
International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

DOI: 10.5121/ijcnc.2020.12608 117

NETWORK ANOMALY DETECTION BASED
ON LATE FUSION OF SEVERAL MACHINE

LEARNING ALGORITHMS

Tran Hoang Hai1, Le Huy Hoang1, and Eui-nam Huh2

1School of Information and Communication Technology,

Hanoi University of Science and Technology, Vietnam
2Department of Computer Science and Engineering,

Kyung Hee University, Yongin, Korea

ABSTRACT

Today's Internet and enterprise networks are so popular as they can easily provide multimedia and e-

commerce services to millions of users over the Internet in our daily lives. Since then, security has been a

challenging problem in the Internet's world. That issue is called Cyberwar, in which attackers can aim or

raise Distributed Denial of Service (DDoS) to others to take down the operation of enterprises Intranet.

Therefore, the need of applying an Intrusion Detection System (IDS) is very important to enterprise
networks. In this paper, we propose a smarter solution to detect network anomalies in Cyberwar using

Stacking techniques in which we apply three popular machine learning models: k-nearest neighbor

algorithm (KNN), Adaptive Boosting (AdaBoost), and Random Decision Forests (RandomForest). Our

proposed scheme uses the Logistic Regression method to automatically search for better parameters to the

Stacking model. We do the performance evaluation of our proposed scheme on the latest data set NSL-

KDD 2019 dataset. We also compare the achieved results with individual machine learning models to show

that our proposed model achieves much higher accuracy than previous works.

KEYWORDS

Network Security, Intrusion Detection System, Anomaly Detection, Machine Learning.

1. INTRODUCTION

Network Intrusion Detection System (N-IDS) plays an extremely important role in security
management which can support network administrators about unusual behaviors where a traffic

flow might be an intrusion, attack, or normal traffic flow. Currently, network administrators

apply some solutions such as firewalls to prevent some unwanted traffics. However, network

managers must conduct manual detection. In the traditional rule-based N-IDS, the rules are
usually pre-defined by the security experts and need to be updated regularly [1,2]. The advantage

of rule-based N-IDS is better known for attack detection. [3]. Therefore, we propose a smart N-

IDS which can capture network traffic, analyze, and detect network anomalies automatically.
With the rapid development of machine learning models, several methods have been proposed to

build a knowledge system on the IDS system [4-6], where abnormal traffic can be detected and

prevented automatically. Another type of N-IDS based on statistical analysis analyses the
statistical behavior of users to find abnormal behaviors [7]. We believe that a knowledge system

based on the latest development of machine learning models to combat the risks is extremely

important [8-10]. Some related works based on statistical methods [11] and Bayers algorithm

[12] are typical representative algorithms in this field. An expert system is currently the most

http://airccse.org/journal/ijc2020.html
https://doi.org/10.5121/ijcnc.2020.12608

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

118

feasible solution which uses artificial intelligence to solve problems in a field that requires human
expertise[10]. The application of machine learning algorithms is a breakthrough that provides us

an efficient tool to apply N-IDS in practice. Sincethe publication of the KDD99 data set, there

have been several works on using machine learning for anomaly detection which has different

characteristics, and efficiency/ accuracy level [13]. The stacking technique is an ensemble
learning [14, 15] that takes advantage of different machine learning algorithms to include the

predictions of those models for a better one. Stacking is based on the latest classification

algorithms [16-17] in which several machine learning algorithms can be used simultaneously.
Stacking aggregates different models to derive a better one, thus reducing the probability of false

predictions and improving accuracy. Moreover, stacking does not require complex algorithms

implemented on the system. In this paper, we propose a matrix that each algorithm will be
assigned to an element of that matrix, so when the proposed system processes a final calculation,

the model using this matrix factor multiplied by each algorithm prediction to get the final result.

The problem is how to choose good coefficients to have a better result. So, we propose to use a

logistic algorithm [16-17] to select parameters for our proposed model. The rest of the paper is
organized as follows. Section 2 gives an overview of related works and NSL-KDD2019 and

other data sets. Section 3 presents our proposed model for network anomaly detection. Section 4

introduces a performance comparison between our proposed model with individual machine
learning algorithms. Finally, conclusions are given in Section 5.

2. RELATED WORKS

2.1. Network Anomaly Detection Data Sets

In previous works, there are several data sets to evaluate the performance of machine learning for
N-IDS such as DARPA98, KDD CUP 99 [30], CICIDS2017 [31], and NSL-KDD which usually

classify by packet-based or flow-based data [26]. Labeled data sets are very important which is

used to train and evaluate the anomaly-based N-IDS. The DARPA 1998/99 is the most popular

data sets created at the MIT Lincoln Lab which includes various kinds of attacks like DoS, buffer
overflow, port scans, or rootkits [27-28]. However, this data set does not reflect the actual traffic

because it was simulated in the Lab.KDD CUP 99 is one of the most popular data sets for

anomaly detection which contains basic attributes about TCP connections and high-level
attributes like the number of failed logins without IP addresses [29]. However, this data set

contains too many redundant and duplicate data, About 78% of the data is duplicated in the

training data, and 75% in the testing data. NSL-KDD 2019 is the up-to-date data set we chose for

testing the model since it has a lot of improvement compared to KDD CUP 99. NSL-KDD data
set was created as an optimized version of KDD'99 from the University of New Brunswick [25].

The complete data set NSL-KDD 2019 is an up-to-date data set which contains new types of

attacks without duplicates from the KDD'99 data set. This resulting data set contains about
150,000 data points and is divided into predefined training and test subsets which are KDDTest+,

KDDTest-21, KDDTrain+, KDDTrain+_20Percent where KDDTest-21 and KDDTrain +

_20Percent are subsets of KDDTest+ and KDDTrain+. KDDTrain+ is considered training data
and KDDTest+ is considered testing data. KDDTest-21 is a subset of the testing data which

removes the most difficult data records (point 21). KDDTrain _20Percent is a subset of the

training data where the number of records equal to 20% of the total number of records in the

training data. In other words, the records in KDDTest-21 and KDDTrain+_20Percent are
included in testing and training data and no records exist in both data sets at the same time which

makes the evaluation of anomaly detection more accurate.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

119

2.2. Recent Machine Learning Algorithms for Anomaly Detection

In this paper, we choose three following machine learning algorithms: k-nearest neighbor

algorithm (KNN) [18], Adaptive Boosting (AdaBoost) [19], and Random Decision Forests
(RandomForest) [20] for our proposed model. The motivation is that those algorithms are recent

works on applying machine learning to N-IDS and they provide better results and lower

processing time compared to others. In [18], the authors propose to use the PCA-fuzzy
Clustering-KNN method which ensemble of Analysis of Principal Component and Fuzzy

Clustering with K-Nearest Neighbor feature selection techniques to detect anomalies. In [19], the

authors proposed the AdaBoost algorithm for N-IDS which provides competitive performances

compared with other works on the old KDDCUP1999 data set. In [20], the authors proposed a
model for N-IDS using the Random Forest classifier which performs well compared to other

traditional classifiers. In [21], A. Ahmim and colleagues proposed a new N-IDS model that

includes various classification methods based on 'decision tree' and 'rule-base' which are REP
Tree, JRip, and Forest PA using the CICIDS 2017 data set. In particular, the first two

classification models take input data as network data set characteristics and classify them into

normal and anomalous groups. The third classification method uses the characteristics of the
original data and combines with the data that has been processed by two previous methods to

classify each specific type of attack. Therefore, their proposed model achieved an identification

rate of up to 94,475% and reduced the error warning rate to 1,145%, which it is more efficient

than Naive Bayes, Random Forest, Support Vector Machine (SVM). With the same CICIDS
2017 data set, in [22], D. Aksu and colleagues proposed a model using the fisher score algorithm

to select 30 from 80 characteristics/ features of network flow. Then, the authors apply to machine

learning algorithms such as SVM, KNN, and Decision Tree (DT) algorithms where the results
seem very promising. In the NSL-KDDdata set [23-24], the authors applied several feature

selection algorithms which are J48, SU, and Random Forest algorithm to classify four network

attacks. The attacks are Dos, Probe, R2L, U2R on KDD99. In [18], the authors applied Analysis
of Principal Component (APC) and Fuzzy Clustering with KNN to reduce the data dimension of

the data set then they passed the data via fuzzing clustering algorithm to detect anomaly traffic or

not. Their proposed model is quite satisfactory when the accuracy of DoS is up to 94.23%.

2.3. K-nearest neighbors algorithm (KNN)

KNN is one of the simplest supervised-learning algorithms and a non-parametric method used for
classification and regression proposed by Thomas Cover [32-33]. The algorithm does not learn

anything from training data and all calculations are done when it needs to predict the results of

new data.). In KNN classification, the output is a class membership is classified by a majority
vote of its neighbors. The point is assigned to the class most common among its K nearest

neighbor points. In [34], the authors proposed a technique to improve the accuracy of KNN

where it provides weight for each point being considered. Further points play smaller roles in the
classification of that point and vice versa. In [35], the authors proposed a TCM-KNN model

(Transductive Confidence Machines for K-Nearest Neighbours) on the KDD'99 data set. In

general, anomalies can be identified using a genetic weighted KNN based on a classifier [36]. In

[37], the authors studied and compared the performances of various clustering algorithms for
anomaly detection: k-Means; improved k-Means; k-Medoids; EM clustering and distance-based

outlier detection algorithms. In [39], the authors proposed two hierarchical IDS frameworks using

Radial Basis Functions (RBF) which can detect network intrusions in real time using the old
KDD Cup 1999 Data.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

120

2.4. Adaptive Boosting Algorithm (AdaBoost)

Adaptive Boosting (AdaBoost) is a machine learning meta-algorithm proposed by Yoav Freund

and Robert Schapire [38]. AdaBoost is classified as a boosting class because it aims to convert
weak classification algorithms, correct previous algorithm errors then finally get a strong

classifier. In this paper, we apply the Decision Tree (DT) algorithm [40] in AdaBoost because of

the following motivation:
● Since AdaBoost does not work well with linear algorithms, then we try to apply DT since

it is not a linear algorithm.

● DT algorithm shows good consistency; therefore, we do not need to adjust any

parameters.
● DT algorithm is built quickly, therefore we expect to combine several algorithms

together, so the training process is not overloaded.

2.5. Random Forest (RF)

Random Forests (RF) is an ensemble learning method for classification, regression which

constructs a multitude of decision trees at training time, and outputting which is classification or

regression of the individual trees [41,42]. Following [43], RD uses multiple decision trees for
layering. The algorithm assumes that if a sample is layered by multiple decision trees, whichever

layer is chosen by most trees, then this sample will be assigned to that class. In [20, 44], several

authors show that the RF model applied in N-IDS is efficient with low false alarm rate and high

detection rate. For better accuracy, RF uses a Bootstrapping process. This is a statistical
resampling technique that involves random sampling of a data set with replacement [45]. In

addition, to make sure the decision trees are different, RF will randomly skip a few attributes

when building a decision tree. In this case, if the best attribute is not selected, the next attribute
will be selected to build the tree. This process is called attribute sampling.

2.6. Logistic Algorithm

The logistic algorithm estimates the parameters of a logistic model (a form of binary regression)

whose method is quite flexible compared to other linear algorithms. This algorithm show several
advantages in [46] which are (a) significance tests of the model against the null model, (b) the

significance test of each predictor, (c) descriptive and inferential goodness-of-fit indices, (d) and

predicted probabilities Based on the distribution of data points, we predict what the probability of

being in a group is, the output we can take a coefficient matrix to calculate the probability of the
points to be grouped in a class. We will use this feature to calculate parameters for what we call

automatic Stacking. In the next section, we will propose a Stacking model to combine KNN,

AdaBoost, and RF to increase accuracy level of N-IDSm, and logistic play an important role in
this model.

3. PROPOSED MODEL

3.1. Late Fusion Approach to Anomaly Detection

With the implementation of individual ML algorithms, we can get the accuracy of each model.

However, we would like to increase the accuracy. One method is extracting important features
that are relevant to attacks [47]. Another approach is to modify traditional ML algorithms to

increase accuracy. This process is very costly and time-consuming, and somehow the results

seem not general. Therefore, we propose to combine the results of KNN, RF, and AdaBoost to
increase the overall accuracy of the mode. Our simple Stack model will work as following:

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

121

Final result = x * result (KNN) + y * result (AdaBoost) + z * result (RandomForest);

The problem with our proposed Stacking model is how to choose [x, y, z] parameters for better

accuracy. Therefore, we apply a logistic algorithm because the nature of logistics is to classify
data points. The logistic curve is the probability that the data to be labeled is labeled 1 or 0 when

the data points are the same but different stratification. For example, a data point when tested

with the KNN algorithm is classified into layer 1, AdaBoost is assigned to layer 0, and Random
Forest is assigned to layer 1, the logistic will give us a probability of this data point is how many

percent of the labels 0 and 1 are assigned. This technique helps to improve the accuracy of our

proposed model.

3.2. Detail Implementation

To evaluate the Stacking model, we propose two steps need to be done as follows:

1. Pre-processing data: In Figure 1, we process the data (digitalization) from the NSL-
KDD 2019 data set since it has some features including string data. Then, we divide this

data set into three subsets which are Training; Validation; and Testing. After that, we

need to bring data to a certain range to avoid an imbalance between features.

Specifically, we use min-max scaling (sometimes called min-max normalization) which
is calculated based on min, max value of training data [55]. Then, we have three data

subsets as in Figure 1.

2. Proposed Stacking model: In Figure 2 is the illustration of our proposed Stacking
model. In the model, Training and Validation data are inputs for the three machine

learning algorithms which we apply KNN, RandomForest, AdaBoost. Y_pred_KNN is

the predicted output from KNN, Y_pred_AdaBoost is the predicted output from
AdaBoost and Y_pred_RandomForest is the predicted output of the RandomForest

algorithm model respectively. In 2nd step, we combine the predictions of three algorithm

models into one, we suppose following:

 Y_pred_KNN = [𝑦00, 𝑦01, 𝑦02, …, 𝑦0𝑁]

 Y_pred_AdaBoost = [𝑦10, 𝑦11, 𝑦12, …, 𝑦1𝑁]

 Y_pred_RandomForest = [𝑦20, 𝑦21, 𝑦22, …, 𝑦2𝑁]

After obtaining results from the individual algorithm model, we sum up the results to have a
matrix Xi = [y0i, y1i, y2i,]. We put X into the logistic regression algorithm where each row in the

matrix is a sample and the label will be the label of the data validation. After that, the accuracy of

the individual model and the whole model is calculated. Some parameters we use in the model for
three machine learning algorithms are:

 n_neighbor = 5 with KNN which is the number of neighbors to use by default for
neighbors queries;

 maxdepth = 1 and n_estimators = 100 with AdaBoost which is the maximum number of

estimators at which boosting is terminated. In case of perfect fit, the learning procedure will stop
early;

 n_estimators = 100 with Random Forest which is the number of trees in the forest.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

122

Figure 1. Pre-processing NSL-KDD 2019 data

Figure 2. Proposed Stacking model

3.3. Accuracy Calculation of the Model

The simplest and most common performance metric is Accuracy. This metric simply calculates

the ratio between the number of correctly predicted points and the total number of points in the

test data set. The accuracy is calculated as the following:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎

For example, if we test on 1000 data, the number of times the model correctly predicts the other

1000 data is 912, which means that the accuracy of the model on that data set is approximately

91.2%. However, the accuracy in some cases has some drawbacks or only provides the general
view of network attack. Instead of calculating the correct number of projections, we calculate the

number of correct predictions on each label, specifically:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑓𝑟𝑜𝑚 𝑙𝑎𝑏𝑒𝑙 0) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑏𝑒𝑙 0

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎

Data: The number of data input in the test is 1000, there are 4 types of labels {0,1,2,3}

▪ Label 0: predicts exactly 250; the number of labels 0 are 300 which occupies 30% of the
data

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

123

▪ Label 1: predicts exactly 0, the number of labels 1 are 100 which accounts for 10% of
data

▪ Label 2: predicts exactly 150, the number of labels 2: 200 makes up 20% of the data

▪ Label 3: predicts exactly 300, the number of labels 3: 400 makes up 40% of the data

Finally, the accuracy level is 70%. Moreover, we obtain the accuracy levels of individual (Label

0) is 83.33%; accuracy(Label 1) is 0%; accuracy(Label 2) is 75%; and accuracy(Label 3) is 75%

respectively. Accuracy on each label will affect general accuracy according to the amount of data
that label occupies in the data set. Again, we can calculate the general accuracy by individual

Label accuracy as follows:

Accuracy = 83.33% ∗30% + 0%∗10% + 75%∗20% + 75%∗40% = 70%;

We change the testing data with the data distribution on the labels appropriately, we can achieve

very different levels of accuracy. For example, we assume that the data has two labels in which
one is 100% accurate and the other is 70%. So, the general accuracy will be 100% * 50% + 70%

* 50% = 85%. However, sometimes it is difficult for us to obtain data uniformly, so we need

better metrics to evaluate the models which are Precision; Recall; and F1 score (or F-score) [49].
In statistics, the F-score is a measure of a test's accuracy [50].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

and

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

and
2

𝐹1
=

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

In order to clarify the meaning of those parameters, we have some following definitions on True

Positive; True Negative; False Positive; and False Negative which are usually used in N-IDS
anomaly detection [51].

● True Positive (TP): The number of points of the positive class that is correctly classified

as positive.
● True Negative (TN): The number of points of the negative class that is classified as

negative.

● False Positive (FP): the number of points of the negative class that is mistakenly
classified as positive.

● False Negative (FN): the number of points of a positive class that has been misclassified

as negative.

We can see that the Precision parameter demonstrates the ability to predict the X label correctly.

We also see that in Precision's formula, the factor that makes Precision increase or decrease is not

TP but FP. Therefore, when a high Precision means a small FP or several incorrectly predicted
labels to an X label is low. The Recall parameter shows the ability to predict without missing the

X label, as well as the Precision, Recall depends on FN, or in other words it depends on the

ability of the model to correctly predict the wrong label is X. In evaluating the effectiveness of
these models, we always expect both Precision and Recall parameters to be high as much as

possible. Unfortunately, there is always a trade-off between two parameters. For example, when a

high Precision parameter often entails a lower Recall parameter and vice versa. The reason is if

the high Precision parameter means that the model must have very high accuracy to predict the X

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

124

label, but the opposite can make the prediction missing the actual data as X label, vice versa.
Therefore, we need to use another parameter to synthesize these two parameters by another

parameter, F1 score, to evaluate the model for more accuracy and efficiency.

4. PERFORMANCE EVALUATION

In this section, we do a performance evaluation of three individual machine learning models

which are KNN, Random Forest, AdaBoost, and our proposed Stacking model on an up-to-date

NSL-KDD 2019 data set. The computing environment is Ubuntu 18.0.4 64-bit; CPU Intel i7
8750H chip, 6 cores 12 threads; GPU: Intel UHD Graphic 630 4Gb; 8Gb RAM DDR4 and the

Pycharm software [48].

4.1. Evaluation of Individual KNN Model

KNN works by taking a data point and looking at the ‘k’ closest data points. The data point is
then assigned the label of the majority of the ‘k’ closest points, therefore, how to choose a

n_neighbor parameter in the individual KNN model is very important for our proposed model.

We try several n_neighbor values starting at 1 and ending in 8. In Figure 3, we can see the

accuracy level corresponding to the n_neighbor values. With the value of k = 5, the accuracy
level almost reaches peak constant Therefore, we choose the value of k = 5 for our proposed

Stacking model.

Figure 3. Accuracy level of different n_neighbor of KNN model

4.2. Evaluation of Individual Adaboost Model

We select the parameter n_estimators for the AdaBoost model with each value of n_estimators

running with k = 5 times, then take the average value. Adaboost will execute with a decision tree

with depth = 1. The fundamental parameter n_estimators is used to select the maximum number
of trees involved in the classification process. After each classification, the algorithm re-

calculates weight for each sample that has been misclassified, and after many calculations, we

will get the most accurate model. A higher number of trees that participate in the classification

will increase the accuracy of the AdaBoost algorithm. We see in Figure 4, Accuracy is higher
when the parameter n_estimators = 100, then the line goes horizontally with accuracy equal to

98.13% on average. Thus, if we further increase in n_estimators can reach a certain threshold or

when n_estimators -> ∞, accuracy will converge at near 1. However, the disadvantage of
increasing n_estimator too much is not determining the threshold when the algorithm converges.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

125

Figure 5 illustrates the timing processing of AdaBoost with varying n_estimators. In addition, we
see that increasing n_estimators will be resource-intensive for training. In this paper, we choose

n_estimators = 100.

Figure 4. Accuracy level of different n_estimators of AdaBoost model

Figure 5. Time implementation estimation of AdaBoost model

4.3. Evaluation on Individual Random Forest Model

For RandomForest, the n_estimator’s parameter is the number of trees participating in the

classification process. For example, if a sample would like to be classified then it will receive

votes from other trees. If receiving the largest number of tree votes in a class, the sample will be
assigned to this class. In Figure 6, we can see that the RF model obtains peak accuracy when

n_estimator’s equals 100.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

126

Figure 6. Accuracy level of different n_estimators of Random Forest

4.4. Performance Comparisons of Accuracy, Precision, F1-Score and Recall

In Figure 7, the general accuracy obtained from our proposed Stacking model is higher than three
individual machine learning algorithms. Accuracy of the proposed Stacking model is 0,6% higher

than KNN, 2,5% for AdaBoost, and 0.03% for RandomForest respectively. In Figure 8, we can

see that Precision is higher than KNN by 0,5%, AdaBoost by 2,4%, and Random Forest by 0,02%
respectively.

Figure 7. Accuracy level of individual algorithm and Stacking model

In Figure 9, the Recall of our proposed Stacking model is higher than KNN by 0.6%, AdaBoost

by 2,2%, and Random Forest by 0.02% respectively. In Figure 10, F1 of our proposed Stacking
model is higher than KNN 0,6%, compared to AdaBoost is 2,34% and with Random Forest is

0.03% respectively. We can see that with the NSL-KDD 2019 data set, for three individual ML

models, RF gives the most accurate prediction results with the highest Precision. RF algorithms
predict the best label compared to the remaining algorithms, and the higher Recall shows that

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

127

Random Forest is also less likely to miss labels than the others. The reason might be when
choosing the input parameter of the algorithm without considering the max depth parameter,

Decision Tree constituting Random Forest will have the depth equal to the depth when browsing

the tree with the ID3 algorithm [52] when each Decision Tree is reached. This reason makes

Random Forest able to learn more deeply than others. With AdaBoost, we do not set the
base_estimator parameter results in the algorithm using a training data set with Decision Tree

with max_dept equal to 1. The base estimator from which the boosted ensemble is built that

makes the algorithm much faster than Random Forest and provides lower accuracy but in the
acceptable range compared to others. Finally, our proposed Stacking model provides significant

improvements in Accuracy, Precision, Recall, F1-score which can be applied in practice with a

very good performance. The increase in Accuracy indicates that our proposed model is more
accurate than other individual models. Higher Recall shows that our model is less likely to miss

labels.

Figure 8. Precision of individual algorithm and Stacking model

Figure 9. Recall of individual algorithm and Stacking model

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

128

Figure 10. F1-score of individual algorithm and Stacking model

5. CONCLUSIONS

In this paper, we have proposed a Stacking model to combine three machine learning algorithms

which are KNN, AdaBoost, and Random Forest for anomaly detection. Moreover, we proposed a
Logistic algorithm to automatically select parameters for the stacking model. This model

achieves a very high accuracy of 99.64% and significant improvement of Recall, Precision, and

F1-score compared to individual machine learning models. A drawback of our proposed Stacking
model is that it is more time-consuming than individual machine learning models. However, we

consider processing in parallel individual machine learning models on individual dynamic Virtual

Machines (VM) by using Apache Hadoop or Spark which we would like to extend in another
work. Finally, we hope to integrate deep learning algorithms to increase the accuracy of the

overall model and combine time-series training for online, smart, and early detection.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This research is funded by Hanoi University of Science and Technology (HUST) under a grant

entitled “A Network Anomaly Detection Model Based-on Several Machine Learning Models”.

REFERENCES

[1] R, Karthikeyan & Indra, A.. (2010). Intrusion Detection Tools and Techniques –A Survey.

International Journal of Computer Theory and Engineering. 2. 901-906. 10.7763/IJCTE.2010.V2.260.

[2] Claude Turner, Rolston Jeremiah, Dwight Richards, Anthony Joseph, A Rule Status Monitoring

Algorithm for Rule-Based Intrusion Detection and Prevention Systems, Procedia Computer Science,

Volume 95, 2016.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

129

[3] Aditya Chellam, Ramanathan L, Ramani S, Intrusion Detection in Computer Networks using Lazy

Learning Algorithm, Procedia Computer Science, Volume 132, 2018, Pages 928-936, ISSN 1877-

0509.

[4] A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour and H. Janicke, "A Novel Hierarchical Intrusion

Detection System Based on Decision Tree and Rules-Based Models," 2019 15th International
Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 2019,

pp. 228-233, doi: 10.1109/DCOSS.2019.00059.

[5] Claude Turner, Rolston Jeremiah, Dwight Richards, Anthony Joseph, A Rule Status Monitoring

Algorithm for Rule-Based Intrusion Detection and Prevention Systems, Procedia Computer Science,

Volume 95, 2016.

[6] Butun I, Morgera SD, Sankar R (2014) A survey of intrusion detection systems in wireless sensor

networks. IEEE Communications Surveys & Tutorials 16(1):266–282.

[7] Xiao, L., Chen, Y. and Chang, C.K. (2014) Bayesian Model Averaging of Bayesian Network

Classifiers for Intrusion Detection. Proceedings of the 2014 IEEE 38th Annual International

Computers, Software and Applications Conference Workshops, Vasteras, 2014, 128-133.

[8] Panja, B., Ogunyanwo, O. and Meharia, P. (2014) Training of Intelligent Intrusion Detection System

using Neuro Fuzzy. Proceedings of 2014 15th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Las

Vegas, 2014.

[9] Vladimir Zwass " Expert system ".

[10] Fuchsberger, A. (2005) Intrusion Detection System and Intrusion Prevention Systems. Information

Security Technical Report, 34, 134-139.

[11] Larraga, P., Karshenas, H. and Bielza, C. (2013) A Review on Evolutionary Algorithms in Bayesian

Network Learning and Inference Tasks. Information Sciences, 233, 109-125.

[12] I. Seraphim, S. Palit, K. Srivastava and E. Poovammal, "A Survey on Machine Learning Techniques

in Network Intrusion Detection System," 2018 4th International Conference on Computing

Communication and Automation (ICCCA), Greater Noida, India, 2018, pp. 1-5, doi:

10.1109/CCAA.2018.8777596.
[13] Abdulla Amin Aburomman, Mamun BinIbne Reaz " A novel SVM-kNN-PSO ensemble method for

intrusion detection system " - 2015.

[14] Iwan Syarif , Ed Zaluska , Adam Prugel-Bennett , Gary Wills, " Application of Bagging, Boosting

and Stacking to Intrusion Detection " - 2012.

[15] Shivang Agarwal, Ravindranath Chowdary, " A-Stacking and A-Bagging: Adaptive versions of

ensemble learning algorithms for spoof fingerprint detection" - 2020.

[16] Deeman Yousif Mahmood, " Classification Trees with Logistic Regression Functions for Network

Based Intrusion Detection System " - 2017.

[17] H. BENADDI, K. IBRAHIMI and A. BENSLIMANE, "Improving the Intrusion Detection System

for NSL-KDD Data set based on PCA-Fuzzy Clustering-KNN," 2018 6th International Conference

on Wireless Networks and Mobile Communications (WINCOM), Marrakesh, Morocco, 2018, pp. 1-

6, doi: 10.1109/WINCOM.2018.8629718.
[18] W. Hu, W. Hu and S. Maybank, "AdaBoost-Based Algorithm for Network Intrusion Detection," in

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 2, pp. 577-

583, April 2008, doi: 10.1109/TSMCB.2007.914695.

[19] Nabila Farnaaz, M.A. Jabbar, "Random Forest Modeling for Network Intrusion Detection System",

Procedia Computer Science, Volume 89, 2016, Pages 213-217, ISSN 1877-0509..

[20] Sharafaldin, Iman & Habibi Lashkari, Arash & Ghorbani, Ali. (2018). Toward Generating a New

Intrusion Detection Data set and Intrusion Traffic Characterization. 108-116.

10.5220/0006639801080116.

[21] Ahmim, Ahmed & Maglaras, Leandros & Ferrag, Mohamed Amine & Derdour, Makhlouf & Janicke,

Helge. (2019). A Novel Hierarchical Intrusion Detection System Based on Decision Tree and Rules-

Based Models. 10.1109/DCOSS.2019.00059.
[22] Aksu, Doğukan & Ustebay, Serpil & Aydin, M.Ali & Atmaca, Tulin. (2018). Intrusion Detection

with Comparative Analysis of Supervised Learning Techniques and Fisher Score Feature Selection

Algorithm. 10.1007/978-3-030-00840-6_16.

[23] Negandhi, Prashil & Trivedi, Yash & Mangrulkar, Ramchandra. (2019). Intrusion Detection System

Using Random Forest on the NSL-KDD Data set. 10.1007/978-981-13-6001-5_43.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

130

[24] NSL-KDD data set for network-based intrusion detection systemsAvailable on:

http://nsl.cs.unb.ca/KDD/NSLKDD.html, March 2009.

[25] Ring, Markus & Wunderlich, Sarah & Scheuring, Deniz & Landes, Dieter & Hotho, Andreas. (2019).

A Survey of Network-based Intrusion Detection Data Sets.

[26] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D. Weber, S. E.
Webster, D. Wyschogrod, R. K. Cunningham, et al., Evaluating Intrusion Detection Systems : The

1998 DARPA Offline Intrusion Detection Evaluation, in: DARPA Information Survivability

Conference and Exposition (DISCEX), Vol. 2, IEEE, 2000, pp. 12–26.

[27] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, K. Das, The 1999 DARPA Off-Line Intrusion

Detection Evaluation, Computer Networks 34 (4) (2000) 579–595.

[28] S. Stolfo, (Date last accessed 22-June-2018). [link] URL

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[29] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, A detailed analysis of the KDD CUP 99 data set,

in: IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009, pp.

1–6.

[30] Tavallaee, Mahbod et al. “A detailed analysis of the KDD CUP 99 data set.” 2009 IEEE Symposium

on Computational Intelligence for Security and Defense Applications (2009): 1-6.
[31] Panigrahi, Ranjit & Borah, Samarjeet. (2018). A detailed analysis of CICIDS2017 data set for

designing Intrusion Detection Systems. 7. 479-482.

[32] Altman, Naomi S. (1992). "An introduction to kernel and nearest-neighbor nonparametric regression"

(PDF). The American Statistician. 46 (3): 175–185. doi:10.1080/00031305.1992.10475879.

hdl:1813/31637.

[33] Wang, Lishan. (2019). Research and Implementation of Machine Learning Classifier Based on KNN.

IOP Conference Series: Materials Science and Engineering. 677. 052038. 10.1088/1757-

899X/677/5/052038..

[34] Mehrnaz Mazini, Babak Shirazi, Iraj Mahdavi; "Anomaly network-based intrusion detection system

using a reliable hybrid artificial bee colony and AdaBoost algorithms", Journal of King Saud

University - Computer and Information Sciences, Volume 31, Issue 4, 2019, Pages 541-553, ISSN
1319-1578.

[35] Li, Yang & Fang, Binxing & Guo, Li & Chen, You. (2007). Network anomaly detection based on

TCM-KNN algorithm. 13-19. 10.1145/1229285.1229292.

[36] M.-Y. Su, "Using clustering to improve the KNN-based classifiers for online anomaly network traffic

identification", J. Netw. Comput. Appl., vol. 34, no. 2, pp. 722-730, 2011.

[37] I. Syarif, A. Prugel-Bennett and G. Wills, "Unsupervised clustering approach for network anomaly

detection", Proc. 4th Int. Conf. Netw. Digit. Technol. (NDT), pp. 135-145, Apr. 2012.

[38] Y. Freund and R. E. Schapire, "A short introduction to boosting", J. Jpn. Soc. Artif. Intell., vol. 14,

no. 5, pp. 771-780, Sep. 1999.

[39] Zhang, Chunlin & Jiang, Ju & Kamel, Mohamed S.. (2005). Intrusion detection using hierarchical

neural networks. Pattern Recognition Letters. 26. 779-791. 10.1016/j.patrec.2004.09.045.

[40] Ho, Tin Kam (1995). Random Decision Forests (PDF). Proceedings of the 3rd International
Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995. pp. 278–

282. Archived from the original (PDF) on 17 April 2016. Retrieved 5 June 2016.

[41] Ho TK (1998). "The Random Subspace Method for Constructing Decision Forests" (PDF). IEEE

Transactions on Pattern Analysis and Machine Intelligence. 20 (8): 832–844. doi:10.1109/34.709601.

[42] Biau, Gérard. (2010). Analysis of a Random Forests Model. Journal of Machine Learning Research.

13.

[43] Paulo Angelo Alves Resende and André Costa Drummond. 2018. A Survey of Random Forest Based

Methods for Intrusion Detection Systems. ACM Comput. Surv. 51, 3, Article 48 (July 2018), 36

pages. DOI:https://doi.org/10.1145/3178582.

[44] Efron, B. (1979) "Bootstrap methods: Another look at the jackknife", The Annals of Statistics 7 (1):

1-26.
[45] Peng, Joanne & Lee, Kuk & Ingersoll, Gary. (2002). An Introduction to Logistic Regression Analysis

and Reporting. Journal of Educational Research - J EDUC RES. 96. 3-14.

10.1080/00220670209598786.

[46] Francisco Sales de Lima Filho, Frederico A. F. Silveira, Agostinho de Medeiros Brito Junior,

Genoveva Vargas-Solar, Luiz F. Silveira, "Smart Detection: An Online Approach for DoS/DDoS

Attack," Security and Communication Networks, vol. 2019.

International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020

131

[47] Barlas, Panagiotis & Lanning, Ivor & Heavey, Cathal. (2015). A Survey of Open Source Data

Science Tools. International Journal of Intelligent Computing and Cybernetics.

[48] J. Davis and M. Goadrich, “The Relationship Between Precision-Recall and ROC Curves”, In

ICML’06, 2006.

[49] Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Score to ROC, Informedness,
Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63.

hdl:2328/27165.

[50] Bhattacharyya, Dhruba K & Kalita, Jugal. (2013). Network Anomaly Detection: A Machine Learning

Perspective.

[51] Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81–106.

[52] J. Song, X. Lu and X. Wu, "An Improved AdaBoost Algorithm for Unbalanced Classification Data,"

2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, 2009, pp.

109-113, doi: 10.1109/FSKD.2009.608.

AUTHORS

Tran Hoang Hai received his B.S degree from Hanoi University of Science and

Technology in Vietnam and an M.S degree in Computer Engineering from Kyunghee

University, South Korea in 2008. Since then, he has worked at INRIA joint Alcatel-

Lucent Bell Laboratory and got his Ph.D. degree in computer science from the

University of Rennes 1 (France) in 2012. His interesting research areas are network

security, routing, and resource allocation mechanisms in the next-generation Internet,

and applied game theory to the communication network. He has published several
papers on those issues. He is currently Assistant Professor at the Department of Data Communication &

Computer Networks, School of Information & Communication Technology, Hanoi University of Science

and Technology, Vietnam.

Le Huy Hoang received his B.S degree in Information Security from Hanoi University

of Science and Technology, Vietnam in 2020. His interesting research areas are network

security, machine learning, and network intrusion detection system.

Eui-nam Huh earned a B.S. degree from Busan National University in Korea, a

master’s degree in Computer Science from the University of Texas, the USA in 1995,

and a Ph.D. degree from the Ohio University, the USA in 2002. He is the director of the

Real-time Mobile Cloud Research Center. He is a chair of the Cloud/BigData Special

Technical Committee for the Telecommunications Technology Association (TTA), and

a Korean national standards body of ITUT SG13 and ISO/IEC SC38. He was also an

Assistant Professor at Sahmyook University and Seoul Women’s University, South

Korea. He is now a Professor in the Department of Computer Science and Engineering,

Kyung Hee University, South Korea. His research interests include cloud computing, screen contents

coding (cloud streaming), Internet of Things, distributed real-time systems, security, and big data.

	Abstract
	Keywords
	Network Security, Intrusion Detection System, Anomaly Detection, Machine Learning.

