproblems

using Strassen’s Matrix multiplication algorithm but this algorithm reduces the

complexity slightly.

4. The first parameter for taking decision for offloading is the time required for the

execution.

 The execution time for the mobile device consists of various parameters such as time

consumed for reading data from memory 𝒕𝒎𝒓, time consumed for writing results back

to memory 𝒕𝒎𝒘
 and time for executing problem on mobile 𝒕𝒎𝒆 .

Thus, the total time: 𝑻𝒎= 𝒕𝒎𝒓+ 𝒕𝒎𝒘+𝒕𝒎𝒆

 The execution time for offloading complete data on the cloud consists of additional

parameters with the parameters of mobile device. These parameters are time

consumed in network transmissions 𝒕𝒏 , time consumed on the cloud environment 𝒕𝒄𝒆

and time for combining the results 𝒕𝒎𝒄.

Thus, total time for cloud: 𝑻𝒄 = 𝑻𝒎 + 𝒕𝒏 + 𝒕𝒄𝒆 + 𝒕𝒎𝒄

 The execution time in offloading the execution for both (y input data on mobile and

N-y data on the remote environment) consists of additional time parameters needs for

dividing the problem into sub problems and then combined together. These

parameters are time consumed for dividing the problems into subproblems 𝒕𝒎𝒔, time

consumed for the execution of subproblems on mobile 𝒕𝒎𝒔𝒆
 and time consumed for

subproblems on the cloud environment 𝒕𝒄𝒔𝒆.
Hence, the total time for partitioning is: 𝑻𝒑𝒂 = 𝑻𝒄 + 𝒕𝒎𝒔 + 𝒕𝒎𝒔𝒆 + 𝒕𝒄𝒔𝒆

5. Another parameter for taking decision for offloading is the energy required for the

execution. If the execution time is equal for both of the environments (local and remote

execution) then the environment with fewer energy requirements will consider.

 The energy utilization for the mobile device consists of various parameters such as

energy consumed for reading data 𝒆𝒎𝒓, energy consumed for writing results back to

memory 𝒆𝒎𝒘
 and energy for executing state 𝒆𝒔 .

Thus, the total energy: 𝑬𝒎= 𝒆𝒎𝒓+ 𝒆𝒎𝒘+𝒆𝒔

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

66

 The energy utilization for offloading complete data on the cloud consist of additional

parameters with the parameters of the mobile device. These parameters are energy

consumed in network transmissions 𝒆𝒏. Thus, total energy: 𝑬𝒄 = 𝑬𝒎 + 𝒆𝒏

 The energy involved in partitioning consists energy consumed for dividing the

problems 𝒆𝒔𝒆
 and energy consumed for combined the results 𝒆𝒋.

Hence, the total energy consumed in partitioning is:𝑬𝒑𝒂 = 𝑬𝒄 + 𝒆𝒔𝒆 + 𝒆𝒋

6. In the case of non-monolithic tasks, calculate Tm, Tc, Tpa, Em, Ec and Epa. The

partitioning decision in the form of Oa = {O1, O2,…,Ok) executes on local environment and

Ob = {Ok+1, Ok+2, …… On), executes on the remote environment. The partitioning

algorithm balance the problem to both the environments to achieve the simultaneous

execution. According to the proposed partitioning algorithm, Oa =N*Bc/(Bm+Bc) where

Bc is benchmark coefficients for cloud and Bm is benchmark coefficients for mobile and

Ob =N-Oa. The final result is the combination of outputs achieved from Oa and Ob. One

of these sets may be empty.

7. In the case of monolithic tasks, the decision in the form of either execution on mobile or

cloud. Calculate Tm, Tc, Em, and Ec for monolithic task.

Start

// Case 1: Non-monolithic task

IF (P = non-monolithic)

{

Step 1: Calculate Tm, Tc, Tpa, Em, Ec

and Epa

Step 2: IF (Tpa<= Tm)
{
Step 3: IF (Tpa<= Tc)
{
Step 4: Partition Task into Oa and

Ob;

Execute Oa on local;

Execute Ob on cloud;

Join results;

Show results;

End;

}
Step 5: ELSE IF (Ec<Em && Ec<Epa)
{

Execute on cloud;

Show results;

End;

}
ELSE {Goto Step 4;}

Step 6: ELSE IF(Tm<=Tc)
{
IF (Em<Ec && Em<Epa)
{
Execute the task on local;

Show results;

End;

}

ELSE {Goto Step 5;}

}

Step 7: ELSE {Goto Step 3;}

//Case 2: Monolithic Task
IF (P = monolithic)

{

Step 1: Calculate Tm, Tc, Em, and Ec;
Step 2: IF (Tm <=Tc)
{

Step 3: IF(Em<Ec)
{

Execute the task on local

environment;

Show results;

End;

}

ELSE

{

Step 4:

Execute on cloud;

Show results;

End;

}

 }

 ELSE {Goto Step 4;}

 End

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

67

8. The mechanism is used to achieve the optimization involves the sequence of operations

of reading, write and network transmission in such a way as to facilitate the fastest

execution of the task. The proposed framework works on parallel read and transmits

operations to provide overall energy efficiency while executing the task. It also ensures

that the computation on mobile and cloud environment should complete almost at the

same time.

9. Figure 2 shows the sequence diagram. As the figure shows, once the partitioning is done,

the input file starts to read and the transmission to the remote environment starts with the

first read operation so that the simultaneous read and transmission operation takes place.

when the transmission is completed, remaining data is computed by the local device.

Once the execution on cloud completes, the results are then returned back to the local

device for combined with the results on local device. Then the merged results are

displayed to the mobile user.

Figure 2. Sequence diagram for read, write and transmission operations

3.3 Experimental Setup

The proposed work includes experimental validation of the framework by involving the setup of

mobile device mainly android smart phones and a cloud simulator on a virtual server. The

experimental setup chosen for the proposed framework includes a mobile application running on

an android smartphone Redmi note 4 with snapdragon 625 octa core, 4 GB RAM, 4100 mAh

battery connected through a point to point TCP connection with the host intel core i5 system with

8 GB RAM running ubuntu operating system and docker on top of the operating system for

simulating a virtual environment. Multiple instances of server code are running on top of the

docker in order to simulate the cloud network.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

68

The framework has been implemented on the mobile device and several computation problems

are executed on the mobile device. The network connectivity between mobile device and the

cloud network was through wireless connectivity. The mobile device runs the complex

application used for partitioning, transfer it to the cloud, receive and merge the results. All the

measurements related to time and energy are done by the mobile application.

This mobile application also runs the algorithm that takes the decision on offloading whether the

application executes on mobile, offload to the cloud, or for a combination of both environments

by taking various inputs from the user. The application then analyzes the data and take the

decision. The decision depends on the estimated execution time and energy consumption of the

application.

4. RESULTS AND DISCUSSION

The proposed framework is validated by designing the experiments and carried out to collect and

analyze the data. The framework has evaluated the components of a mobile applications for

mobile and cloud environment. An experiment is performed in three phases: (i) execution of

computation on local device (ii) execution of computation on a cloud by offloading (iii)

employing the proposed framework for computation. Energy efficiency is defined as an

optimization of energy consumption. For real-time applications, execution time plays an

important role to evaluate the performance. Hence, the energy efficiency and performance of the

work has evaluated by comparing results at different experimental phases. To validate the energy

efficiency, different sizes of data files are used. Execution time and energy are measured for all

phases for mobile, cloud and for proposed framework. Initial measure has performed for merge

sort. Results shows that offloading is useful to reduce the execution time, energy consumption

and boost up the computation.

Figure 3. Size vs Time in merge sort

As shown in figure 3, for datasets of smaller size, results are almost the same for local as well as

for cloud because of the significant overhead of network transmission for the merge operation.

After analyzing the below figure 4, merge sort provides an advantage around 15% to 30% by

employing the proposed framework as compared to the execution time taken by the cloud

environment and this time involves the transmission time and time to receive results.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

69

Figure 4. Reduction percentage in time for merge sort

Figure 5 shows the energy consumption for different data sizes for merge sort. As can be seen,

the energy consumption also increases with the increment in data size. Merge sort is the problem

of low time complexity of O(nlogn), so it performs well for small data also on the mobile device

itself. But when data size increases, the network overhead of transmitting the data to cloud is

balanced by the increased efficiency in computation on cloud. The average size for which the

benefit of the cloud computation is visible at around 4000000. Thus, there is a definite advantage

in parallel execution on mobile and cloud. It helps to optimize the overall energy consumption.

Figure 5. Size vs Energy in merge sort

In figure 6, energy consumption is around 17% to 20% when the proposed framework is

compared with complete execution on local (mobile) and around 11% to 27% in the case of cloud

for different size of data.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

70

Figure 6. Reduction percentage in energy in merge sort

The second measure has performed for quick sort for the datasets of different size. As shown by

figure 7, the execution time increases with data size in all the cases. Thus, there is an advantage

only for larger data sizes of elements around 4000000 in offloading on cloud because the

overhead of network transmission itself is too high for smaller datasets. Hence, the proposed

framework gives benefit even for computation of small sizes.

Figure 7. Size vs Time in quicksort

As by figure 7, in the local environment, this increment is very sharp as compared to a cloud

environment which shows a less amount of increase. In figure 8, there is an advantage up to 54%

in execution time when the computation is performed by proposed framework as compared to

mobile. But, for the cloud environment, it lies around 20% to 66%.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

71

Figure 8. Reduction percentage in time in quick sort

As shown in figure 9, energy consumption increases with the size of computation. It can also be

seen that the energy the consumption is high for large data sets on mobile and lowest in the case

of the proposed framework.

Figure 9. Size vs Energy in quicksort

If the energy is compared in figure 10, there is a benefit of around 1% to 52%, in the case of

comparison with local execution and around 12% to 60%, when the proposed framework is

compared with cloud computation.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

72

Figure 10. Reduction percentage in energy in quick sort

Next experiment has performed for matrix multiplication for the datasets of different size. As can

be seen, the execution time for the computation increases with the increased data size. A

distributed computation shows an immediate advantage for the small size of matrices also. Thus,

matrix multiplication is the type of computational offloading which is quite advantageous in

reducing the execution time for computation as well as energy consumption.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

73

Figure 11. Size vs Time in matrix multiplication

A proposed framework gives instant benefit for the computation on small sizes also as the matrix

multiplication is the problem of higher complexity O(n3). When time is considered for a very

large matrix, there is a benefit at around 94%. In case of size vs time graph, the time increases

exponentially with the increased data size as the complexity of execution dictates the energy

consumption. As figure 12 shown, for a matrix of size 250x250, the reduction in execution time is

around 13%. As the matrix size grows to 350x350, there is a significant advantage and for a

matrix of 750x750 and beyond, the advantage is around 94% which shows the significant

achievement.

Figure 12. Reduction percentage in time in matrix multiplication

In the case of size vs energy graph, there is again a similar trend. The energy increases

exponentially with data size as the complexity of execution dictates the energy consumed.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

74

Figure 13. Size vs Energy in matrix multiplication

As shown by figure 14, energy difference increases initially for small data sets and saturates at

around 95% which is an excellent gain. Beyond that, it saturates when it has reached the optimum

value of around 98%.

Figure 14. Reduction percentage in energy in matrix multiplication

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

75

As can be seen, the advantage that is obtained in energy by offloading the matrix to a cloud is

small in case of small matrices 100x100. As the size grows, the advantage increases even more.

For the matrix of size 250x250, the reduction in execution energy is around 67.5%. But as the

matrix size grows to 350x350, there is a significant advantage and for a matrix of 750x750 and

beyond, the advantage is around 98% which shows the higher efficiency.

5. CONCLUSION AND FUTURE SCOPE

Conventional frameworks focused on speed up the computation and saving energy on local

devices. It plays an important role in the resource perspectives. In this paper, the author has

proposed a novel offloading decision making framework to improve energy efficiency and

performance. The framework used the concept of benchmarking of the computation before

executing the problem and according to the average estimated valued of time and energy, the final

decision for offloading has taken based on less energy consumption. The framework also used

partitioning algorithm to divides the non-monolithic task across mobile and cloud environments

and the simultaneous read and transmission operation has performed to optimize the overall

energy as well as execution time.

Experimental results proved that the proposed framework worked well in improving performance

and energy efficiency. The framework has verified by executing various algorithms as

computational tasks to be migrated to the cloud. The selected computation tasks are non-

monolithic task such as sorting (merge sort and quick sort) and monolithic task such as matrix

multiplications. Due to the low time complexity, in the case of sorting, the achieved efficiency for

smaller data size has not significant but as the size increases, the efficiency also increased. This is

due to the overhead of sending the files on network are balanced against the achieved efficiency

due to the offloading of large size of data. However, for large computations such as matrix

multiplication, the observed energy consumption is around 98%, which shows that the efficiency

of the proposed framework is higher.

Hence, the proposed combination of execution time and energy along with the algorithm of

partitioning in the proposed framework has led to an efficient saving of energy for mobile

environments. However, future work is possible by extending the scope of this research to

explore the offloading for peer to peer networks. Edge clouds can be explored to optimize energy

consumption as well as a frame work that works particularly for edge clouds can be evolved.

ACKNOWLEDGEMENTS

First of all, I hereby thanks to my supervisors for their expert guidance and cooperation. I am also

grateful to the authors listed in the references to provide the valuable information.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

76

REFERENCES

[1] Abdelminaam, Diaa Salama, et al. (2013), “Elastic framework for augmenting the performance of

mobile applications using cloud computing”, Proceedings of IEEE 9th International Computer

Engineering Conference (ICENCO 2013), pp 134-141.

[2] Abdullah Gani & Han Qi (2012), “Research on Mobile Cloud Computing: Review, Trend and

Perspectives”, Proceedings of Digital Information and Communication Technology and it's

Applications (DICTAP), IEEE Second International Conference, pp 195-202.

[3] Abdullah Gani, Ejaz Ahmed, Rajkumar Buyya, Saeid Abolfazli & Zohreh Sanaei (2013), “Cloud-

Based Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges”, IEEE

Communication Survey & Tutorials, Vol.16, Issue 1, pp337-368.

[4] Ahmed & Ejaz (2015), "Seamless application execution in mobile cloud computing: Motivation,

taxonomy, and open challenges." Journal of Network and Computer Applications, Vol. 52, pp 154-

172.

[5] Aldmour, S. Yousef, M. Yaghi, S. Tapaswi, K. Pattanaik & M. Cole (2017), "New cloud offloading

algorithm for better energy consumption and process time", International Journal of System

Assurance Engineering and Management, Vol. 8, No. 2, pp 730-733.

[6] Ali Mushtaq, Jashni Zain & Gran Badshah (2015), "Mobile cloud computing & mobile's battery

efficiency approaches: A Review", Journal of Theoretical and Applied Information Technology, Vol.

79 No.1, pp 153-175.

[7] Antti P. Miettinen & Jukka K. Nurminen (2010), "Energy efficiency of mobile clients in cloud

computing", Proceedings of Hotcloud’10,2nd USENIX Conference on Hot topics in Cloud

Computing, pp 0-4.

[8] Bu Sung Lee, Erwin Leonardi, George Goh, Markus Kirchberg, Verdi March & Yan Gu (2011),

“μcloud: towards a new paradigm of rich mobile applications”, Procedia Computer Science, Vol. 5,

pp 618–624.

[9] Carroll, Aaron & Gernot Heiser (2010), "An Analysis of Power Consumption in a Smartphone.",

Proceedings of USENIX annual technical conference, Vol. 14.

[10] Cuervo, Eduardo, et al (2010), "MAUI: making smartphones last longer with code offload",

Proceedings of the 8th international conference on Mobile systems, applications, and services

(ACMMobiSys 10), San Francisco, California, USA, pp 49-62.

[11] Dhammapal Tayade (2014), "Mobile Cloud Computing: Issues, Security, Advantages, Trends”,

International Journal of Computer Science &Information Technology, Vol. 5, pp 6635-6639.

[12] Elgendy, Ibrahim A., Mohamed El-kawkagy & Arabi Keshk (2014), "Improving the performance of

mobile applications using cloud computing", Proceedings of9th IEEE International Conference on

INFOrmatics and Systems (INFOS2014), pp109-115.

[13] Gran Badshah, Jasni Mohamed Zain, Mohammad Fadli Zolkipli & Mushtaq Ali (2014), "Mobile

Cloud Computing & Mobile Battery Augmentation Techniques: A Survey", Proceedings of IEEE

SCOReD 2014, Malaysia.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

77

[14] Huang, Dong, Ping Wang & Dusit Niyato (2012),"A dynamic offloading algorithm for mobile

computing", IEEE Transactions on Wireless Communications, Vol. 11, No. 6, pp 1991-1995.

[15] Jiang & Weiheng (2018),"Energy-delay-cost Tradeoff for Task Offloading in Imbalanced Edge Cloud

Based Computing", arXiv preprint arXiv:1805.02006v1.

[16] Kaushik, Nitesh &Jitender Kumar Gaurav. "A literature survey on mobile cloud computing: open

issues and future directions.", International Journal of Engineering and Computer Science, Vol. 3, No.

5.

[17] Khan, Amreen & Kamlkant Ahirwar (2011), "Mobile cloud computing as a future of mobile

multimedia database.", International Journal of Computer Science and Communication Vol.2, No.1,

pp 219-221.

[18] Kosta & Sokol (2012), "Thinkair: Dynamic resource allocation and parallel execution in the cloud for

mobile code offloading", Proceedings of IEEE INFOCOM 2012, pp 945-953.

[19] Kumar, Karthik & Yung-Hsiang Lu (2010), "Cloud computing for mobile users: Can offloading

computation save energy?", IEEE Computer Society, Vol. 43, No. 4, pp 51-56.

[20] Liu, Leslie, Randy Moulic & Dennis Shea (2010), "Cloud service portal for mobile device

management", Proceedings of e-Business Engineering (ICEBE), IEEE 7th International Conference.

[21] Liu, Xing, Songtao Guo & Yuanyuan Yang (2017), "Task Offloading with Execution Cost

Minimization in Heterogeneous Mobile Cloud Computing", Proceedings of International Conference

on Mobile Ad-Hoc and Sensor Networks, Springer, Singapore.

[22] Lordan, Francesc & Rosa M. Badia (2017), "Compss-mobile: Parallel programming for mobile cloud

computing", Journal of Grid Computing, Vol.15, No. 3, pp 357-378.

[23] Mayo, Robert N.& Parthasarathy Ranganathan (2003), "Energy consumption in mobile devices: why

future systems need requirements–aware energy scale-down", International Workshop on Power-

Aware Computer Systems, Springer, Heidelberg.

[24] Rahimi, M. Reza, Nalini Venkata Subramanian& Athanasios V. Vasilakos (2013), "MuSIC: Mobility-

aware optimal service allocation in mobile cloud computing", Proceedings of Cloud’13, IEEE Sixth

International Conference on Cloud Computing, pp 75-82.

[25] Rifang Niu, Wenfang Song & Yong Liu (2013), “An energy efficient multisite offloading algorithm

for mobile devices”, International Journal of Distributed Sensor Networks, Vol. 9, Issue. 3.

[26] Shiraz Muhammad, Abdullah Gani, Azra Shamim, Suleman Khan & Raja Wasim Ahmad (2015),

"Energy efficient computational offloading framework for mobile cloud computing", Journal of Grid

Computing 13.1, pp 1-18.

[27] Smailagic, Asim & Matthew Ettus (2002), "System design and power optimization for mobile

computers”, Proceedings of VLSI, IEEE Computer Society Annual Symposium.

[28] Wu, Huijun & Dijiang Huang (2014), "Modeling multi-factor multi-site risk-based offloading for

mobile cloud computing", Proceedings of 10th International Conference on Network and Service

Management (CNSM).

[29] Yousafzai & Abdullah (2016), "Computational offloading mechanism for native and android runtime

based mobile applications", Journal of Systems and Software, pp 28-39.

[30] Zhou & Bowen (2018),"An Online Algorithm for Task Offloading in Heterogeneous Mobile Clouds",

ACM Transactions on Internet Technology (TOIT) 18.2.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

78

BIOGRAPHY

Nancy Arya is a Ph.D. research scholar in Computer Science and Engineering. She

has completed her M.Tech. in Computer Science and Engineering from Jagannath

University, Jaipur in 2013 and MCA from Rajasthan Technical University, Kota in

2010. She has 5 years of experience of teaching and 1.5 years of industry. She has

presented many papers in national and international conferences. She has published

around 15 research papers in reputed journals and conferences. Her research

interests includes Networking, Software Engineering and Cloud Computing.

