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ABSTRACT  
 

Beamforming for millimetre-wave (mmWave) frequencies has been studied for many years. It is considered 

as an important enabling technology for communications in these high-frequency ranges and it received a 

lot of attention in the research community. The special characteristics of the mmWave band made the 

beamforming problem a challenging one because it depends on many environmental and operational 

factors. These challenges made any model-based architecture fit only special applications, working 

scenarios, and specific environment geometry. All these reasons increased the need for more general 

machine learning based beamforming systems that can work in different environments and conditions. This 

increased the need for an extended adjustable dataset that can serve as a tool for any machine learning 

technique to build an  efficient beamforming architecture. Deep MIMO dataset has been used in many 

architectures and designs and has proved its benefits and flexibility to fit in many cases. In this paper, we 

study the extension of collaborative beamforming that includes many cooperating base stations by studying 

the impact of User Equipment (UE) speed ranges on the beamforming performance, optimizing the 

parameters of the neural network architecture of the beamforming design, and suggesting the optimal 

design that gives the best performance for as a small dataset as possible. Suggested architecture can 

achieve the same performance achieved before with up to 33% reduction in the dataset size used to train 

the system which provides a huge reduction in the data collection and processing time. 
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1. INTRODUCTION 
 

The ever increasing growth of wireless data traffic in recent years has driven the need to explore 

new underutilized frequencies from the radio spectrum to meet the expected requirements. As a 

result, the millimeter wave (mmWave) communications have been the focus of attention by many 

researchers and companies and are considered now as a vital part of the fifth generation of 

wireless communications (5G) and beyond [1] and [9]. Because of the huge path loss, penetration 

loss, and the scarcity of multipath of the mm Wave frequencies, Multiple antennas for both the 
transmitter and the receiver (i.e MIMO) have been considered as the common sense when 

designing such systems.  In these architectures, beamforming is considered an important design 

principle in order to establish a stable and robust communication link in an optical like 

communications in these high-frequency bands (30-300 GHz bands or simply the mmWave). 

Even though it is that important, beamforming in mm Wave band has many challenges because 
of the large channel bandwidth, unique channel characteristics, and hardware constraints [2], 

[10]. 
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The directional gain achieved by MIMO antenna beamforming is compensating for the excessive 

path and penetration losses at mmWave frequencies [11]. The special characteristics of mmWave 
channels (for indoor and outdoor implementations) determine what physical (PHY) layer, 

medium access control (MAC) layer schemes, and the hardware implementation to use. Taking 

this into consideration, MIMO technology has been considered the solution to efficiently utilize 

the mmWave band by increasing the link capacity and achieving directional communication [2]. 

The small wavelengths of mmWave band frequencies enabled packing many antennas in small 

areas which enabled embedding many of them in handheld devices and put hundreds of them in 
the small cells base stations in massive-MIMO architectures suggested for the 5G and beyond 

[12].  

 
Many beamforming architectures have been suggested for the 5G and beyond in the recent years 

[3, 8, 10, 11, 13]. Analog beamforming has been proven to provide only rough directionality 

when it comes to beamforming in mmWave even though it is simple and cheap to build [13]. 

Digital beamforming on the other hand is significantly better than the analog beamforming but it 

is hard to build in small areas and battery driven devices (i.e. UE) as it consumes a lot of energy 

and emits a lot of heat. Hybrid beamforming is considered as a good compromise between these 
two extremes and has been considered as the default option when designing beamforming 

architectures for mmWaves in the 5G and beyond [11]. All these architectures though assume 

that there is only one base station (BS) to serve each user (UE) at any time. This paper is working 

on totally different architecture where several cooperative base stations with analog beamforming 

are serving one UE at any given time and it has been proved to give impressive spectral 
efficiency when compared to the genie-aided beamforming system (that knows exactly the 

location of each user all the time) [3]. Here we examine the system performance when the UE is 

moving at different speeds and try to optimize the neural network architecture to offer the best 

performance with the smallest possible dataset.  

 
The remainder of the paper is organized as follows: Section 2 will list some of the recent related 

works. Section 3 will describe the system model and architecture in detail, where as the used 

dataset and simulation methodology is described in Section 4 with the methodology of generating 

it. Numerical results will be shown in Section 5 and the paper will be concluded in Section 6 

where we also list some of our future work directions. 
 

2. RELATED WORKS 
 

Since the beginning of their adoption in the work for the fifth-generation (5G) standard of 

wireless communications, different beamforming techniques have been suggested and built to 
prove their advantages in such systems [10-11]. Traditional analog beamforming has been proven 

to give only low resolution when it comes to directing narrow beams in the mmwave spectrum 

when compared to the fully digital or hybrid (analog and digital) beamforming architectures [13]. 

Many hybrid beamforming architectures are giving good spectral efficiency compared to the fully 

digital ones as in [13, 14, 15, and 16]. All these architectures assumed specific work scenarios 

and environment conditions for their systems to work. On the other hand, machine learning and 
deep learning techniques have been used to avoid such limitations in building beamforming 

systems for several years now [3, 4, 5, 8]. The work in [3] is focusing on collaboration of four 

base stations’ (BS) collected data (through directional and omnidirectional pilot signals) to 

improve the spectral efficiency of a single user that is supposed to be within the coverage area of 

these four base stations. In [4], the researchers proposed a deep learning based beamforming 
design with neural networks or BeamForming with Neural Networks (BFNN) that can be trained 

to learn how to optimize the beamformer for maximizing the spectral efficiency with the 

hardware limitations and in case of imperfect channel State Information (CSI) matrix (between 
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the transmitter and receiver in a MIMO systems) which is the case in many realistic scenarios. 

Radio Resource Management (RRM) of dense mmWave networks has been proven to be more 
complicated than that of traditional sub-6GHz band frequencies [5]. So, in [5], researchers 

suggested a deep learning-based beam management and interference coordination (BM-IC) 

method to tackle this challenge. In their suggested system, the conventional complex BM-IC 

algorithm is transformed into a deep neural network (DNN)-based approximation.  Authors in [8] 

developed a new hybrid beamforming system that utilizes a machine learning technique called 

exact-Radial Basis Function Network (exact-RBFN) to improve the achievable spectral 
efficiency. First, they used convex optimization to optimize the precoder and combiner 

components (baseband and phase shifter) weights of the hybrid beamforming system. Then they 

used the exact-RBFN as the second step to get a spectral efficiency that is as close as possible to 

the performance of the optimal fully digital beamforming architecture [8].  

 
In [3], researchers used the dataset generated through the tool published in [6] where the 

DeepMIMO dataset is suggested that can be used for evaluating the developed beamforming 

algorithms, reproducing the results, setting benchmarks, and comparing the different solutions. 

Deep MIMO dataset [6], is a dataset generation framework for mmWave/massive MIMO 
channels. In this framework, channels are constructed based on accurate ray-tracing data obtained 

from Remcom Wireless InSite [7] by capturing the features dependence on the environment 

geometry/materials and transmitter/receiver locations. Such a framework is an essential tool for 

several machine learning applications in the mmWave field. Also, the Deep MIMO dataset is 

flexible where researchers can adjust a set of system and channel parameters to generate 
customized dataset for the intended machine learning applications. Although the work in [3] has 

reported encouraging results in terms of handling mobility, achieving spectral efficiency that 

approaches the genie aided coordinated beamforming, it has some limitations that need to be 

studied. It assumes that there are 4 base stations to cover each single user all the time which is not 

the case in real life scenarios., it chooses the neural network optimizer and loss function arbitrary 

and did not optimize the network for the best optimizer and loss functions [3], it works on single 
user only, it uses only an analog beamforming and not the fully digital one or the hybrid 

beamforming, and it does not show the effect of UE speed on the system performance. 

 
In this paper, we studied the effect of the user mobility speed on the reported spectral efficiency 
in [3] and tried to optimize the suggested architecture thereby using several neural network 

architectures and parameters and select the best among them to achieve the highest achievable 

spectral efficiency and the smallest required dataset. 
 

3. SYSTEM MODEL 
 

The used system model is assumed to be the same as described in [3] for fair comparison and it is 

described in figure-1 below: 
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Figure 1.  Coordinated Beamforming System Model 

 

Here we assume that each user is served by several cooperating base stations (4 BSs is assumed 

in our work) where they collect both the directional and omnidirectional channel information to 
build the beamforming weights matrices. Each Base Station (BS) here is reporting its collected 

channel information to a central (or cloud) processing unit where all the calculations for the 

beamforming are done. For the simulation purposes, the system is assumed to be deployed into a 

street environment as in the figure-2 with the base stations (BS1, BS2, BS3, BS4) serving a 

moving user (walking, running, biking, or riding a car user) in the street in between these base 
stations. 

 
The system is assumed to be frequency-selective coordinated mmWave with the received signal 

at the subcarrier (k) after the precoding is expressed as: 
 

                   (1) 

 
where: (xk,n) is the discrete time transmitted signal vector from the n-th BS at the k-th subcarrier, 

(hk,n) is the channel vector between the user and the n-th BS at the k-th subcarrier, and (vk) is the 

receive noise at subcarrier (k) defined as a normal distribution with a zero mean and (𝛔2) variance 

[3]. 
 

The assumed channel model is the same channel model assumed in [3] which can be expressed as 

in equation-2: 
 

 

             (2) 

and  
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              (3) 

 

with the parameters defined as in [3]. 
 

4. DEEP MIMO DATASET AND SIMULATION PROCESS 
 

The dataset used in this paper is collected using the DeepMIMO [6] tool available online with the 

features explained below. The number of base stations can be selected from a list of 18 base 

stations available in the original simulation environment [6]. In our experiments, we selected only 

(4) of these base stations named (BS1, BS2, BS3, and BS4) distributed as in fig 2 and fixed on 
lamp posts. The distance between BS1 and BS3 equals the distance between BS2 and BS4 and 

equals 100m. The distance between BS1 and BS2 (across the street) equals to the distance 

between BS3 and BS4 and equals to 40m. Each BS has a height of 6m from the ground level [6]. 

Each BS is assumed to have a uniform planar array (UPA) of antennas that are facing the street. 

The grid of expected user locations starts from row number R550 and ends with the row number 

R1100 with each row having 181 users. The total number of expected users’ locations in a 
uniform grid that is being collected for the full fingerprint is (99731) location. Each user location 

will be collected by 4 BSs with each having 16X4 MIMO antenna arrays. Also, for each user, 3 

paths of the signal between the user and each BS is collected (LoS and the strongest 2 NLos or 3 

NLoS if there is blockage of the LoS path). First, the dataset is collected using MATLAB 

according to the simulation parameters listed above and in table 1 and the steps in [3]. After 
generating the dataset that will represent the inputs and outputs of the deep learning model, we 

use python to build, train, and test the deep learning model with different settings as we will see 

in the next section. To achieve that, we need Python 3.6 or later with Keras and Tensorflow 

libraries support. Finally, we used MATLAB again to process the deep learning outputs and 

generate the performance results and figures listed in the next section. More details about the 

simulation process are listed in the DeepMIMO official website [18]. 

 
 

 
Figure 2.  A top View of the street, buildings, and the Base stations distribution  
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5. NUMERICAL RESULTS 
 

The system is assumed to serve a mobile user (walking in the street or driving a car among the 

serving Base stations) using the unlicensed mmWave band of 60GHz frequency and focuses on 
vehicular applications in a street environment. The table (1) is listing all the parameters used in 

the system simulation: 

 
Table 1. Simulation Parameters  

 
Parameter Value 

Number of Base Stations 4 

Ray Tracing Building Material ITU 60 GHz 3-layer dielectric material 

Ray Tracing Ground Material ITU 60 GHz single-layer dielectric 

Ray Tracing Windows Material ITU 60 GHz glass 

BS height 6 meters 

BS UPA dimensions 16X4 or 64 antenna elements 

Tx power of BS 30dBm 

UE height 2 meters 

Tx power of UE 30dBm 

Paths between each BS and UE 3 

OFDM size (K) 1024 

Bandwidth 1 GHz 

Noise Figure 5dB 

Operating System Windows 10 

PC features Processor Intel Core i7 RAM 32GB 

 

5.1. Mobility speed effect: 
 
The first step in this work was to check the mobility speed effect on the performance of the 

system and we tried different speeds to check what would be the resulting spectral efficiency in 

(bits/sec/Hz). The figure (3) below shows that for different speeds (10, 50, and 100 mph), the 

deep learning network performance is almost the same and can still achieve a high system rate 

compared to the optimal genie-aided spectral efficiency. This means that the proposed network is 
stable for different mobility speeds and that it can be used for a wide range of mobile applications 

and scenarios. 

 

Figure 3.  UE Mobility Speed Effect on the Achievable Spectral Efficiency 
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5.2. Network Optimization: 
 

To optimize the network performance (i.e. reduce the dataset required to achieve the best 

performance and the time required to train and use the model), we first changed some of the data 

collection assumptions where instead of collecting 5 or 8 rays (multipaths) for each transmission 

in the ray tracing software, we assumed that there are only 3 rays that are worth collecting taking 
in consideration the scarcity of the mmWave channel multipath and that only one Line of Sight 

(LoS) and the strongest 2 Non-Line of Sight (NLoS) multipaths are strong enough to express 

important information about the UE location and the rest will be too weak because of the 

reflections from trees, ground, and other environmental elements that degrades the mmWaves 

much faster than the lower frequencies (i.e sub-6GHz bands). Then we changed the neural 
network (used in the base stations to perform the beamforming) architecture to find the optimal 

structure for our goals. Several optimizers were tried first as follows: 

 
The originally selected optimizer by the paper [3] is Adam optimizer and it gives this result in 
figure 4: 

 

Figure 4.  Achievable Spectral Efficiency with Adam optimizer 

 
When we tried the optimizer (Ada Delta) instead of (Adam) optimizer, we got the results shown 

in  figure 5 where we see that the neural network performed worse than that in the previous case: 
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Figure 5.  Achievable Spectral Efficiency with Ada Delta optimizer 

 

The optimizer (Ada Grad) gave comparable performance to the (Adam) optimizer in terms of the 
spectral efficiency and the required dataset size to achieve the 90% threshold of the genie-aided 

beamforming performance in figure 6: 
 

 

Figure 6.  Achievable Spectral Efficiency with AdaGrad optimizer 

 

The optimizer (Ada Max) on the other hand gives worse performance compared to the (Adam) 
and (Ada Delta) optimizers as can be seen in figure 7 where it requires larger dataset to achieve 

close performance to the optimal upper bound (the genie-aided beamformer) : 
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Figure 7.  Achievable Spectral Efficiency with Ada Max optimizer 
 

The improved (Adam) optimizer or (Nadam) explained in details in [17] gives the best results 
among the tested optimizers both in case of spectral efficiency and the dataset size as we can see 

in figure 8 below: 

 

Figure 8.  Achievable Spectral Efficiency with Nadam optimizer 

 

Finally, the optimizer (RMS prop) is used and its results are listed in figure 9: 
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Figure 9.  Achievable Spectral Efficiency with RMS prop optimizer 

 

And we can see clearly that the optimizer (Nadam) achieves the threshold (90% of the genie 
aided spectral efficiency) faster than all the others. So, it is considered as the chosen optimizer 

and to further optimize the deep learning network, we tried several loss functions as follows: 

 

Mean Squared Error (MSE) loss function was tried and it gave the same results as in figure 4. 

The Mean Squared Logarithmic Error (MSLE) was also tried with the results in figure 10: 

 

 
Figure 10.  Achievable Spectral Efficiency with MSLE loss function 

 
Another loss function (Poisson loss function) was used in combination with the (Nadam) 

optimizer in the same neural network structure and the results of the achievable spectral 

efficiency of this NN structure compared with the all known (optimal) beamformer are shown in 

figure 11: 
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Figure 11.  Achievable Spectral Efficiency with Poisson loss function 

 
Whereas the results when using Mean Absolute Error (MAE) as the loss function with the 

(Nadam) optimizer are shown in figure 12 and they shown better performance than the previous 

NN structure (i.e Poisson loss function) but it is still not as good as the case when we used the 

(MSLE) loss function.  
 

Figure 12.  Achievable Spectral Efficiency with Mean Absolute Error loss function 

 
Finally, the Mean absolute percentage error (MAPE) error function with (Nadam) optimizer 

performance compared with the genie-aided beamforming systems is shown in figure 13 where it 

shows the worst performance among all the NN structure we tried and that is why it is not 

recommended to build such applications. 
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Figure 13.  Achievable Spectral Efficiency with MAPE loss function 

 
It is clear that the (MSLE) achieves the best performance when combined with the (Nadam) 

optimizer, so they are selected to build the optimal deep neural network to produce the best 

model with the minimum dataset required and accelerate the training and operation of the 

collaborative beamforming system. 
 

6. CONCLUSIONS AND FUTURE WORK 
 

In this paper, deep learning coordinated beamforming that uses multiple collaborating base 

stations to perform the beamforming has been optimized and tested for different mobility 

scenarios. First the Neural Network structure and the data collection process was improved. 
Then, the best optimizer and loss function to give the best possible performance have been 

chosen for a broad range of mobility speeds and operation scenarios. The system has been proved 

to be resilient towards the mobility speed changing with time and that it can still be further 

improved. The reported results are also encouraging to go further and try to upgrade the system to 

work as a hybrid beamforming system. Some of the future work directions include: Generalizing 
the proposed beamforming architecture to multi users instead of serving only single users each 

time, improving the analog beamformer to a hybrid (analog phase shifter and digital base band) 

beamformer and for both single and multiple cooperative base stations, and test the adaptability 

of such systems in the connected cars/automated cars scenarios where there would be frequent 

handovers and huge amount of calculations in the backend of the system. 
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