
International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

DOI: 10.5121/ijcnc.2022.14104 59

A COMBINATION OF THE INTRUSION DETECTION

SYSTEM AND THE OPEN-SOURCE FIREWALL
USING PYTHON LANGUAGE

Tuan Nguyen Kim1, Tam Nguyen Tri2, Lam Tran Nguyen2 and Duy Thai Truong2

1School of Computer Science, Duy Tan University, Danang, Vietnam
2Danang ICT Infrastructure Development Center, Danang, Vietnam

ABSTRACT

There are many security models for computer networks using a combination of Intrusion Detection System

and Firewall proposed and deployed in practice. In this paper, we propose and implement a new model of

the association between Intrusion Detection System and Firewall operations, which allows Intrusion

Detection System to automatically update the firewall filtering rule table whenever it detects a weirdo

intrusion. This helps protect the network from attacks from the Internet.

KEYWORDS

Firewall, Rule table, Intrusion detection system, Sniff, Packet capture.

1. INTRODUCTION

The enterprise network security model is responsible for monitoring every flow of traffic and
every packet in/out of the network, to detect unauthorized intrusions and packets that may come

from legitimate sources but are at risk of carrying malicious code into the network [1]. When an

unusual activity is detected in some traffic, Intrustion Detection System (IDS) takes immediate

action, such as disseminating information about irregularities or sending irregularity notifications
to other systems, including the network's security administrator. It's worth noting that IDS is

simply in charge of detecting and issuing warnings; other elements are in charge of dealing with

problems. Firewalls commonly do this under the direction of the security administrator's law
table. Obviously, this stage seems to be inactive; however, because upgrading the rule table takes

time, it should be considered for improvement to increase the efficiency of network protection for

organizations and companies [2].

Package Filters and Package Filtering Rules are two of the three key components of package

filter firewalls, according to this definition. The cyber security management team will create a

package filtering rule table for firewalls based on the network access control policy. This Rule
table is used by package filters to manage network access policies. This means that the ability to

identify the situation of network access to bring new laws and the speed with which the cyber

security administrator updates the rule board for the firewall is important to the timely level of
avoiding undesired traffic flows [3]. As a result, if we develop a firewall support system that can

detect traffic flows, packets with suspicious actions, and automatically updating the package

filtering rule board for the firewall, the firewall will perform better and prevent harmful traffic.

This is something that the host-based IDS [8] self-made software can deal with.

http://airccse.org/journal/ijc2022.html
https://doi.org/10.5121/ijcnc.2022.14104

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

60

Firewalls and IDS can both be hardware devices or software programs. The firewall is selected as
the open-source IP Tables technology in our suggested model. IDS is a Python-based Sniffer

program that we created. This is considered the article's main contribution.

As a result, IP Tables [6] conduct network access control activities while also being prepared to
receive instructions from Sniffer to change the packet filtering rule table. After passing through

IP Tables firewall, traffic lines and packets are delivered to Sniffer, who collects and recovers the

necessary information, analyzing, statistics, and forecasting to discover the origin of the traffic, of
the suspicious packet. Then, automatically, and instantly, the IP Tables rule board is updated.

Under this new rule table, the IP Tables firewall will make an access control decision. The

system we propose has this as its target.

The benefit of open-source firewalls [10], such as IP Tables, is that we can easily change their

rule table (packet filtering rule file, to be precise), which is made simple by the Python program.

This is one of the reasons why we consider auto-updating packet filtering rules for open-source
firewalls.

2. RELATED KNOWLEDGE

In this section, we'll summarize the most basic information regarding two cyber security

technologies that are necessary in today's high-security enterprise networks: Firewalls and IDSs.

This is required so that the meaning of the combination in their functioning in the network model

that we present in this article may be simply understood (in section 3).

2.1. The packet filtering firewall's functioning principle

A firewall is a network access control device that also functions as an in/out network port

(commonly referred to as a network gateway). As a result, all traffic flows in and out between

external networks, most commonly the Internet, and the enterprise's internal network are subject
to the Firewall's supervision and control. To determine whether a traffic/packet flow is allowed to

pass through a firewall, it uses a network access policy, which is designed as a Policy Rule Table,

and the appropriate information contained in the traffic/packet flow - usually IP Address,
Protocols, and Port number.

Figure 1. The network diagram with the existence of the firewall

Firewalls are divided into two types based on their operation principles. They are the filtering

firewall (Packet filtering firewall) functioning at the Network layer of the OSI or TCP/IP network

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

61

model and the Application layer firewall (also known as Proxy) working at the 'Application' layer
of the network model. Nowadays, enterprise networks often use a firewall that combines the

operation priciples of these two types of firewalls.

The unit that manages the in/out of the news; package survey filters, also known as Packet
Filters; and package filtering rules are the three primary components of the firewall filter

package. The Packet Filter uses the package filtering rule table, which was put by the cyber

security administrator into the firewall, to decide whether to allow the packet to get through to its
destination or not.

Figure 1 represents an enterprise network with a package filter firewall acting as a network gate.
Every packet from the Internet to the corporate network, as well as from the internal network to

the Internet, must pass through the firewall.

The network access policy of this enterprise network can be seen in the network diagram: Only
packets from the Internet are allowed to enter network zone 192.168.2.0/24, the enterprise

network's DMZ (DeMilitarized Zone) zone; packets from the Internet are not allowed to enter

network zone 192.168.1.0/24, the user network area inside. Any traffic flow from the user
network zone and the DMZ network zone, on the other hand, can reach the Internet. The cyber

security administrator standardizes this policy into packet filtering laws, which are then

constructed into the Package Filtering Rule Table (shown in the diagram) and deployed on the
firewall. Before the new network access control policy takes effect, the cyber security

administrator must update the Package Filtering Rule Table for the firewall.

The network access policy of this enterprise network can be seen in the network diagram: Only
packets from the Internet are allowed to enter network zone 192.168.2.0/24, the enterprise

network's DMZ zone; packets from the Internet are not allowed to enter network zone

192.168.1.0/24, the user network area inside. Any traffic flow from the user network zone and the
DMZ network zone, on the other hand, can reach the Internet. The cyber security administrator

standardizes this policy into packet filtering laws, which are then created into the Package

Filtering Rule Table (shown in the diagram) and installed on the firewall.

2.2. Principle of Operation of Intrusion Detection System

According to [4], IDS is a network access monitoring system that can be a hardware device or a

software application. It can be a hardware device or a software program. It's responsible for

monitoring traffic flows into and out of the network, or to a specific computer on the network, to

discover and notify relevant departments about unusual access, unlawful access to the network
system, or to specific machines on the network.

Figure 2. A network diagram with Network-based IDS and Host-based IDS in the background

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

62

In fact, IDS can detect and analyzing all user and system actions, as well as reviewing system
files, configuration files, and operating systems. It can also check the integrity of system and data

files, discover problems in the system's setup, and detect and issue warnings if the system is at

risk. IDS, in particular, may analyze trends based on known attacks.

IDS provides a variety of advantages, including ease of deployment in an existing company

network without disrupting the current network, and the ability to provide rapid and varied

warnings regarding problems. The potential of an IDS to detect unexpected traffic flows and
suspicious actions can aid systems and administrators in detecting and preventing multiple

network attacks. System administrators can simply modify IDS's "what needs monitoring" by

modifying its "signature set" (with signature-based IDS type). IDS can also log, identify, and
report on changes to important files on computers connected to the inland network. However,

IDS has several limitations, such as the ability to deliver false positive or false negative warnings

to the system regarding irregularities and suspicions, which can negatively affect the system's

normal operation. The ability of an IDS to examine encrypted packets is likewise restricted, and
therefore does not assist in discovering the source of a network attack. Like other cyber security

systems/network services, IDS can be hacked via DoS (Deny of Service) and "misleading"

attacks.

The differences between IDS and IPS (Intrusion Prevention System) cybersecurity systems

should be clear. They read and analyze network packets before comparing them to known attacks
known as "signature set" (also known as signature episodes, or threads). While IDS merely

detects unusual packets and issues warnings, IPS is an access control system that can accept or

reject a packet depending on a set of rules. IDS requires people and/or another system to view the

results and take action, whereas IPS just requires regular updates to known threats and the
addition of new threats.

When IDS is needed to monitor traffic both going in and out across the network, it can be placed
between the firewall and the router (Internet connection); it can be placed in the DMZ zone:

when only ids monitor traffic entering the DMZ zone; or it can be placed behind the firewall

(right in front of the inner network): when IDS is needed to monitor traffic between the internal

and external networks. HIDS is often installed on each server in the DMZ zone to monitor and
warn of unusual access or suspicious activity.

Host-based IDS (HIDS), Network-based IDS (NIDS), Protocol-based IDS (PIDS), Application
Protocol-based IDS (APIDS), and Hyber IDS are the five most popular types of IDS (HyIDS). In

terms of where IDS is located in the network or scope, whether it's on the entire network or just

one computer, and how it monitors traffic flow, there are two main types: HIDS and NIDS.

 NIDS: This form of IDS is usually installed in a network position where it may monitor all

traffic flow in and out of all network devices. NIDS monitors and analyzes all traffic flows

over its entire network region in real time, then compares them to known threats. When a

"match" or irregularity is found, NIDS notifies the systems involved, including the network's
security administrator, of the unusual actions.

 HIDS: This form of IDS analyzes packets as they open individual hosts in the network. HIDS

is typically found near computers and other devices where it receives tracking tasks. When

HIDS detects suspicious or harmful behavior from its "user," it will send alerts to the systems
involved or the system administrator, letting them know what to do next. HIDS must also

track key files on the host it is monitoring, and if it detects that these files have been altered

or destroyed, it must transmit alerts to the appropriate systems.

If you rely on IDS intrusion detection, it includes signature-based IDS and Anomaly-based IDS.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

63

 Signature-based IDS: This form of IDS uses a signature set - a database of known threats and

attacks - to determine whether traffic flows are unusual or have suspicious behaviors by
"matching" the data analyzed from traffic flows to the signature set's data. This sort of IDS

serves the same functions as antivirus software and is widely used and effective. However,

the efficiency of IDS is dependent on the focus, so it is entirely adaptable to "new

abnormalities" and "new forms of attacks" and a large signature set will reduce network
bandwidth.

 Anomaly-based IDS: This form of IDS is used to detect traffic flows including "new

abnormalities," or "new types of attacks." It monitors traffic flows to determine "normalcy,"

which is one of the foundations for IDS to detection systems. In truth, this strategy required a
high level of "intelligence" on the part of the IDS to successfully complete the task of

detecting traffic, particularly unusual packets that the system had not previously detected.

Currently, an IDS that has a high level of "intelligence" must be developed using a machine
learning approach.

The main difference between these two types of IDS can be noticed in the fact that signature-

based IDS uses a known signature set to detect irregularities. Anomaly-based IDS, on the other
hand, detects irregularities based on "normal" traffic.

Figure 2. shows a business network diagram that combines both NIDS and HIDS. HIDS is
installed on servers in the DMZ zone (Web, File, Mail) in this network to detect any illegal or

unexpected access to these servers. NIDS is installed behind the firewall to monitor all traffic

entering and exiting the network.

When a network traffic flow passes through it, the signature-based IDS type operates as follows:

it copies the traffic and then separates the necessary information in headers and/or payloads from

it. The IDS then proceeded to "match" this information against a database of known threats. If a
"match" is identified, IDS notifies the appropriate systems. When the IDS detects a new

irregularity or a new threat from traffic flowing through it, the database is updated to prepare for

future "matching”. The Anomaly-based IDS type observes all traffic flows passing through first,
acquiring important data to determine "normalcy." Then rely on "this normality" to find the

"irregularities" hiding inside it. This sort of IDS is extremely good at detecting new threats, "new

attacks," but it need "intelligence" to do so [7].

3. THE PROPOSED MODEL

3.1. Network model

Figure 3 depicts our proposed model, which is based on an operational combination of firewall

and Host-based IDS:

Figure 3. A network diagram with a firewall and Host-based IDS in use

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

64

In this model:

 The firewall in responsible for controlling access to the entire network in this model. In

effect, the firewall only enables connections from the Internet to the DMZ zone, while

preventing connections from the Internet to the inside user network. Any connection

from within the network, however, is permitted. This firewall is built with the IPTables
open-source firewall software. IPTables permission commands were used to create the

package filtering rule table at first.

 The IDS is responsible for observing the flow of traffic entering the DMZ. If the IDS

detects an anomaly or suspicious activity from a certain traffic stream or packet, it will
report this to the relevant components/objects. In particular, Sniffer can automatically

update the packet filtering rule table on IPTables. We use the Scapy library of the Python

language to build a Sniffer program that performs this function and task of the IDS.

The proposed model has a new feature in that we have established a connection in the operation

and completed the task assigned between the Sniffer program and the open-source firewall

IPTables: Once the origin of the traffic or packet line is determined to be abnormal or suspected
of acting suspiciously, Sniffer immediately sends a command to IPTables to update the rule table

filters its packets. This new package filtering rule table will use firewall IPTables to prevent

unwanted traffic flows and packets from accessing the network.

The benefits of the proposed model are obvious: in addition to the usual functions of a

specialized IDS, Sniffer is totally proactive in automatically modifying the package filtering rule
table on the IPTables firewall. This not only helps to prevent the organization's plan to sabotage

the network from the Internet from happening, but it also helps the cybersecurity administrator

save time [9].

3.2. Related work

First, we do the necessary work to put the proposed model's network into operation, as designed.

We then proceed to establish the IPTables Firewall Package Filtering Rule Table in accordance

with the network access policy, in which we direct all traffic lines through IDS, the sniffer

program runner, after passing through the IPTables firewall.

Our main contribution is not only to propose a novel model combining IDS and Firewall, but also

to provide a Python-based Sniffer software. The major functions of the Sniffer program are as
follows:

- Function process_packet(): Sniffer's process packet() function is responsible for copying

all packets going through the specified ports (specified in the files: Listports and Blacklist). Then,
from the header of this packet, obtain the necessary details, such as the packet type (TCP or

UDP), source IP address, source port, and so on. The function test for active will take this data as

an argument.
- Function test_for_active(): This function compares the contents of packets received from

the proceeded packet with the contents of Listports and Blacklist. If a match is identified from a

specific traffic or packet, Sniffer counts how many times it appears; if the number of times
exceeds the defined threshold, test for active updates the IPTables rules to prevent the traffic

from going online. This function is also in charge of detecting and notifying suspicious traffic

flows, which are often traffic flows provided in large from a single IP address or many IP

addresses to Sniffer.
- Function setup_logfile(): Set the logfile parameters that Sniffer uses to save information

about the traffic, packets that it is specified to pay attention to during observation with the setup

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

65

logfile() function.
- Class limitedPool: This class contains the functions init_ and _setup queues. In multi-

threaded processing cases, the function init_ performs the initial construction of queues for

ThreadPools. We've set a maximum queue size of 10,000 people (containing 10000 threads). The

setup queues function is used to configure queue parameters.
- Sniffer was able to handle all the packets supplied to it thanks to Python's support [5],

even when up to 10,000 packets were sent at the same time.

- update rule iptables.py program: This firewall, which is based on the SSH protocol,
which is used by Sniffer to deliver commands to IPTables, must update the rule table to block

packets containing strings that Sniffer considers are a threat to the internal network system.

Sniffer uses these two functions to transmit commands to change IPTables, ensuring that traffic
flows and undesirable packets are prevented from accessing the network.

- And report2email.py program, which is based on the SMTP protocol and is used by

Sniffer to send emails to cybersecurity administrators with the content of unusual notifications.

3.3. Testing and evaluation of the proposed model

We set the proposed model to the test in three different scenarios: Scenario 1: String filtering test

This scenario is designed to see how well Sniffer and IPTables work together in alerting and

stopping packet lines that contain a string that has been flagged for attention and is on the

blacklist.

 String filtering test (scenario 1): This script is intended to test the cooperation between

Sniffer and IPTables in a warning and blocking packet streams that contain a specified string that

should be noted and indicated. out on the blacklist.

The result is as expected: if many packets come into the Sniffer, and their payload contains the

same string recorded in the blacklist, these packets will be blocked by IPTables immediately for a
set length of time.

 Source IP filtering test (scenario 2): This scenario is designed to see how Sniffer reacts

when a specific IP address generates many connections. IPTables must monitor traffic coming

from this IP address, and Sniffer must identify that this is a suspicious connection.

As a result, if there is a large amount of traffic, go into a sniffer, which has the same source IP

address, within a certain period, IPTables will quickly stop this traffic stream.

 SYN Flood attack prevention test (scenario 3): In this scenario, Sniffer must react when

TCP SYN sends it too many packets (possible DoS attack in SYN Flood). In this case, Sniffer

will have to issue a request to IPTables, which will block traffic streams containing TCP SYN

packets, leaving iptables to do the rest of the work.

Not surprisingly, if a significant number of packets TCP SYN, go into sniffer, within a given

length of time, the traffic line with this initial initialing packet is immediately blocked by
IPTables.

 We also performed an operational coordination performance assessment between Sniffer and
IPTables during the testing procedure. To check the filtering and packet blocking results of the

proposed model, we use the Tcpdump and Wireshark tools:

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

66

 For string filtering, we attack iptables by producing and sending about 1000 packets to

IPTables within the set time period, including a large number that exceeds the allowable
threshold, and the packets containing strings have been requested sniffer tracking (here is the

command "ls –ls"). We dump packets on the firewall and the Sniffer server at the same time.

Then, after analyzing two dump findings, it was discovered that: There are over 1000 packets to

firewall, but only over 800 packets make it to the server.

Table 1. The packets received on the IPTables firewall

1021 35.844333 10.7.3.100 192.168.10.50 TCP 60 934 2222 [SYN]

1022 35.984048 10.7.3.100 192.168.10.50 TCP 60 16453 2222 [SYN]

1023 35.127766 10.7.3.100 192.168.10.50 TCP 60 47486 2222 [SYN]

1024 35.267755 10.7.3.100 192.168.10.50 TCP 60 19205 2222 [SYN]

1025 36.415242 10.7.3.100 192.168.10.50 TCP 60 32231 2222 [SYN]

1026 36.570646 10.7.3.100 192.168.10.50 TCP 60 50113 2222 [SYN]

1027 36.713131 10.7.3.100 192.168.10.50 TCP 60 57756 2222 [SYN]

1028 36.863405 10.7.3.100 192.168.10.50 TCP 60 25465 2222 [SYN]

Table 2. The packets received on the Sniffer server

683 26.090433 10.7.3.100 192.168.10.50 TCP 60 47532 2222 [SYN]

684 26.235342 10.7.3.100 192.168.10.50 TCP 60 21959 2222 [SYN]

685 26.375629 10.7.3.100 192.168.10.50 TCP 60 31919 2222 [SYN]

686 26.515015 10.7.3.100 192.168.10.50 TCP 60 59450 2222 [SYN]

709 26.660699 10.7.3.100 192.168.10.50 TCP 60 56269 2222 [SYN]

769 26.805431 10.7.3.100 192.168.10.50 TCP 60 29910 2222 [SYN]

808 26.942159 10.7.3.100 192.168.10.50 TCP 60 55237 2222 [SYN]

As a result of Tcpdump, packets containing the strings "ls – ls" were blocked in IPTable during

sniffer and IPTables.

 To prevent SYN Flood attacks, we create and send a large number of TCP SYN packets
from the outside, via IPTables, to the Sniffer server. The packets were then sent to and from

Sniffer. The following are the Tcpdump dump results:

Table 3. Packets TCP_SYN and RST, ACK

617 25.255051 192.168.10.50 147.205.111.88 TCP 54 2222 12617 [RST, ACK]

624 25.538365 242.216.67.55 192.168.10.50 TCP 60 15384 2222 [SYN]

631 25.670945 76.238.179.36 192.168.10.50 TCP 60 47907 2222 [SYN]

635 25.804151 158.83.198.86 192.168.10.50 TCP 60 52472 2222 [SYN]

639 25.950671 147.122.241.47 192.168.10.50 TCP 60 12835 2222 [SYN]

646 26.082268 73.24.49.61 192.168.10.50 TCP 60 26716 2222 [SYN]

650 26.219748 180.213.100.213 192.168.10.50 TCP 60 55000 2222 [SYN]

651 26.220044 192.168.10.50 180.213.100.213 TCP 54 2222 55000 [RST, ACK]

655 26.360506 82.253.163.252 192.168.10.50 TCP 60 56391 2222 [SYN]

659 26.511481 220.167.184.100 192.168.10.50 TCP 60 16225 2222 [SYN]

663 26.638535 184.161.231.8 192.168.10.50 TCP 60 29016 2222 [SYN]

670 26.776625 254.187.37.69 192.168.10.50 TCP 60 18580 2222 [SYN]

679 26.935711 247.192.20.31 192.168.10.50 TCP 60 4524 2222 [SYN]

684 27.088005 72.62.78.17 192.168.10.50 TCP 60 3017 2222 [SYN]

688 27.226594 145.177.52.153 192.168.10.50 TCP 60 785 2222 [SYN]

689 27.226694 192.168.10.50 145.177.52.153 TCP 54 2222 785 [RST, ACK]

693 27.372435 211.171.132.100 192.168.10.50 TCP 60 26950 2222 [SYN]

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

67

During the TCP "3-step shake-up", usually, every time the destination party receives a packet
[TCP_SYN] it must immediately send a response packet [TCP_RST, ACK]. But here, due to

suspicion of a SYN_Flood DoS attack, Sniffer asked IPTables to restrict response to connection

initiation packets [TCP_SYN]. This has been proven by Tcpdump.

 For source IP filtering: This test is conducted similarly to "string filtering", but here
requires Sniffer to detect and prevent abnormalities coming from traffic flows coming from the

same source IP address. Dump results and analysis of packets received at IPTables and Sniffer

are shown in the following two shapes:

Table 4. IPTables firewall packets received

1932 271.587888 10.7.3.100 192.168.8.164 TCP 60 10541 2222 [SYN]

1935 272.634401 10.7.3.100 192.168.8.164 TCP 60 1379 2222 [SYN]

1938 273.681978 10.7.3.100 192.168.8.164 TCP 60 29845 2222 [SYN]

1943 274.769926 10.7.3.100 192.168.8.164 TCP 60 54837 2222 [SYN]

1946 275.809951 10.7.3.100 192.168.8.164 TCP 60 41488 2222 [SYN]

1949 276.854445 10.7.3.100 192.168.8.164 TCP 60 23832 2222 [SYN]

1953 277.906213 10.7.3.100 192.168.8.164 TCP 60 27645 2222 [SYN]

1959 278.954523 10.7.3.100 192.168.8.164 TCP 60 41319 2222 [SYN]

Table 5. The packets received on the Sniffer server

666 177.06191 10.7.3.100 192.168.10.50 TCP 60 56740 2222 [SYN]

673 178.11423 10.7.3.100 192.168.10.50 TCP 60 2805 2222 [SYN]

727 179.20589 10.7.3.100 192.168.10.50 TCP 60 28246 2222 [SYN]

776 180.24032 10.7.3.100 192.168.10.50 TCP 60 2851 2222 [SYN]

826 181.27678 10.7.3.100 192.168.10.50 TCP 60 4149 2222 [SYN]

876 182.32243 10.7.3.100 192.168.10.50 TCP 60 35744 2222 [SYN]

878 183.39045 10.7.3.100 192.168.10.50 TCP 60 45856 2222 [SYN]

880 184.42113 10.7.3.100 192.168.10.50 TCP 60 32774 2222 [SYN]

882 185.47298 10.7.3.100 192.168.10.50 TCP 60 37169 2222 [SYN]

As a result of Sniffer and IPTables' views and actions, packets from IP: 10.7.7.100 (in large

quantities) were blocked in IPTables, according to Tcpdump.

Because most open-source firewall systems allow command-line interaction, our usage of

IPTables in our test and evaluation scenarios does not compromise the general validity of the
proposed model.

From the results of the assessment, we are confident that the proposed system can completely

play a role in detecting and illegally entering the enterprise in-house network such as IDS
systems and other individual firewalls in the information security product market.

4. CONCLUSION

In this paper, we propose a new model for merging the operations of IDS and open-source
firewall IPTables, which we have successfully implemented. We've also created a Sniffer

software that acts as the network system's IDS. This rule table change is completely automated;

therefore, it happens extremely quickly.

The accuracy of making a statement about the suspicious actions of an IDS depends on the

collection and analysis of information, from the flow of traffic into/out of the network and

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

68

depends on its statistical and forecasting capabilities. It can be said that the "intelligence" of this
department determines so greatly the accuracy in determining which traffic flows are suspicious

actions among the many traffic flows passing through IDS. Also, with the increasing ability to

"fake" and "deceive" hackers in cyberspace, without high "intelligence", IDS is difficult to

determine exactly whether a packet is carrying malicious code or not. Our Sniffer's limitation is
that it has a low "intellect." Sniffer's "intelligence" will be improved in the future by moving it

toward a Machine Learning approach.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] Kanika & Urmila, (2013) “Security of Network Using IDS and Firewall”, International Journal of

Scientific and Research Publications, Vol. 3, Iss. 6, pp.1-4.

[2] Waleed Bul'ajoul, Anne James & Mandeep Pannu, (2015) “Improving network intrusion detection

system performance through quality of service configuration and parallel technology”, Journal of

Computer and System Sciences, Vol. 81, Iss. 6, pp. 981-999.

[3] Sulaman & Sadar Muhammad, (2012) “An Analysis and Comparison of The Security Features of

Firewalls and IDSs”, Linköpings universitet, Institutionen för systemteknik, pp. 87-2011.

[4] D. Ashok Kumar & S.R Venugopala, (2017) “Intrusion Detection Systems: A review”, International

Journal of Advanced Research in Computer Science, Vol. 8, No. 8, pp.356-370.

[5] Mrinal Wahal, Tanupriya Choudhury & Manik Arora, (2018) “Intrusion Detection System in
Python”, 8th International Conference on Cloud Computing, Data Science & Engineering, pp. 348-

353.

[6] Michael & Rash, (2007) “Linux Firewalls: Attack Detection and Response with iptables, psad, and

fwsnort”, No Starch Press, pp. 81-173.

[7] SH Kok, Azween Abdullah, NZ Jhanjhi, Mahadevan Supramaniam, (2019) “A Review of Intrusion

Detection System using Machine Learning Approach”, International Journal of Engineering

Research and Technology, Vol. 12, No. 1, pp. 8-15.

[8] Thomas M. Chen, Patrick J. Walsh, (2014) “Guarding Against Network Intrusions”, In: Network and

System Security (Second Edition), Chapter. 3, pp. 57-82.

[9] Takeda K., Takefuji Y., (2001) “Pakemon – A Rule Based Network Intrusion Detection System”,

International Journal of Knowledge Based Intelligent Engineering Systems, Vol. 5, No. 4, pp. 240-

246.
[10] Dmitrij Melkov & Šarūnas Paulikas, (2021) “Analysis of Linux Os Security Tools For Packet

Filtering and Processing”, Vilnius Gediminas Technical University, pp. 1-5

https://www.sciencedirect.com/science/article/pii/S0022000014001767#!
https://www.sciencedirect.com/science/article/pii/S0022000014001767#!
https://www.sciencedirect.com/science/article/pii/S0022000014001767#!
https://www.sciencedirect.com/science/journal/00220000
https://www.sciencedirect.com/science/journal/00220000
https://ieeexplore.ieee.org/author/37086440950
https://ieeexplore.ieee.org/author/37085794967
https://ieeexplore.ieee.org/author/37086437420
https://ieeexplore.ieee.org/xpl/conhome/8421099/proceeding
https://www.sciencedirect.com/science/article/pii/B9780124166899000034
https://www.sciencedirect.com/book/9780124166899/network-and-system-security
https://www.sciencedirect.com/book/9780124166899/network-and-system-security
https://journals.vgtu.lt/index.php/MLA/search/search?field=author&criteria=Dmitrij%20Melkov
https://journals.vgtu.lt/index.php/MLA/search/search?field=author&criteria=%C5%A0ar%C5%ABnas%20Paulikas

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

69

AUTHORS

Tuan Nguyen Kim was born in 1969, received B.E, and M.E from Hue University of

Sciences in 1994, and from Hanoi University of Technology in 1998. He has been a

lecturer at Hue University since 1996. From 2011 to present (2021) he is a lecturer at

School of Computer Science, Duy Tan University, Da Nang, Vietnam. His main

research interests include Computer Network Technology and Information Security.

Duy Thai Truong was born in 1997, He graduated from Duy Tan University in 2019.
He is a Security Engineer at Danang Department of Information and Communications,

Vietnam. He is working at here from November 2019 to present. His main is research

on information security and penetration testing.

Tam Nguyen Tri was born in 1998, He graduated from Duy Tan University in 2020.

From November 2020 to present (2021), he is a Security Researcher at Danang ICT

Infrastructure Development Center.

Lam Tran Nguyen was born in 1998, He graduated from Duy Tan University in

2020. From November 2020 to present (2021), he is a Security Researcher at Danang

ICT Infrastructure Development Center.

	Abstract
	There are many security models for computer networks using a combination of Intrusion Detection System and Firewall proposed and deployed in practice. In this paper, we propose and implement a new model of the association between Intrusion Detection S...
	Keywords
	1. Introduction
	2. Related Knowledge
	3. The Proposed Model
	4. Conclusion

