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ABSTRACT 
 
The Information-Centric Network (ICN) is a future internet architecture with efficient content retrieval and 

distribution. Named Data Networking (NDN) is one of the proposed architectures for ICN. NDN’s in-

network caching improves data availability, reduce retrieval delays, network load, alleviate producer load, 

and limit data traffic. Despite the existence of several caching decision algorithms, the fetching and 

distribution of contents with minimum resource utilization remains a great challenge. In this paper, we 

introduce a new cache replacement strategy called Enhanced Time and Frequency Cache Replacement 

strategy (ETFCR) where both cache hit frequency and cache retrieval time are used to select evicted data 

chunks. ETFCR adds time cycles between the last two requests to adjust data chunk’s popularity and cache 

hits. We conducted extensive simulations using the ccnSim simulator to evaluate the performance of 

ETFCR and compare it to that of some well-known cache replacement strategies. Simulations results show 

that ETFCR outperforms the other cache replacement strategies in terms of cache hit ratio, and lower 

content retrieval delay. 
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1. INTRODUCTION 

 

The internet was designed to be an end-to-end connection, with the simple purpose of connecting 

two computers to transmit data. This model is a host (or producer) centric communication model 

based on the location of the hosting node (IP address). The consumer must know the IP address 

of the producer directly or indirectly (using DNS system)  to obtain the required content location 

[1]. This model limits the growing demand for the internet to satisfy the tremendous number of 

content requests. Also, the need for efficient distribution network increases as the number of 

users and connected devices increases. A user or a device can be a content producer or content 

consumer. Information-Centric Networking (ICN) is a content-based internet architecture that 

solves the distribution problems in an IP-based network [2][3]. ICN represents a shift from host-

centric communication to the named-content system and focuses on the data itself rather than its 

location [4]. There are several proposed architectures for ICN such as Content-Centric 

Networking (CCN), Named Data Networking (NDN), Publish-Subscribe Internet Technology 

(PURSUIT), Data-Oriented Network Architecture (DONA), COntent-centric inter-NETwork 

(CONET), Network of Information (NetInf)/Scalable and Adaptive Internet Solutions (SAIL), 

CONVERGENCE, and MobilityFirst [5]. In ICN, the content name should be location-

independent, globally unique, and persistent. Content name is expressed as a flat string name, 

hierarchical string name, or any attribute-value based naming. Hence, existing Internet routing 

protocols have to be replaced by new protocols that route packets using the content name rather 

than its location. In-network caching, diversification, replication, and freshness are among issues 

to be considered in ICN communication for efficient content retrieval. 

http://airccse.org/journal/ijc2021.html
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The Content-Centric Networking (CCN) architecture refines and maintains ICN structures for 

future internet architecture. Named Data Networking (NDN) [6] is an active project that 

implements CCN architecture and is supported by the Future Internet Architecture program. 

NDN architecture allows functionality that benefits the user, such as in-network caching and 

multipath forwarding. In this paper, we focus on NDN as one of the funded ICN projects to 

realize future internet architecture. NDN divides data into chunks. The consumer node initiates 

communication and sends an interest packet looking for specific content by its name. 

Intermediate nodes can reply immediately to interest packets if the content is available in caches; 

otherwise, the interest will be forwarded until it reaches the producer node where it replies with 

the requested content.  

 

Using caching in NDN network improves network performance by increasing content 

availability, avoid producer bottlenecks, reduce upstream traffic, and reduce downstream latency 

[7], [8]. Each node in the network can cache data chunks in its cache store (content store) based 

on certain caching decision strategy. If the cache is full, then the node will decide to replace one 

of the cached data with new arrived content based on certain replacement policy. There are 

several caching decisions like Leave Copy Everywhere (LCE), Leave Copy Down (LCD), and 

Prob Cache [9]. Also, there are several replacement strategies like Least Recently Used (LRU), 

Least Frequently Used (LFU), First In First Out (FIFO), and Random [10] [11].  

 

The proposed strategy in this paper is an enhancement of the LFU replacement strategy with a 

time cycle factor, called Enhanced Time and Frequency Cache Replacement strategy (ETFCR). It 

calculates the weighted popularity factor for each chunk and sorts them accordingly. The 

popularity is defined by a time cycle between the last two requests of each chunk that inversely 

proportional to the number of hits. Each time a hit occurs, the new weighted popularity added to 

the previous one. ETFCR evaluated using ccnSim and GEANT network topology [12]. We 

measured ETFCR performance and compared it versus LRU and LFU strategies. ETFCR 

comparison results show improvement in number of hits and number of hubs between the 

consumer node and the content-full filling node. These improvements lead to reduced network 

fetch time and delay.  

 

The rest of the paper is organized as follows: Section 2 introduces the necessary background of 

NDN with emphasis on in-network caching and replacement strategies. Section 3 presents the 

current research literature in cache replacement strategies with a comparison table among some 

selected papers. Section 4 presents the details of the proposed method, ETFCR, and how it 

combines time and frequency factors to create efficient cache replacement algorithm. A detailed 

comparison with some well-known cache replacement strategies highlights the efficiency of the 

ETFCR is shown in section 5. Section 6 concludes the paper. 

 

2. BACKGROUND 
 

There are two types of packets (messages) in the NDN: interest and data packets. The interest 

packet is a request for specific data identified by its name or prefix. The Data packet contains the 

name and the content of the data along with the content signature. Nodes in NDN network can 

play at any time one of these roles: 

 

 Consumer (subscriber): is a node that sends an interest packet to request specific content. 

 Producer publisher): is a node that produces and stores the requested content by consumers 

in its cache. 

 Router: is a node that routes the interest packet and forwards data packets. 
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Also, each node in NDN has three data structures [12]: 

 

 Pending Interest Table (PIT): is a table that stores the forwarded interests that did not 

receive the requested data. 

 Forward Information Base (FIB): is a table that works as a routing table mapping interest 

packets to the selected forwarding output interface. 

 Content Store (CS): is a table that locally stores or caches the received data chunks. 

 

The consumer node sends an interest packet to its neighbors, requesting specific data by name. 

Every neighbor node either reply by the content from its local cache or forward the interest. The 

process continues until the requested data chunk is found in one of the middle nodes' repositories 

or until it reaches the producer. The content hosting node will send the requested chunk back in a 

reverse path to the consumer. When a node receives an interest packet from one of its interfaces, 

it checks the CS for matching data. If there is a match, it sends the interest back to the requested 

node through the same interface where the interest received. If the data chunk is not existing in 

CS, then it checks if there is a packet inside the PIT to match the name of interest. The interest is 

forwarded and wait for the requested content. In case there is no matching entry in both CS and 

PIT, the node forwards the interest using FIB and creates a new entry in PIT. The interest is 

forwarded hop-by-hop until it reaches a node with a cached data chunk or reaches a repository as 

in [13]. The required chunk sent back following the same path of interest packet by checking the 

downstream interfaces of PIT entries with the same name. Also, it will delete those PIT entries 

[2]. 

 

 
 

Figure 1.  Forwarding interest and receiving cached data chunk 

 

NDN uses hieratically structured and application-dependent names. Each piece of content has a 

unique name that the node used for forwarding and routing the packets [14]. The uniqueness of 

names guarantees matching the requested data when this name exists in the producer node. For 

example, the name of a CNN news homepage content for June 10, 2014, might be: 

/ndn/cnn/news/2014june10/index.htm. When the content is too large, it is divided into multiple 

chunks with different names [15]. Caching data chunks in CS, it is playing an important role to 

improve the performance in NDN. Both IP routers and NDN routers cache the data. In IP routers, 
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the cached data cannot be reused while NDN routers utilize cached data to fulfill requests. IP 

routers cache data for queueing and scheduling only [14].  

 

One of the main features in NDN is managing nodes caches by caching decision strategy and 

caching replacement strategy [16]. These two strategies helping in storage utilization of storage 

and delivering the content efficiently:  

 

a) Caching Decision Strategies: 

 

Caching is about deciding to store a chunk in the node’s storage when it arrives or just forward 

the chunk without storing it. Caching decision strategies can be classified according to their path 

location as off-path caching or on-path caching [17].  

 

 off-path caching: is about storing the data chunks in the node’s storage to increase the 

chunk’s availability regardless of the path of its interest. Data chunks can be in a node’s 

storage even if it is not on the traveled path. The decision made according to multiple 

information such as cache availability, network traffic, or content popularity [8].  

 on-path caching: caching is performed on the same path as the request. data packets are 

cached along the path to the consumer [1], [8]. when a router receives an interest packet, 

the router checks to see if the requested data packet is saved in the CS. The consumer 

receives the data packet directly if the data packet is on the same router. Therefore, the 

interest packet never reaches the producer, and the consumer has already retrieved the 

desired data packet. 

 

Different caching decision strategies categorized into multiple ways; one of them presented in 

[8]: 

 

 Probabilistic Caching: this technique is based on the probability of creating a replica of the 

data chunk. Examples: Leave-Copy Everywhere (LCE), Random Probabilistic Caching, 

and ProbCache.  

 Graph-based Caching: this technique is based on the location of the node and the topology 

of the network. Examples: Edge Caching, Leave-Copy Down, and Betweenness Centrality. 

 Popularity-based Caching: this technique is based on the calculated popularity of the 

chunk. Examples: Standalone-popularity Caching and Static-popularity Caching. 

Standalone-popularity uses a counter for the popularity ranking while Static-popularity 

uses threshold ranking. 

 

b) Replacement Strategies: 

 

In-network caching includes a cache replacement policy when an entire CS of a router becomes 

full. Therefore, replacement policy plays a significant role in the caching of ICN architecture. 

Such policies provide empty storage for incoming cached content by removing previous content 

[18]. When the cached packet deleted without satisfying any interest at their lifetime in the CS, 

this denotes inefficient cache. That is why in-network caching objective to improve data 

dissemination in the network in efficient manner. Router caches inside the NDN network have 

limited capacity. This limitation is the main challenge of caching. Replacement strategies are 

about deciding which stored chunk should be removed from the node cache so that the new 

chunk stored in place.  

 

With LRU algorithm, the replacement of content in the CS based on how recently the content was 

used. LRU allows cache replacement, when necessary (CS is full), to remove the data content 

that has not used for the most extended duration of time. LFU is a replacement algorithm tries to 
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cache only the most popular data content. When an eviction is necessary, this policy deletes the 

content with the smallest access value. Therefore, the LFU gains better cache hit compared to 

LRU. FIFO deletes the oldest content from a CS when needed. With the Most Frequently Used 

(MFU), replacement policy, a frequency of appearance distribution across the frequencies is 

created based on the records of the number of times each frequency has been used. The value of 

the highest priority assigned to the most frequently used. Particular nodes, including complex 

data structures, were the reasons for developing the randomized policies. Producing a simple 

random replacement (RR) policy directly replaces one of the stored. These replacement strategies 

are based on a single factor (time for example) and they are simple and easy to implement yet 

they are inefficient and have large number of cache misses. New cache replacement strategies 

proposed in the literature take extra network information in their cache eviction decision. Extra 

network information could be the distance from the source, user priority, data priority, content 

distribution, and network traffic. Packet arrival time is an important caching parameter yet it is 

considered as an insufficient parameter as high eviction cache rate raises. Many cache 

replacement strategies use the popularity or the priority of the content chunk [19]. 

 

 Content popularity: each data chunk has a weighted popularity value along with data 

content and name. The weighted popularity value is calculated using number of cache hits. 

Other factors may be used in the weighted popularity formula for fine-tuning.  

 Content priority: this attribute gives more value to significant data chunks and aims to 

lower their retrieval time. A content priority value is assigned to each data chunk. Data 

chunks with high priority will have a high probability of being cached and become highly 

available. 

 

3. LITERATURE REVIEW 
 

In-network caching affects profoundly network performance as it saves time and increases 

throughput. The available space for caching is limited, thus caching decisions should use it in the 

best way. Choosing the right replacement strategy can affect the hit ratio and reduce the 

transmission delay. 

 

The most straightforward replacement strategy in NDN among general replacement strategies is 

FIFO. In FIFO, the first stored chunk is replaced by the last arrived chunk. Another simple 

replacement strategy is the Random Replacement strategy (RR). In RR, a randomly chosen chunk 

is replaced by the newly arrived chunk. However, RR is simple but works efficiently with 

complex caching decisions. The most widely used replacement strategies are LRU and LFU [20]. 

In LRU, the hit ratio of the recently used chunks increased, and the old used chunks are evicted to 

make space for the new chunks. One of LRU advantages is a short execution time [20]. FIFO, 

RR, and LRU do not take into account the network parameters such as the distance (number of 

hops) between the producer and the consumer. Also, data priority is not part of their decision 

algorithm [4]. LRU does not consider the popularity of the data as LFU. Thus if there is an old 

data chunk that was popular and was not requested anymore, it will remain stored until another 

data chunk becomes more popular with time [21]. 

 

The literature is rich with many replacement strategies with enhanced performance over those 

general policies. The proposed strategy in [4] called Universal Caching strategy (UC) aims to 

increase cache hit probability and reduce the total delay by proposing Content Metric System 

(CMS). CMS uses the function CM(k) (1) calculated for each chunk arriving at any node 

according to different parameters: 

 

))(,,)(,)(()( kPRkFkDfkCM   (1) 
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where, D( k ) = Distance from the original source of the content k, F ( k ) = Frequency of 

Access of content k, R = Reachability of an ICN router n, P( k ) = User given priority of content 

k; 

 

Every time a new request arrived F(k) value will be increased by one. R indicates the node 

position where the crowded and centrally nodes have higher values of R, and the edge located 

nodes have low values. Each time a new request for a chunk came, the CM value of the chunk 

will be updated. If the node cache is full, then the chunk with the lowest CM value will be 

replaced by a new arriving chunk. If there is a large requested chunk with high CM value, then 

the new data chunk cannot be replaced. For that problem, they proposed a solution for the chunk 

that has not accessed for a specific amount of time called cache refresh time (T) then it will be 

replaced. After the evaluation, the result showed that the hit ratio increased comparing to FIFO 

and LRU. 

 

The Least Value First (LVF) strategy used in [22] depends on three parameters for the function 

(2) that calculates the value of each arrived chunk as: 

 

iiii NDONDONDO DropPopDValue ...
'   

 (2) 

 

where , , and  are tuning parameters specified based on the user group at requesting time of 

the Named Data Object (NDO), D' is the average expected delay or how long the requesting 

client can wait for the data, POPNDO is the frequency of requesting the chunk by clients, 

DropNDO is the probability of dropping the chunk depending on it age time-to-live (TTL). 

 

A cache of the node implemented as FIFO queue where the first stored chunk is the first one 

dropped if the cache is full and the chunk’s age expired. At each operational cycle, each node 

reset its stored chunks values (ValueNDO) and calculated them again. The simulation results 

showed an improvement in terms of publisher load, end-to-end delays time-to-hit data, and hit 

ratio when they compared it with LRU and FIFO. 

 

The proposed strategy in [21] is a cache replacement strategy based on Content Popularity (CCP) 

depends on the popularity ranking of content. The authors tried to avoid the problems in LRU and 

LFU by adding another data structure called CPT (Content Popularity Table), a table containing 

all the information related to the popularity of chunks like content name, cache hit, previous and 

current popularity. The popularity ranking is calculated by (3) and (4). 

 

 
 

1

][.
1








 iPiN
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 (3) 

 
Tc .1

 (4) 

 

Where N[i] is the number of hits of the chunk and P[i] is the last calculated popularity. The 

parameter  (>1) in equation (5) is proportional to counting cycle (c.T.). The influence on the 

number of hits will be decreasing at each time the hit occurs so the total popularity will be less 

affected by the time. A non-latest chunk with the lowest popularity value will be replaced when 

the cache is full. They simulated the strategy and compared it with LRU and LFU. In the 

evaluation, they focused on the average network throughput, cache hit ratio and server load. The 

evaluation result was evident that CCP performance is better than LRU and LFU. 
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The strategy used in Distributed Caching with Coordination (DCC) [23] solution is reducing the 

traffic on NDN network backbone by calculating the weighted popularity in two steps; one for 

inter-domain and the other for intra-domain. The first step, calculate Weighted Popularity (WP) 

for each chunk i in every node j. WPij calculated as the following: 

 

α

ij

i
ij

Rank

ReqCnt
WP 

 (5) 

 

where, ReqCnti is a total request amount for all content in node i and Rank
ij is the number of 

requests of one content j and a  real-time skewness factor . After obtaining the sum of all WP 

values in all nodes for each chunk.  

 

When a node receives a request, it looks up to the global content dictionary. If there is a hit, it 

will fetch the chunk, otherwise, it will forward it to the corresponding node. The strategy is 

simulated and compared its Traffic-Saving Rate (TSR) and cache hit rate versus Random cache 

and LCE. The results showed an increase in the cache hit rate and decrease in the backbone 

traffic. 

 

In [24], a proposed replacement strategy called Least Frequent Recently Used (LFRU). It is a 

suitable technique for rapidly changing caches. It divided the cache into two parts: 

 

 The privileged partitions: using LRU replacement strategy. It is divided the cache into K 

sub-partitions. Each sub-partition has a counter for the number of hits within a Time 

Window (WT). 

 Unprivileged partition: using an approximated LFU (ALFU). This partition should be small 

enough to effectively count chunks and large enough to increase the cache hit probability.  

 

The replacement decision in this strategy depends on the condition that for each WT, it checks: 

 

a. The request arrival rate of a chunk ci should be higher than or equal to the minimum 

normalized request rate of chunks in the unprivileged partition.  

b. The chunk ci has a higher priority than the replacement candidate chunks as: 

 

)(
.)(

i

N

n

c
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j

ALFU

j

i

i





            (6) 

 

where, ci is the ith rank chunk, NALFU is a set of counter values of each chunk in the unprivileged 

partition, τj is the request rate of a newly arrived chunk at the jth cache node, and nj is the size of 

the jth cache node that measured by the number of content items that can be stored. If the request 

arrival rate for the chunk is higher than the minimum normalized request rate and lower than the 

maximum normalized request rate of the unprivileged partition chunks, then it will drop the 

minimum normalized request rate chunk cmin from the unprivileged partition and insert ci in the 

unprivileged partition. Otherwise, it will move the least recently used chunk from the selected 

privileged partition to the unprivileged partition. After simulating their strategy in a scale-free 

network generated by Barabási_Albert (BA) model using MATLAB, the results showed LFRU 

hit rate outperforms the Random and LRU strategies. The hit rate in LFRU is close to the 

window-based LFU (WLFU) and LFU. 
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Table 1 shows a summary of the replacement strategies discussed in this literature review. The 

complexity of the general replacement strategies FIFO, LRU, and RR is O(1), while LFU is O(n). 

The strategies FIFO, LRU, and LFU keeps the chunk list in an ordered manner while RR needs 

no order. All the surveyed strategies require ordered lists of chinks except UC. 

 
Table 1.  Summary of replacement strategies. 

 
Replacement 

Strategy 

Complexity Replaced 

chunk 

Evaluation metrics Parameters 

UC [4] O(n) Lowest CM 

value 

Traffic-Saving Rate 

(TSR), cache hit rate, 

data usage, hit 

probability, number of 

cache units, cache size 

distance, hit frequency, 

reachability, and priority. 

LVF [22] O(n) Lowest average network delay, 

time to hit ratio, hit 

ratio, publisher load 

delay, hit frequency, and 

age. 

Topology is random 

graph 

CCP [21] O(n) Lowest 

popularity 

server average load, 

network average 

throughput, cache hit 

ratio, cache size 

Last popularity, number 

of hits 

DDC [23] O(n) Lowest 

SWP 

cache size, Traffic-

Saving Rate (TSR), 

cache hit rate, impact 

of request patterns, 

impact of content 

population 

Request amount, and 

distance. 

Topology is Abilene and 

GEANT 

LFRU [24] O(1) Minimum 

normalized 

request rate 

content cmin 

probability of hits cache size, partition 

rank, priority, arrival rate 

 

4. PROPOSED METHOD 
 

Most of the mentioned previously strategies focusing on the popularity of the chunks. Not always 

caching the chunks that have the highest number of requests is the best solution. Other 

parameters need to be considered, such as Time To Live (TTL) of chunks, distance from the 

requesting node, network traffic, or the cache size. Some or all mentioned parameters are selected 

based on network topology or specific application domain. TTL is a vital parameter for IoT 

device’s data freshness. The proposed strategy in this paper is an enhanced LFU. In LFU, each 

node keeps counting the number of requests for each chunk. The cache store will be sorted in 

descending order where the last chunk is the least frequently used (we call it LFU), and the first 

chunk is the most frequently used (we call it MFU). LFU chunk has the least number of requests. 

LFU chunk will be replaced when the cache is full if a new chunk arrives. The proposed 

improvement here counts time cycles from the last request of the chunk until another request is 

coming to the node. The proposed strategy consists of sorting the cache and calculating the 

weighted popularity of a chunk. 

 

a) Cache Sorting  

 

Cache order kept in descending order according to chunks popularity value P. MFU chunk is a 

chunk with the highest value of P. At the same time, LFU is the lowest value of P. If there are 

two chunks with the same P value, then the recent one is stored after the second one. For 
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example, if two chunks both have P=50, the chunk that arrived at the 10th second will be stored 

before the chunk arrived at the 13th second, as shown in Figure 2, where P is the calculated 

popularity and ToA is the time of arrival. 

 
P:10 

ToA: 32 

P:30 

ToA: 20 

P:50 

ToA: 13 

P:50 

ToA: 10 

P:95 

ToA: 2 

P:100 

ToA: 1 

 
Figure 2.  An example of chunks order in the cache 

 

b) Weighted Popularity Calculation 

 

Each chunk in the cache storage has some properties. Among these properties is the time of the 

last hit called Hit Time (HT), number of hits (H), and the popularity value P. Every time a request 

came for a stored chunk in the node, H incremented by one and HT will be sitting to the time of 

request arrival. After recording H and HT values, the popularity P of the chunk calculated using 

the following formula: 

 

1

1
1




 

i

i
ii

HT

H
PP

 (7) 

 

where Pi is the last calculated weighted popularity, and Pi+1 is an update of the chunk weighted 

popularity. HTi+1 is the time from the last request arrival to the new request, expressed by the 

following equation: 

 

ii HTtimecurrentHT 1  (8) 

 

where Pi+1 = the new (updated) popularity value of the cached chunk, 

Pi = the current popularity value of the cached chunk, 

HTi = the time between the last two hits, 

Hi = the current number of hits; 

 

The division by HT will affect P’s value, it will be less increasing if HT is too large and the 

chunk becomes unpopular. When HT is small, the chunk has rapid requests, and becoming more 

popular, so its P value is increasing faster than other chunks.  

 

For example, as shown in Figure 3, the chunk A has a value of P=10, the last request arrived at 

the second 10, and a new request arrived at the second 50, so the time between the two requests is 

too large HT=40, so P incremented by 0.28. On the other hand, B has a value of P=2, the last 

request arrived at the second 20, and a new request arrived at second 25 so HT=5 and the value of 

P incremented by 0.6, which is larger than the P increment of A. 

 

 
 

Figure 3.  Example of popularity (P) calculation 
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When a data chunk reaches a node, the Event-based freshness algorithm (Algorithm 1) starts 

invocation. If the node decided to store the chunk in the cache according to the network caching 

decision strategy, then the node will check if the chunk is existing in the cache or not. If it is 

existing, then it will increment its number of hits H by one and update its value of P. The position 

of the chunk will be changed depending on the new value of P. If the chunk is not existing in the 

cache and the cache is not full yet. It is stored at the right position at the top of the cache if it has 

the highest P value, at the bottom of the cache if it has the lowest value, or between two nodes 

where the prior node has less or equal P value and the next node has higher P value. If the cache 

is full, then the LFU chunk will be deleted. The new value of LFU will be the second least value 

of P or the newly cached chunk if it has the lowest P value. The proposed strategy is an 

improvement of LFU strategy. The following algorithm explains the proposed method. 

 

Algorithm 1 Event-based freshness 

 

Data: Data to retrieve 

Cache Size = B 

Data chunk = C 

Current time = T 

Number of hits = H 

Last calculated popularity = P 

Most frequently used chunk = MFU 

Least frequently used chunk = LFU 

 

Result: 

 

A set of ordered chunks according to P 

For each incoming data chunk decided to be stored   

 

 if C  cache 

      H++ 

      HT = T – H 

      P = P + (H / HT) 

      if P > MFUP 

          Move C to the top  

          MFU = C 

     else if P < LFUP 

          Move C to the bottom  

          LFU = C 

     else if P > LFU and P < MFU 

          Move C in the right position 

          HT = T  

      end if    

 else  

      if B = 0 

          Place C at the top 

          MFU = LFU = P 

          B++ 

      else  

          if B is full 

               Delete LFU 

               LFU = LFUold 
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          end if  

          if P > MFUP 

               Place C on the top  

               MFU = C 

          else if P < LFUP 

               Place C on the bottom  

               LFU = C 

          else if P >LFU and P < MFU 

               Place C in the right position 

               HT = T  

          B++ 

          end if  

      end if  

 

5. EXPERIMENT RESULTS 
 

5.1. Simulation Setup 
 

In this section, we present detailed performance evaluation of the proposed strategy, ETFCR. We 

simulated GEANT network topology using ccnSim simulator with similar simulation parameters 

as in [12]. The ccnSim is a simulator developed using C++ to extend OMNET++ framework for 

NDN network simulation at data chunk level. Table 2 shows the simulation parameters used in all 

experiments. 

 
Table 2.  Simulation parameters. 

 
Parameter Meaning Values 

C Cache size 102 

F File size 1 chunk 

N Number of nodes 22 

Cons Number of consumers 10 

Req Number of requests 102 

λ Aggregate request rate 20 req/s 

R Replicas 1 

FS Forwarding strategy SPR (Shortest Path Routing) 

Simulation_time Simulation time 400s 

 

5.2. Experiment Evaluation 
 

We simulated two caching decisions: Leave Copy Everywhere (LCE) and the Probability-based 

caching (ProbCache). LCE is an approach that leaves a copy of the requested data in the content 

store of every router along the path towards the consumer. In ProbCache, the caching process is 

executed with a varying probability inversely proportional to the distance between the consumer 

and the producer. presents an unequal resource allocation among nodes, a high computational 

overhead, and requires parameters fine-tuning. The proposed replacement strategy (ETFCR) is 

evaluated with LRU, LFU, and CCP. Evaluation metrics are the average hit ratio (p_hit), the 

average number of hops (distance), average download time (avg_time), average network 

throughput, and server load.  

 

 p_hit: it measures the average hit rate among all caches. Cache hit ratio is a measurement 

of how many requests a cache can fill successfully, compared to how many requests it 

receives. It is calculated by: 
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missesofnumberhitsofnumber

hitsofnumber
hitp


_

 (9) 

 

 hdistance: it measures the average of the number of hops for retrieving each chunk. We 

measure the average reduction in hop count between cached content and the original 

storage location. It is calculated by: 

 

clientsofnumber

distanceaverageglobal
hdistance 

 (10) 

 

 avg_time: it measures the average download time, calculated as: 

 

clientsofnumber

timeaverageglobal
avg_time 

 (11) 

 

We extended the ccnSim simulator with ETFCR and evaluated the effectiveness of every 

replacement strategy. These performance metrics quantify the effectiveness of ETFCR compared 

with other strategies. We assume data chunk interests are at constant average rates with a 

randomized time gap between two consecutive Interests. A time gap is a random number that 

follows a uniform distribution as in [21]. The cache size varies between 20 to 400Kbits, and the 

bandwidth fixed at 100Mbps. Figure 4 shows the comparison results of the four caching 

strategies in terms of the average cache hit ratio. It shows that ETFCR has a higher hit average 

cache rate than LRU, LFU, and CCP. Also, we evaluate the effect of varying cache sizes. Figure 

5 shows that ETFCR performance under different cache sizes. ETFCR performs significantly 

better than the other three caching strategies for all cache sizes. For example, for 200 Kbits of 

cache size, ETFCR has a cache hit ratio of approximately 0.7, compared with CCP, LFU, and 

LRU. 

 

 
 

Figure 4.  Evaluation of the average cache hit ratio (p_hit) 
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Figure 5.  Cache hit ratio vs. Cache size 

 

Figure 6 shows the difference in distance metric between ETFCR and the other three strategies. 

This comparison based on the total number of hops between its producer and the consumer that 

requested it. It shows ETFCR has good performance but with no significant difference with LRU 

and CCP. In Figure 7, the comparison results using avg_time show the good performance of 

ETFCR in the average download time compared to the remaining algorithms. 

 

 
 

Figure 6.  Evaluation of the average number of hops (hdistance) 
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Figure 7.  Evaluation of the average download time (ms) 

 

Fig. 8 shows the performance of ETFCR in terms of average network throughput with different 

cache sizes where ETFCR outperforms other strategies. A Server (producer) hit occurs when an 

Interest could not be satisfied by any intermediate node along the path to the producer. That is 

when no intermediate node has a cached copy of the requested content. ETFCR has the lowest 

server ratio which leads to lower average server load.  

 

 
 

Figure 8.  Evaluation of the average throughput of the network vs. Cache size 
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Fig. 9 shows the performance of different cache policies in the average server load with different 

percentages of cache capabilities. We can see the server can reach a lower load with ETFCR than 

with other cache policies. When the percentage of cached capacity of the node/total capacity of 

the network is 40%, the server load is decreased by approximately 37% compared with LFU. 

 

 
 

Figure 9.  Evaluation of the average load of the server vs. Cache capability 

 

6. CONCLUSIONS 
 

NDN is one of the proposed ICN structures to replace existing location-based internet. In-

network caching has a significant effect on NDN performance. There is the need to study the 

significance of in-networking caching in NDN from various angles. Relying on a single caching 

decision parameter does not give efficient caching strategies. In this paper, we proposed a new 

replacement algorithm called ETFCR to enhance the NDN's in-caching performance by 

combining multiple cache replacement factors. ETFCR enhances NDN performance by 

increasing the number of hits and weighted popularity. It combines request frequency and recent 

request time by taking into account time gaps between two successive hits. Also, we 

demonstrated the effectiveness of ETFCR, compared with the LRU, LFU, and CCP. The 

simulation results show that ETFCR increases hit rank, decreases the average distance, and the 

average delay time. ETFCR has the lowest server ratio which leads to lower average server load. 

It significantly decreases the server hot ratio with a higher consumer cache hit ratio and increases 

the network capacity simultaneously. Other cache replacement parameters are under 

consideration for future work. The selection process of these prospect parameters will depend on 

network application and topology. 
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