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ABSTRACT 
 

Millimeter-wave and mMIMO communications are the most essential success systems for next-generation 

wireless sensor networks to have enormous amounts of accessible throughput and spectrum. Through 

installing huge antenna arrays at the base station and performing coherent transceiver processing, 

mMIMO is a potential technology for enhancing the bandwidth efficiency of wireless sensor networks. The 

use of mmWave frequencies for mMIMO systems solves the problem of high path-loss through offering 
greater antenna gains. In this work, we provide a design with a random spatial sample structure that 

incorporates a totally random step before the analogue is received. It contains a totally random step before 

the analogue received signals are sent into the digital component of the HBF receiver. Adaptive random 

spatial based channel estimation (ARSCE) is proposed for channel session measurement collection, and an 

analogue combiner with valves has been used to estimate the signals at each receiving antenna. The 

proposed optimization problem formulation attempts to discover the orientations and gains of wideband 

channel routes. In addition, our proposed model has compared to various state-of-art techniques while 

considering error minimization. 
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1. INTRODUCTION 
 

Modern broadband cellular systems will have to keep up with the demand for high-speed data 
capabilities, which is expected to skyrocket. Two major ways to meet these needs are large-

antenna-array multiple-input-multiple-output (MIMO) designs (also known as massive MIMO / 

m-MIMO) and millimeter wave (mmWave) systems. The mMIMO is preferred when the 

objective is to enhance spectral and energy efficiency, whereas the mmWave approach 
maximises a broader bandwidth [1]. Many contemporary commercial mobile network systems 

operate at frequency band below 6 GHz, whereas millimeter wave communications utilise the 

spectrum from roughly 30 GHz to 300 GHz. The major benefit of owning at higher frequencies is 
the possibility of significantly greater bandwidth channels [2]. 
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The mmWave communications potential for cellular networks has been acknowledged in [3], as 
well as its ability to offer extremely high throughput. Even in non-line-of-sight conditions, [4] [5] 

claimed a transmission distance of far more than 200 m. For 5th generation (5G) cellular 

networks and beyond, millimeter wave communications are of interest [6]. Modern signal 

processing approach are required to make mmWave communication systems commercially viable 
[4], [6]. There are several reasons behind this: new hardware restraints develop as a result of 

operating at larger bandwidths and higher frequencies and, mmWave channel characteristics 

change. Significant antenna arrays are required to achieve large beamforming gains, which brings 
additional power consumption and circuit implementation issues. 

 

Conventional digital precoding is too expensive to implement in millimeter-wave communication 
systems. As a result, hybrid precoding is a superior option that works at mixes of digital and 

analogue precoding. It's generally based on one of two types of structures: subconnected and 

completely linked, whereas the completely linked structure has been intensively explored in the 

academic world because it can reach the theoretical ideal spectrum efficiency. In [4], the spatial 
sparsity of the mmWave channel was used to reconstruct the hybrid precoding problem. The 

orthogonal matching pursuit (OMP) method was suggested to tackle the problem and greedy 

algorithm is presented based on the OMP method in [7]. 
 

The antenna array shape is not taken into account by the method, which substantially decreases 

computing complexity while maintaining high performance. By choosing an appropriate 
threshold, an orthogonal matching pursuit method with performance similar to the optimum and 

higher than the OMP algorithm is provided [5]. Even though OMP approach has good speed, it 

has a rather high level of complexity, so as a result, [6] investigates a high-performance and real-

time precoding approach based on SVD (singular value decomposition). Overall performance of 
this technique is comparable to the OMP algorithm, but the complexity is significantly lower. An 

alternative minimization method based on the concept of manifold optimization is proposed in 

[8], which reduces the program's complexity. Many researchers have been drawn to the 
subconnected structure because of its features, which allow it to strike a proper balance between 

cost and performance. However, unlike fully connected structure, which has a one-to-one 

correlation between both the antenna and the RF chain, each RF chain in the subconnected 

configuration is only linked to a portion of the antenna. As a result, in recent years, hybrid 
precoding techniques using subconnection architectures has gotten a lot of interest. 

 

With the aid of semidefinite relaxation, an alternative minimization method for the subconnected 
structure is also constructed in [8]. In a similar vein, [9] proposes a novel divide-and-conquer 

precoding method, this scheme's performance is comparable to SDR- alternative minimization, 

that can save time and is resistant to potential saddle spots with underperformance. In [10], a 
hybrid precoding method based on SIC (successive interference cancellation) is presented in 

response to the hybrid precoding challenge of energy-saving subconnection design. It eliminates 

the need for matrix inversion and SVD and it has a considerably low computational cost than 

standard sparse reconstruction precoding techniques. The sparsity and low rank characteristics of 
specific wireless channels were recently combined for effective channel state information (CSI) 

estimation in [11] [13]. In [12], a two-step approach (one stage per channel attribute) was 

developed for narrowband mmWave MIMO channel estimation with Hybrid Beamforming 
(HBF) transceivers. In [13] proposed a matrix completion method that took advantage of these 

features for the same transceivers and narrowband channels with simple switches. This approach 

outperformed the approach of [12] in terms of estimate performance while needing just brief 
channel sounding periods. In [14], wideband mmWave MIMO channels featuring frequency 

selectivity were recently introduced, which offered a CSI estimation approach that used the 

sparsity of the channel in frequency and time domains.  
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In this paper, we provide a unique analogue combining design with a random spatial sampling 
layout, which includes a purely random stage before the analogue received signals are fed into 

the HBF receiver's digital component. This design is utilized for channel session measurement 

gathering, and an analogue combiner with valves was used to approximate the signals at 

receiving antennas individually. The proposed model named as adaptive random spatial based 
channel estimation (ARSCE) and this design major feature is the random choice of available 

analogue receive beams during channel period. It combined with the proposed CSI estimation 

approach, results in enhanced performance with short training periods. The matrix generated at 
the HBF receiver following analogue processing of training signals containing multiple receiving 

beams has the same rank as the wideband mmWave m-MIMO channel matrix. Based on this 

discovery, we devise a CSI estimate optimization model that takes use of both the low-rank 
feature of the sparsity of the channel matrix and the received training signal matrix in the 

beamspace space. The suggested optimization problem formulation seeks to identify the 

wideband channel routes' orientations and gains. The distinctions are in the mathematical 

formulas. The low-rank feature of narrowband mmWave m-MIMO channels is used to determine 
the measurement needs for them and the scalability of the technique in wideband mmWave m-

MIMO channels. 

 

2. LITERATURE SURVEY 
 

In m-MIMO systems, hybrid beamforming designs are developed to reduce hardware and 

training overhead costs.  The carrier frequency (mmWave), CSI (average or instantaneous), and 

complexity of hybrid beamforming may all be categorized to reduce the switched complexity. 
The method to use to achieve the optimal tradeoff between these factors is determined on the 

application and channel characteristics [15], while obtaining specific and reliable CSI for Multi 

user-mMIMO systems at millimeter waves is difficult because to the large number of BS 
antennas. In mMIMO, a combined iterative approach based on step-length optimization may be 

used to obtain accurate channel estimate [16]. In the context of faulty CSI and hardware 

restrictions, a beamforming neural network (deep learning networks) for mmWavemMIMO 
systems can improve the beamforming layout and is resilient with greater spectrum efficiency as 

compared to standard beamforming methods [17]. In mMIMO systems, the ideal number of UEs 

programmed concurrently for a specific number of BS antenna components offers maximum 

spectrum efficiency. The frequency spectrum of downlink (DL) and uplink (UL) can be the same 
(allowing combined network improvement), and it is also independent of UE locations at any 

given time [18]. In comparison to existing methods, the multitask deep learning (MTDL)-based 

HBF algorithm for mmWavemMIMO OFDM systems can provide good results in terms of run-
time and sum-rate [19]. 

 

Based on the arrival/departure angle and with the fewest number of pilots, an effective channel 

estimate technique for the time-varying DL channel of mmWave MIMO systems is suggested 
[20]. With flawless CSI and a low-complex single-cell DL mMIMO HBF system, the sum-rate 

approaches optimal network throughput is shown in [21]. The performance difference between 

hybrid and digital beamforming can be narrowed for a specific number of Relay nodes by 
decrease the quantity of multiplexed symbols [22]. In comparison to OMA systems, clustering 

and feedback-based hybrid beamforming for DL mmWave MIMO NOMA systems provide 

highest sum-rates [23]. A multi user (MU) detection technique based on a ‘‘markov random 
field" for model cluster sparsity and predict mMIMO channel outperforms systems which do not 

take use of channel cluster sparsity [24]. In developing hybrid beamforming for broadband 

mmWave MIMO systems, eigenvalue decomposition, manifold optimization, and OMP 

algorithms give BER and spectral efficiency (SE) that is closer to completely digital BF solutions 
[25]. When the number of RF chains in a mmWavemMIMO system increases, the best hybrid 
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combining and precoding approaches utilising the OMP algorithm to achieve total sum-rates that 
are comparable to completely digital precoding [26]. 

 

Hybrid beamforming with user scheduling technique is described for DL to increase throughput 

(near to completely digital beamforming) of mmWavemMIMO OFDM systems (users with 
similar strongest beams). Digital beamforming is used to achieve the highest performance 

increase (by minimising excess inter-user congestion) [27] and analogue beamforming vectors 

are utilised to determine the ideal beam of each consumer. For mmWave MIMO uplink channels, 
a low computational complexity hybrid beamforming system minimises inter-user interference 

while performing similarly to a completely digital beamforming architecture. In 

mmWavemMIMO systems based on Generalized Low Rank Approximation of Matrices, the 
coordinated RF beamforming method requires just composite CSI rather than the entire physical 

channel matrix.  

 

In both FDD and TDD systems, this method gives a competitive option by addressing the 
coordination between BS and UEs to get maximum array gain with no dimensionality limitation 

[22]. HBF is used in mmWavemMIMO relay systems to improve sum-rates via lowering the sum 

MSE between both the received signal of hybrid and digital BF schemes. The overall sum-rates 
rise as the correctness of arrival/departure angles and the number of RF chains rise [28] and the 

possibility of low-cost analogue optimal unconstrained precoder, RF hardware implementations, 

and combiner methods for mmWavemMIMO systems are proposed. The suggested methods' 
numerical findings demonstrated that the SE of mmWave systems with transceiver hardware 

restrictions approaches the unrestrained performance limits [29]. In mmWavemMIMO systems, 

low-complexity phased-ZF hybrid precoding is utilised in the RF domain to get substantial power 

gains and low-dimensional ZF precoding has been used in the baseband domain allowing multi-
stream operations [30]. 

 

3. PROPOSED METHOD 
 

A point-to-point large MIMO communication network functioning across wideband 

mmWave channels is considered, where transmitter is having antennas and the receiver is 

having antennas. Here, we assume that each of the antenna components of the transmitter are 

linked to a separate RF chain, whereas the receiver antenna elements are associated to  that is 

less then  at RF chains. Because of this hardware design, the transmitter may digitally precode 

up to  separate signals from a single devoted RF link. We assume, on the other hand, that 

receiver is prepared with any of the known HBF designs [31] that enable both digital and 

analogue compounding. The considered mmWave MIMO network comprising wireless 

communication link of information that will be separate from data streams. 
 

Initially, proposed the solution for large number of antennas by analog based HBF receiver at 

wideband MIMO channel. The assumption has been made where the communication system 
remains consistent throughout each frame but may change independently by one frame to the 

next. Each frame is made up of blocks allocated to channel estimates, with the rest of the 

frames allocated to data transmission. A greater , of course, improves channel prediction while 

leaving less frame duration for actual data transfer. The -antenna transmitter uses the  

training symbols' vector with each block  with to approximate the desired 

wideband mmWave MIMO channel. Ignoring the influence of Additive White Gaussian Noise 

(AWGN) for the sake of clarity, the -dimensional acquired training signal may be represented 
as: 
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(1) 

 

This shows the convolution matrices of delay channel and training vectors of  is 

. similar to eq. (1), is shown as; 
 

 

(2) 

 

where  indicates the -th column of  and  the h-th element of . We may 

describe the inner convolution sum of the  Toeplitz matrix by altering the summation order 

in eq. (2). Specifically, by include the  Toeplitz matrix , with its -th element 
provided by: 

 

 (3) 

Where,  and , and above eq. (2) can be written as 

 

 

(4) 

 
 

Where, . The structure of are also 

reorganized to grouped at transmitting antennas and equation eq. (4) can be written as; 

 

 

 (5) 

 

Where,  and . In addition, 

the decomposition of beamspace at every delay path matrix is; 

 

 (6) 

 

Where,  and for the case of the wideband channel matrix , the 
decomposition of eq. (6) is identical to the beamspace decomposition of eq. (7). When all of the 

above information is combined, the matrix containing the received training symbols is provided 

by; 
 

 (7) 

The difference between eq. (6) and eq. (7) is the rightmost matrix , which includes the learning 
symbols. In our method, the latter equation will be utilised to represent the incoming training data 

in terms of the combined virtual channel gains . 
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We provide the proposed channel estimation process issue description and comprehensive 
algorithmic solution. The sum of the low-rank matrix, which includes the learning signs 

following passing over the wideband mmWave MIMO link, and the AWGN matrix  yields the 

received learning signal matrix at the outcome of the extended connector. In this paper, we using 

the low-rank feature of  to estimate the wideband channel matrix . To begin, the rank 

characteristics of the later matrix is considered for the sake of simplicity. 
 

We design the following dual purpose optimization process for the estimate of , taking use of 

both the sparse composition of  and the low rank characteristic of the learning symbols' matrix 

: 

 

 (8) 

Which subject to, 
 

 

 

(9) 

 

Where D's fission norm in the optimization process that imposes its low rank characteristic, and 

-norm enforces its sparse form.  The weighted parameters   are often determined by 

the number  of unique mmWave MIMO channel propagation pathways. Because the noisy 

matrix  is uncertain, we replace the first requirement in eq. (8) with its least-squares 

approximation  in the follows. 
 

The ADMM method is used to solve the process eq. (8) optimally and the sampling is done on 

the channel matrix rather than the received learning signal, as indicated in the mathematical 

equation eq. (8). To solve eq. (8), we will do the following; restate the desired proces in the 
following equivalent form, we first incorporate the two input matrix variables  

 and : 

 

 
 

(10) 

 

This is equal to eq. (8), except the cost function has now been dissected into four variables: 

. It is worth noting that the third component with in objective function now accounts 

for the discretization error, while the fourth term accounts for the AWGN interference noise. The 

optimization process of Lagrangian function readily written as: 

 

 

(11) 

 

where and  are dual factors (the Lagrange multipliers) that add the 

requirements of eq. (10) to the cost function, and  indicates the ADMM stepsize. The following 

distinct sub-problems must be addressed at the i-th algorithmic step, with , as per 

the usual ADMM approach: 
 

 
(12) 
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(13) 

Because the first subproblem is concerned with optimization over through the variable , now let 

express by retaining just the words that are relevant to it and rounding the square, i.e., 
 

 
(14) 

The answer to eq. (14) is believed to be derived using the Singular Value Thresholding (SVT) 

function as follows [32]: 

 

 
(15) 

 

where and contain the right and left singular vectors, of the matrix ( , and 

with  singular values denoted by . The set of equations must be solved, which 

necessitates the inversion of the matrix. However, because this matrix is diagonal, the resultant 
issue is identical to solving the mathematical model shown below; 

 

 (16) 

Concerning the unidentified variable , that may be written correspondingly as; minimization of 

by vectorization is similar to the accompanying sparse optimization issue. To address the 

problem, we use the usual LASSO form [33], i.e. 

 

 
(17) 

Where, and a soft-thresholding function may be used to approximate  in (17), 
which is written as follows: 

 

 (18) 

where and the sign operators  and  are used component-wise and it is 

worth noting that the superscript will be employed in the suggested evolutionary 
algorithm. The vector obtained in eq. (18) is then converted into parametric form as 

. 

 

4. RESULTS AND ANALYSIS 
 

In this part, we explore a mmWave  MIMO technology for various huge  

 and values, and we evaluate the performance of the suggested wideband channel estimation 

approach for HBF transmission utilising the adaptive random spatial combining design. 

MATLAB 2016b with system configuration intel i7 processor, 16GB RAM and windows 10 
operating system was used to generate all computational simulation results. We particularly 

simulated the Average Mean Square Error (MSE) performances, which were then averaged 

across several Monte-Carlo realizations. We also examined the suggested approach's 
convergence rate and computing expense in comparison to similar state-of-the-art approaches.  
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The channel estimation has been conducted in the time domain on receiver across F frames, using 
block transmissions with thresholding applied to each sent frame. We expected that the 

convergence rate of the channels is greater than the period of the F sessions necessary for channel 

estimation and the learning signal is received by the HBF RX's  antenna components, which 

are linked to MR  RF chains. Furthermore, we assumed frequency synchronization 

and complete time between the transmitting and receiver sides, as well as fully linked proposed 
systems at all HBF receiver under consideration. We simulated the Normalized Mean-Square-

Error (NMSE) criterion when evaluating the performance of the proposed algorithm and making 

comparisons them to relevant state-of-the-art wideband mmWave MIMO channel estimation 
approaches, that is defined as:  

 

 

(19) 

 

where  symbolises the approximate channel matrix in the beamspace domain. The 

benchmarking channel estimation approaches under consideration are based on matrix 

completion and compressive sensing tools. NMSE, is analyzed to avoid bias towards model 

overestimate / underestimate and giving an impression of the model performance at entire 
network. 

 

The singular value thresholding (SVT) [32] method is used to solve the rank constrained 
optimization problem. Although iterative thresholding algorithms, such as Orthogonal Matching 

Pursuit (OMP) [14], can efficiently solve the L1 minimization with low computational burden, 

they only deliver excellent estimation accuracy for highly sparse vectors, i.e., when the 

unknowable vector only has the few non-zero qualities. Message passing techniques, such as 
Vector Approximate Message Passing (VAMP) [34], on the other hand, give more robust 

estimate performance in terms of signals with reduced sparsity and also measurements with 

increasing noise level. These approaches have considered for the comparison with proposed 
approach. 

 

 
 

Figure 1. NMSE efficacy as a proportion of training frame number 
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Considered parameter details for figure 1; 16 number of transmitting antennas, 32 number of the 
receiving antenna, total number of clusters 4, channel realization 6, 4 receive RF chains, 5 to 40 

training frames, and -15 SNR with 20 algorithmic iterations. The NMSE efficacy of the proposed 

channel estimation approach versus the training frames number F is shown in figure 1, where the 

training frame numbers; 5, 15, 25, 35 and 40 were considered for the analysis. At training frame 
15, our proposed ARSCE approach has got 15.64% and 14.25% less NMSE as compared to SVT 

and OMP approaches. Similarly at 40 training frames, proposed ARSCE approach has achieved 

51.83% and 27.24% less NMSE as compared to SVT and OMP approaches. As per the figure 1, 
it clearly visible that the NMSE values are decrease while increment in training frame numbers 

and our proposed approach error decreasing w.r.t state-of-the-art methods. 

 

 
 

Figure 2. NMSE efficacy as a proportion of RF chains number 

 

 
 

Figure 3. NMSE efficacy as a proportion of channel delay taps number 
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Considered parameter details for figure 2; 16 number of transmitting antennas, 32 number of the 
receiving antenna, total number of clusters 4, channel realization 6, 16 receive RF chains, 5 

training frames, and -5 SNR with 20 algorithmic iterations. The proposed channel estimation 

approach NMSE efficacy versus the RF chains number is shown in figure 2, were RF chains 

number i.e., 4, 8, 12, and 16 considered. At 8 RF chains number, proposed ARSCE approach has 
achieved 16.63% and 33.98% less NMSE as compared to OMP and VAMP approaches. The 

performance of considered approaches tends to increase while increase in RF chains number. 

Considered parameter details for figure 3; 16 number of transmitting antennas, 32 number of the 
receiving antenna, 12 channel propagation paths, total number of clusters 4, channel realization 6, 

4 receive RF chains, 25 training frames, and -10 SNR with 10 algorithmic iterations.  

 

 
 

Figure 4. NMSE efficacy as a proportion of SNR 

 

 
 

Figure 5. NMSE efficacy as a proportion of RF chains number 
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The NMSE efficacy for proposed channel estimation approach versus the channel delay taps 
number is shown in figure 3, were channel delay taps number i.e., 2, 4, 6, 8, and 10 considered. 

At 4 channel delay taps number, SVT, OMP and VAMP approaches has 3.93%, 21.59 and 29.7% 

more NMSE as compared to proposed ARSCE approach. The performance is almost stable while 

changing the channel delay taps number. 
 

At figure 4 the parameter details; 4 number of transmitting antennas, 32 number of the receiving 

antenna, total number of clusters 4, channel realization 100, 4 receive RF chains, 35 training 
frames, and -15 to 15 SNR with 100 algorithmic iterations. Figure 4 shows the NMSE efficacy 

w.r.t SNR, where SNR varies -15dB to 15dB with 3dB interval. At -15dB SNR, OMP and 

VAMP approaches has got >1dB and 0.91dB which is 48.57%, and 43.63% more NMSE as 
compared to proposed ARSCE approach. Similarly, at 6dB SNR, OMP and VAMP approaches 

has got 0.37dB and 0.17dB which is 73%, and 41% more NMSE as compared to proposed 

ARSCE approach. The performance is optimized at increasing the SNR.  

 

 
 

Figure 6. NMSE efficacy as a proportion of channel paths number 

 

Parameter details for figure 5; 4 to16 number of transmitting antennas, 32 number of the 
receiving antenna, 12 channel propagation paths, total number of clusters 4, channel realization 6, 

16 receive RF chains, 5 training frames, and -5dB SNR with 20 algorithmic iterations. At figure 5 

shows NMSE w.r.t RF chains number, where at 12 RF chains, OMP approach has 38.2% more 
NMSE as compared to proposed ARSCE approach. Parameter details for figure 6; 16 number of 

transmitting antennas, 32 number of the receiving antenna, 48 channel propagation paths, total 

number of clusters 4, channel realization 1, 4 receive RF chains, 30 training frames, and -5 SNR 
with 10 algorithmic iterations. Whereas NMSE w.r.t channel paths number has shown in figure 

4.6, SVT approach has shown more NMSE as compared to proposed ARSCE approach at various 

channel paths number. 
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5. CONCLUSIONS 
 
In this article, we proposed ARSCE method for wideband mmWave MIMO channel estimates 

that take use of both the beamspace sparsity and channel's low rank to enable more accurate 

channel restoration, particularly for short beam learning intervals. The received training signal 

matrix at the termination of the extended connection is the low-rank matrix sum, that contains the 
learning signs after passing across the wideband mmWave MIMO system. Extensive simulation 

findings demonstrate that the suggested methods perform better in terms of MSE for channel 

estimation when only short beam train lengths are used and while operating in severe noise 
circumstances. Several approaches shown in above section has considered for the comparison 

with proposed approach, and proposed ARSCE model has performed well at receiving optimized 

channel estimation, which result better throughput and better user quality experience. 
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