
International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

DOI: 10.5121/ijcnc.2022.14108 117

ON THE PERFORMANCE OF INTRUSION

DETECTION SYSTEMS WITH HIDDEN MULTILAYER

NEURAL NETWORK USING DSD TRAINING

Trong Thua Huynh, Hoang Thanh Nguyen

Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

ABSTRACT

Deep learning applications, especially multilayer neural network models, result in network intrusion

detection with high accuracy. This study proposes a model that combines a multilayer neural network with

Dense Sparse Dense (DSD) multi-stage training to simultaneously improve the criteria related to the

performance of intrusion detection systems on a comprehensive dataset UNSW-NB15. We conduct

experiments on many neural network models such as Recurrent Neural Network (RNN), Long-Short Term

Memory (LSTM), Gated Recurrent Unit (GRU), etc. to evaluate the combined efficiency with each model

through many criteria such as accuracy, detection rate, false alarm rate, precision, and F1-Score.

KEYWORDS

UNSW-NB15, deep learning, IDS, neural network.

1. INTRODUCTION

An Intrusion Detection System (IDS) is a network traffic monitoring system, capable of

recognizing suspicious activities or unauthorized intrusions on the network during an attack,

thereby providing identifiable information and giving warnings to the system and administrator.

The development of malware poses an important challenge to the design of IDS. Malware attacks

have become more sophisticated and challenging. Malware creators can use a variety of

techniques to conceal their behavior and prevent IDS from being detected, so they can easily steal

important data and disrupt the business operations of numerous individuals and organizations.

IDS works in three main ways: Signature-based, Anomaly-based, and Stateful Protocol Analysis.

Signature-based IDS compares signatures of the observed object with those of known threats.

Anomaly-based IDS compares definitions of normal activities and the observed object to identify

deviations and generate alarms. Stateful Protocol Analysis IDS compares predetermined profiles

of the behavior of each protocol that is considered normal with the observed object to determine

deviations. Except for the Signature-based method, the two other methods need to be learned to

recognize anomalies. Therefore, over the past few decades, machine learning has been used to

improve intrusion detection.

The effectiveness of IDSs is evaluated based on their performance in identifying attacks. This

requires a comprehensive dataset including both normal and anomalous behaviors. Previous

datasets such as KDDCUP99 [1] and NSL-KDD [2] have been widely applied to evaluate the

performance of IDSs. Although the performance of these datasets has been acknowledged in

many previous studies, the evaluation of IDS using these datasets does not reflect the actual

output performance due to several reasons. The first reason is that the KDDCUP99 dataset

http://airccse.org/journal/ijc2022.html
https://doi.org/10.5121/ijcnc.2022.14108

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

118

contains a large number of redundant records in the training set. Redundant records affect the

results of biases in intrusion detection for frequent records. Second, the fact that many records are

missing is also a factor that changes the nature of the data. Third, the NSL-KDD dataset is an

improved version of KDDCUP99, which solves some problems such as data imbalance between

normal and abnormal records as well as missing values [3]. However, this dataset is not a

comprehensive representation of the actual modern attack environment. The standard dataset

UNSW-NB15 [4] was created to address the limitations of the previous datasets, especially, it is

regularly updated with new data features and attacks.

There have been many machine learning methods and neural network models applied to network

intrusion detection such as RNN, LSTM, GRU. Choosing the right model for the UNSW-NB15

dataset to improve the evaluation results is also a matter of concern [5]. In addition, one of the

recent studies to improve training quality is that the DSD (Dense Sparse Dense) training model

[6] has been applied effectively to some image processing and voice recognition problems. In this

study, we focus on evaluating the efficiency of network intrusion detection based on deep neural

network models such as RNN, LSTM, GRU by proposing a model that combines the DSD

training method into each of these neural network models to improve the performance of network

intrusion detection systems.

The remainder of the paper is organized as follows. In section 2, we present the related work.

Section 3 describes the proposed hybrid model. Sections 4 and 5 present the experiment, result,

and evaluation of the proposed models. Finally, concluding remarks are given in section 6.

2. RELATED WORK

2.1. Deep Neural Network

The neural network is a technique created to simulate the human brain for pattern recognition and

are used in a variety of learning tasks. Generally, it consists of three layers, one for input, one for

output, and at least one hidden layer between them. The input goes from the input layer through

the hidden layers, to the output layer through a set of neuronal nodes in each layer, whether it is a

linear or non-linear relationship. DNN shows that there is more than one hidden layer in a neural

network. It is widely used in supervised and unsupervised learning, as well as for classification

and clustering. In a few recent studies, DNN is widely used in detecting network intrusions [7]

and web phishing [8].

In this model, a group of neurons is passed to the hidden layers as input data. These neurons are

connected by the weight factor, which represents the importance of the input value. The more

valuable neurons, the greater the impact on the next layer of neurons. Many types of Artificial

Neural Networks have been developed, the first and simplest Neural Network widely used is the

Feed-Forward Neural Network. In this type of network, information is transmitted in parallel

from the input layer directly through the hidden layers and then into the output layer without

loops.

2.2. Recurrent Neural Network (RNN)

RNN [9] is an extension of a straightforward neural network, designed to recognize patterns in

data series. This network is regressive because it performs the same task for every element of the

sequence with the output depending on previous computations. [10].

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

119

RNN can be viewed as a way to share weights over time, as illustrated in Figure 1. The following

equations (1) and (2) are used to compute the state ht and the hidden output Ot in terms of the

RNN:

ℎ𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑡) (1)

𝑂𝑡 = 𝜏(𝑊𝑜ℎ𝑡) (2)

Where σ and  are sigmoid and softmax activation functions, respectively, xt is an input vector at

time t, ht is a hidden state vector at time t, Wi is an input weight matrix, U is a weight matrix

between hidden layers, Wo is the output weight matrix and bt is the bias coefficient.

Figure 1. Simple RNN architecture

The RNN model has a major drawback, at each time in the training process, similar weights are

used to compute the Ot output, which causes the output to be incorrect. Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) models have been proposed to solve this

problem.

2.3. Long Short-Term Memory (LSTM)

The Long Short Term Memory (LSTM) network [9] is a variant of the recurrent neural network

proposed as one of the machine learning techniques to solve many sequential data problems.

LSTM helps maintain errors that can propagate back layers over time. LSTM is used to increase

the accuracy of the output, as well as to make the RNN more useful for long-term memory tasks.

The LSTM architecture, as illustrated in Figure 2, consists of four main components; input port

(i), forget port (f), output port (o), and memory cell (c).

Figure 2. The core architecture of the LSTM block [9]

The LSTM block makes decisions about whether to store, read, and write through open or closed

ports, and each block of memory corresponds to a specific time. The communication ports are

based on a set of weights. Some weights, like input and hidden states, are adjusted during the

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

120

learning process. Equations from (3) to (8) are used to represent the relationship between input

and output at time t in each LSTM block.

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3)

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4)

𝑗𝑡 = 𝜔(𝑊𝑗[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑗) (5)

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑗𝑡 (6)

𝑧𝑡 = 𝜎(𝑊𝑗[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑗) (7)

ℎ𝑡 = 𝑧𝑡 × 𝜔(𝑐𝑡) (8)

Where σ and  are the activation functions sigmoid and tanh, respectively, xt is an input vector at

time t, ht is the output vector at time t, W and b are the weight matrix and bias coefficient,

respectively. ft is a forget function used to filter out unnecessary information, it and jt are used to

insert new information into memory cells, zt outputs relevant information.

2.4. Gated Recurrent Unit (GRU)

GRU is a variant of LSTM introduced by K.Cho [10]. Basically, The GRU is an LSTM with no

output ports, so it writes all the content from memory to the larger network at a time. However, it

is refined using an updated gate that is added to the GRU block. The updated port is a

combination of an input port and a forget port. The GRU model is proposed to simplify the

architecture of the LSTM model. The structure of the GRU is shown in Figure 3. Equations (9) to

(12) show the relationship between the input and the predicted outcome.

Figure 3. The core architecture of the GRU block [9]

𝑣𝑡 = 𝜎(𝑊𝑣[𝑜𝑡−1, 𝑥𝑡] + 𝑥𝑡) (9)

𝑠𝑡 = 𝜎(𝑊𝑣[𝑜𝑡−1, 𝑥𝑡]) (10)

𝑜′𝑡 = 𝜔(𝑊𝑣[𝑠𝑡 × 𝑜𝑡−1, 𝑥𝑡]) (11)

𝑜𝑡 = (1 − 𝑣𝑡) × 𝑜𝑡−1 + 𝑣𝑡 × 𝑜′𝑡 (12)

Where the feature space (input) is represented by x and the prediction is represented by ot, vt is

the updated function. W is the weight optimized during the training process. σ and  are sigmoid

and tanh activation functions respectively to keep the information passing through the GRU

within a specific range.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

121

2.5. Dense Sparse Dense (DSD)

Complex multi-layer neural models give good results and can obtain highly nonlinear

relationships between feature data and output. The disadvantage of these large models is that they

are prone to noise in the training dataset. This leads to overfitting [11] and high variance [12].

However, if the model is reduced to a less complex form, the machine learning system may miss

the relevant relationships between the features and the output, leading to the problem of under-

fitting [11] and high bias [13]. This is a very challenging problem because bias and variance are

difficult to optimize at the same time.

By pruning and re-dense the network, the DSD training model changes the optimization process

and improves the optimization performance with significant results. Some of the factors that

make the DSD training model effective are:

- Saddle point: DSD overcomes saddle points by trimming and thickening the model.

- Significantly better minima: DSD reduced the loss and error on both the training set and

the validation on ImageNet.
- Frequent and Sparse Training: Both sparse training and DSD ultimately reduce the

variance and lead to lower errors.

- Strong Re-initialization: DSD allows to optimize second chances during training to

restart using a robust sparse training solution.

In the study [6], Song and colleagues introduced DSD, a “dense – sparse – dense” training model

by selecting connections to discard and recover others later. The authors tested their DSD model

with GoogLeNet, VGGNet, and ResNet on the ImageNet dataset, NeuralTalk BLEU on the

Flickr-8K dataset, and DeepSpeech-1&2 on the WSJ'93 dataset. Experimental results show that

the DSD training model has brought significant efficiency on image processing and voice

recognition datasets applied on deep neural networks.

3. HYBRID NEURAL NETWORK MODEL

Realizing that recurrent neural networks (RNN/LSTM/GRU) can effectively learn to generate

highly nonlinear relationships between input and output features, this study proposes a

hybridmodel combining RNN/LSTM/GRU with a 3-stage DSD training scheme to improve

network intrusion detection efficiency. We set the number of neurons of all hidden layers to 32.

The proposed model includes:

Figure 4. Simple RNN/LSTM/GRU architecture with 3 hidden layers

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

122

- The simple 3 hidden layers RNN/LSTM/GRU neural network is shown in Figure 4;

- The hybrid training model DSD-3hRNN/DSD-3hLSTM/DSD-3hGRU uses a three-stage

process: dense (Dense - D), sparse (Sparse - S), re-dense (reDense - D) is applied on the

simple neural network model with 3 hidden layers (3h). The stages are illustrated in

Figure 5 (DSD-3hRNN), Figure 6 (DSD-3hLSTM), and Figure 7 (DSD-3hGRU).

The proposed model contains three hidden layers. Each layer is fully connected to the next layer

in the network, where ReLU function is used in hidden layers and sigmoid function is used in the

output layer for binary classification while the softmax function is used in the output layer for

multiclass classification.

3.1. Determining the number of hidden layers

Problems requiring more than two hidden layers are unusual for deep learning. Two or fewer

layers are usually sufficient with simple datasets. However, with complex datasets, additional

layers can be useful. The following table summarizes the capabilities of some popular layered

architectures. We can clarify this as follows:

- If the number of hidden layers is one, the result can approximate any function that

contains a continuous mapping from one finite space to another.

- If the number of hidden layers is two, the result can represent an arbitrary decision

boundary to arbitrary accuracy with rational activation functions and can approximate

any smooth mapping to any accuracy.

- If the number of hidden layers is more than two, additional layers can learn complex

representations.

Besides, we tried to train the model with more than 3 hidden layers, the result is not only similar

to the 3-hidden layer model but also takes more time. Therefore, we decided to choose a 3-hidden

layer model for this dataset.

3.2. Determining the number of neurons in hidden layers

Using too few neurons in hidden layers will lead to under-fitting. Using too many neurons in

hidden layers can lead to over-fitting problems. To select the number of neurons per hidden layer,

we use some rules as follows:

- The number of neurons in the hidden layer is between the size of the input layer and the

size of the output layer.

- The number of neurons in the hidden layer is 2/3 the size of the input layer, plus the size

of the output layer.

- The number of neurons in the hidden layer is less than twice the size of the input layer.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

123

Figure 5. Hybrid DSD-3hRNN model

Table 1. Configuration of the proposed 3 hidden-layer DSD-3hRNN model

Layer (Type) Output Format # Parameters

rnn_1 (SimpleRNN) (None, None, 32) 2,112

drop_out_1 (Dropout) (None, None, 32) 0

rnn_2 (SimpleRNN) (None, None, 32) 2,080

drop_out_2 (Dropout) (None, None, 32) 0

rnn_3 (SimpleRNN) (None, 32) 2,080

drop_out_3 (Dropout) (None, 32) 0

dense_1 (Dense) (None, 1) 33

activation_1(Activation) (None, 1) 0

Total number of parameters 6,305

Algorithm 1. DSD-RNN training procedure

Initialization: 𝑊(0)𝑤𝑖𝑡ℎ𝑊(0)𝑁(0, 𝛴)

Output: 𝑊𝑖
(𝑡);𝑊𝑜

(𝑡)

Thefirst Phase: Initialize Dense Phase

while not converged do

 𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑖
(𝑡−1); 𝑥(𝑡−1))

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1))

 𝑡 = 𝑡 + 1
end

The second Phase: SparsePhase

// initialize the mask by sorting and keeping the k weights at the top

𝑆𝑖 = 𝑠𝑜𝑟𝑡(|𝑊𝑖
(𝑡−1)|) ; 𝑆𝑜 = 𝑠𝑜𝑟𝑡(|𝑊𝑜

(𝑡−1)|)

𝜆𝑖 = 𝑆𝑖𝑘𝑖; 𝜆𝑜 = 𝑆𝑜𝑘𝑜

𝑀𝑎𝑠𝑘𝑖 = 1(|𝑊𝑖
(𝑡−1)|) > 𝜆𝑖; 𝑀𝑎𝑠𝑘𝑜 = 1(|𝑊𝑜

(𝑡−1)|) > 𝜆𝑜
whilenot converged do

 𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑖
(𝑡−1); 𝑥(𝑡−1))

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1))

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

124

 𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡). 𝑀𝑎𝑠𝑘𝑖

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡). 𝑀𝑎𝑠𝑘𝑜
t = t + 1

end

The last Phase: reDensePhase

whilenot convergeddo

𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑖
(𝑡−1); 𝑥(𝑡−1))

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1))

𝑡 = 𝑡 + 1
end

goto Sparse Phase for iterator DSD;

The model of 3 hidden layers with LSTM using DSD training is shown in Figure 6. The

recommended configuration of the DSD-3hLSTM model is described in Table 2. The detailed

training procedure is described in Algorithm 2.

Table 2. Configuration of the proposed 3 hidden-layer DSD-3hLSTM model

Layer (Type) Output Format # Parameters

lstm_1 (LSTM) (None, None, 32) 8,448

drop_out_1 (Dropout) (None, None, 32) 0

lstm_2 (LSTM) (None, None, 32) 8,320

drop_out_2 (Dropout) (None, None, 32) 0

lstm_3 (LSTM) (None, 32) 8,320

drop_out_3 (Dropout) (None, 32) 0

dense_1 (Dense) (None, 1) 33

activation_1(Activation) (None, 1) 0

Total number of parameters 25,121

Figure 6. Hybrid DSD-3hRNN model

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

125

Algorithm 2. DSD-LSTM training procedure

Initialization: 𝑊(0)𝑤𝑖𝑡ℎ𝑊(0)𝑁(0, 𝛴)

Output: 𝑊𝑓
(𝑡);𝑊ℎ

(𝑡);𝑊𝑢
(𝑡);𝑊𝑜

(𝑡)

Thefirst Phase: Initialize Dense Phase

whilenot converged do

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑓
(𝑡−1); 𝑥(𝑡−1))𝑊ℎ

(𝑡) = 𝑊ℎ
(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊ℎ

(𝑡−1); 𝑥(𝑡−1))

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1))

𝑡 = 𝑡 + 1
end

The second Phase: SparsePhase

// initialize the mask by sorting and keeping the k weights at the top

𝑆𝑓 = 𝑠𝑜𝑟𝑡(|𝑊𝑓
(𝑡−1)|); 𝑆ℎ = 𝑠𝑜𝑟𝑡(|𝑊ℎ

(𝑡−1)|)

𝑆𝑢 = 𝑠𝑜𝑟𝑡(|𝑊𝑢
(𝑡−1)|); 𝑆𝑜 = 𝑠𝑜𝑟𝑡(|𝑊𝑜

(𝑡−1)|)

𝜆𝑓 = 𝑆𝑓𝑘𝑓; 𝜆ℎ = 𝑆ℎ𝑘ℎ; 𝜆𝑢 = 𝑆𝑢𝑘𝑢 ; 𝜆𝑜 = 𝑆𝑜𝑘𝑜

𝑀𝑎𝑠𝑘𝑓 = 1(|𝑊𝑓
(𝑡−1)|) > 𝜆𝑓; 𝑀𝑎𝑠𝑘ℎ = 1(|𝑊ℎ

(𝑡−1)|) > 𝜆ℎ;

𝑀𝑎𝑠𝑘𝑢 = 1(|𝑊𝑢
(𝑡−1)|) > 𝜆𝑢;𝑀𝑎𝑠𝑘𝑜 = 1(|𝑊𝑜

(𝑡−1)|) > 𝜆𝑜
whilenot converged do

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑓
(𝑡−1); 𝑥(𝑡−1))

𝑊ℎ
(𝑡) = 𝑊ℎ

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊ℎ
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡). 𝑀𝑎𝑠𝑘𝑓

𝑊ℎ
(𝑡) = 𝑊ℎ

(𝑡). 𝑀𝑎𝑠𝑘ℎ

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡). 𝑀𝑎𝑠𝑘𝑢

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡). 𝑀𝑎𝑠𝑘𝑜
𝑡 = 𝑡 + 1

end

The last Phase: reDensePhase

whilenot convergeddo

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑓
(𝑡−1); 𝑥(𝑡−1))𝑊ℎ

(𝑡) = 𝑊ℎ
(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊ℎ

(𝑡−1); 𝑥(𝑡−1))

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1))

𝑡 = 𝑡 + 1
end

goto Sparse Phase for iterator DSD;

The model of 3 hidden layers with GRU using DSD training is shown in Figure 7. The

recommended configuration of the DSD-3hGRU model is described in Table 3. The detailed

training procedure is described in Algorithm 3.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

126

Figure 7. Hybrid DSD-3hGRU model

Table 3. Configuration of the proposed 3 hidden-layer DSD-3hGRU model

Layer (Type) Output Format # Parameters

gru_1 (GRU) (None, None, 32) 6,336

drop_out_1 (Dropout) (None, None, 32) 0

gru_2 (GRU) (None, None, 32) 6,240

drop_out_2 (Dropout) (None, None, 32) 0

gru_3 (GRU) (None, 32) 6,240

drop_out_3 (Dropout) (None, 32) 0

dense_1 (Dense) (None, 1) 33

activation_1(Activation) (None, 1) 0

Total number of parameters 18,849

Algorithm 3. DSD-GRU training procedure

Initialization:𝑊
(0)𝑤𝑖𝑡ℎ𝑊(0)𝑁(0, 𝛴)

Output:𝑊𝑟
(𝑡),𝑊𝑧

(𝑡),𝑊𝑢
(𝑡)

Thefirst Phase: Initialize Dense Phase

while not convergeddo

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑟
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑧
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1))

𝑡 = 𝑡 + 1
end

The second Phase: SparsePhase

//initialize the mask by sorting and keeping the k weights at the top

𝑆𝑟 = 𝑠𝑜𝑟𝑡(|𝑊𝑟
(𝑡−1)|) ; 𝑆𝑧 = 𝑠𝑜𝑟𝑡(|𝑊𝑧

(𝑡−1)|);𝑆𝑢 = 𝑠𝑜𝑟𝑡(|𝑊𝑢
(𝑡−1)|)

𝜆𝑟 = 𝑆𝑟𝑘𝑟; 𝜆𝑧 = 𝑆𝑧𝑘𝑧; 𝜆𝑟 = 𝑆𝑢𝑘𝑢;

𝑀𝑎𝑠𝑘𝑟 = 1(|𝑊𝑟
(𝑡−1)|) > 𝜆𝑟;

𝑀𝑎𝑠𝑘𝑧 = 1(|𝑊𝑧
(𝑡−1)|) > 𝜆𝑧;

𝑀𝑎𝑠𝑘𝑢 = 1(|𝑊𝑢
(𝑡−1)|) > 𝜆𝑢;

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

127

whilenot converged do

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑟
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑧
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡). 𝑀𝑎𝑠𝑘𝑟

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡). 𝑀𝑎𝑠𝑘𝑧

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡). 𝑀𝑎𝑠𝑘𝑢
𝑡 = 𝑡 + 1

end

The last Phase: reDensePhase

whilenot convergeddo

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑟
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑧
(𝑡−1); 𝑥(𝑡−1))

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1))

𝑡 = 𝑡 + 1
end

goto Sparse Phase for iterator DSD;

4. EXPERIMENT

4.1. Dataset Description

To evaluate the effectiveness of IDS, a standard intrusive dataset is required. These datasets are

important for testing and evaluating intrusion detection methods. The quality of the collected data

affects the effectiveness of anomaly detection techniques. Some of the benchmark datasets used

widely are KDD Cup 1999 [1] and NSL-KDD [2]. However, they still have certain limitations.

The UNSW NB15 benchmark dataset [4] was created to address these challenges. The raw

network packets of the UNSW-NB 15 dataset was created by the IXIA PerfectStorm tool in the

Cyber Range Lab of UNSW Canberra for generating a hybrid of real modern normal activities

and synthetic contemporary attack behaviors. The comprehensive dataset contains a total of

2,540,044 records.

The comprehensive dataset described in Table 4 has 49 features with classified labels. In Table 4,

dur is the information about total time; proto is the protocol; service is the type of service (http,

ftp, smtp, ssh,...); state represents the protocol state; spkts is the number of packets from source to

destination; dpkts is the number of packets from the destination to the source; sbytes is the

number of bytes from source to destination; dbytes is the number of bytes from the destination to

the source; sttl is the TTL value from source to destination; dttl is the TTL value from destination

to source; sload is the number of source bits; dload is the number of destination bits; sloss are

source packets that are retransmitted or dropped; dloss is the destination packets retransmitted or

dropped (ms); sinpkt is the arrival time between source packets (ms); dinpkt is the arrival time

between destination packets; sjit is the source jitter (ms); djit is the target jitter (ms); swin is the

value of the source broadcast TCP size; stcpb is the sequence number of the source TCP;

is_sm_ips_ports indicates that if the source and destination IP addresses are equal as well as the

source and destination port numbers are equal, this variable takes the value 1 otherwise it takes

the value 0; dtcpb is the sequence number of the destination TCP; dwin is the value of the

destination broadcast TCP size; tcprtt is the round-trip time to establish a TCP connection, which

is the sum of synack and ackdat; synack is the TCP connection establishment time between the

SYN and SYN_ACK packets; ackdat is the TCP connection establishment time between

SYN_ACK and ACK packets; smean is the average stream packet size transmitted by src; dmean

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

128

is the average value of stream packet size transmitted by dst; trans_depth represents the link

depth in the connection of the http request/response transaction; response_body_len is the actual

uncompressed content size of the data transmitted from the http service; ct_srv_src is the number

of connections containing the same service and source address in the last 100 connections;

ct_state_ttl is the number for each state according to the specific range of values for the

source/destination TTL; ct_dst_ltm is the number of connections with the same destination

address in the last 100 connections; ct_src_dport_ltm is the number of connections with the same

source address and destination port in the last 100 connections; ct_dst_sport_ltm is the number of

connections with the same destination address and source port in the last 100 connections;

is_ftp_login indicates that if the ftp session is accessed by the user and password it takes the value

1, otherwise it takes the value 0; ct_ftp_cmd is the number of threads with commands in the ftp

session; ct_flw_http_mthd is the thread number with methods like Get and Post in the http

service; ct_src_ltm is the number of connections with the same source address in the last 100

connections; ct_srv_dst is the number of connections with the same service and destination

address in the last 100 connections; attack_cat is the name of each type of attack. In this dataset,

the label takes 0 for normal and 1 for attack record.

Table 4. Features of the UNSWNB-15 dataset

No. Feature Type No. Feature Type

1 srcrip nominal 26 res_bdy_len integer

2 sport integer 27 sjit float

3 dstip nominal 28 djit float

4 dsport nominal 29 stime time

5 proto nominal 30 ltime time

6 state nominal 31 sintpkt float

7 dur float 32 dintpkt float

8 sbytes integer 33 tcprtt float

9 sttl integer 34 synack float

10 dttl integer 35 ackdat float

11 sloss integer 36 is_sm_ips_ports binary

12 dloss integer 37 ct_state_ttl integer

13 dload float 38 ct_flw_http_mthd integer

14 service nominal 39 is_ftp_login binary

15 sload float 40 ct_ftp_cmd integer

16 dload float 41 ct_srv_src integer

17 spkts integer 42 ct_src_dst integer

18 dpkts integer 43 ct_dst_ltm integer

19 swin integer 44 ct_src_ltm integer

20 dwin integer 45 ct_src_dport_ltm integer

21 stcpb integer 46 ct_dst_sport_ltm integer

22 dtcpb integer 47 ct_dst_src_ltm Integer

23 smeansz integer 48 attack_cat nominal

24 dmeansz integer 49 label binary

25 trans_depth integer

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

129

4.2. Data Preprocessing

4.2.1. Convert nominal feature to numeric form

The process of converting nominal features into numeric form is called Numericalization. In the

UNSW-NB15 dataset, there are 40 numeric features and 4 nominal features. Since the input value

of RNN, LSTM, GRU must be a numeric matrix, we have to convert some nominal features, such

as “proto”, “service” and “state” into numeric form. We convert these sets of numbers using the

scikit-sklearn LabelEncoder library [12]. For example, the proto feature in the dataset with non-

identical values including tcp, udp, and rdp will be encoded with the corresponding label to the

numbers 1, 2, and 3.

The dataset contains 10 types, one is normal and nine types of attacks (anomaly) including

generics, exploits, fuzzers, DoS, reconnaissance, analysis, backdoor, shellcode, and worms. Table

5 shows the class classification details of the UNSW-NB15 dataset.

Table 5. Classification of attacks in the UNSW-NB15 dataset

Classification Records Description

Normal 2,218,761 Normal data

Generic 215,481 A technique that works to bypass the block-cipher (with a given

block and key size) without considering the blockcipher's

structure

Exploits 44,525 An attacker knows about a security problem in an operating

system or a piece of software and takes advantage of it to exploit

the vulnerability

Fuzzers 24,246 Causes a program or network to crash by feeding it randomly

generated data

DoS 16,353 A technique that makes a server or network resource unavailable

to a user, usually by temporarily interrupting or suspending the

services of a server connected to the Internet

Reconnaissance 13,987 Information gathering attack

Analysis 2,677 It contains various attacks by port scanning, spam, and html file

penetration

Backdoor 2,329 A technique in which it bypasses a system's security mechanism

to gain access to a computer or system data

Shellcode 1,511 A small piece of code is used as a payload in exploiting software

vulnerabilities

Worms 174 Attackers self-replicate to spread to other computers. Usually, it

uses a computer network to spread itself, relying on security

flaws on the target computer to exploit

Total 2,540,044

4.2.2. Feature selection

In [14], Malek Al-Zewairi and colleagues tested and found the most important features in the

UNSW-NB15 dataset and showed the performance of the best model (i.e. the deep learning

model using the top 20% set with a threshold of 0.4482) as shown in Table 6. Therefore, in this

study, we reuse the Top 20% of the most important features for our experiments.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

130

Table 6. Importance of features

 Number

offeatures
Important features

Top 5% 19 service, proto, state, swin, sttl, dttl, dmeansz, ct srv dst,

dwin, ct_state_ttl, trans depth, djit, spkts, sjit,

ct_dst_sport_ltm, sloss, dsport, sload, ct_dst_src_ltm

Top 10% 25 Top 5%, ct_srv_src, dload, dloss, synack, ackdat, dtcpb

Top 15% 31 Top 10%, ct_src_ltm, tcprtt, ltime, stcpb, smeansz, dpkts

Top 20% 33 Top 15%, stime, dur

Top 25% 35 Top 20%, sport, ct_src_dport_ltm

Full of features 45 Top 25%, dbytes, ct dst ltm, sbytes, sintpkt, ct flw http

mthd, res_bdy_len, is_sm_ips_ports, dintpkt, ct ftp cmd,

is_ftp_login

4.2.3. Data Normalization Min-Max

Normalization is a scaling technique in which values are shifted and resized so that they end up

between 0 and 1. Normalization requires that we know or be able to accurately estimate the

minimum and maximum values that can be observed.

Because the scope of raw data is very wide and varied, in some machine learning algorithms, the

objective function will not work properly if it is not normalized. Another reason for the feature

normalization to be applied is that the prediction accuracy will increase compared to no

normalization [15]. In this experiment, we use Min-Max normalization given by equation (13).

𝑥′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥)
 (13)

4.3. Experimental Environment

In this study, binary classification based on RNN, LSTM, GRU networks is selected. This model

is trained on the comprehensive dataset UNSW-NB15. The algorithm is built on Python language

and Keras library, Sklearn, runs on Tensorflow platform and Anaconda environment.

The experiment was performed on an Acer Nitro5 laptop, with a CPU configuration Intel Core

i5-9300 2.4 GHz, 16 GB memory, and GPU 3 Gigabytes. Experiments have been designed to

study the performance between 3 neural network models RNN, LSTM, and GRU in binary

classification (normal, anomaly). The simple RNN, LSTM, and GRU models are the same, only

differing in the core architecture of the neuron, specifically:

- The RNN/LSTM/GRU layers consist of 32 neuron units;

- Dropout layers has a dropout rate of 0.1;

- The Dense layer uses the sigmoid activation function.

In which, the Dropout layer helps to avoid overfitting, the last Dense layer is the output layer to

evaluate the output as 1 or 0 (i.e. anomaly or normal). Each phase applies DSD to all 3 models

DSD-3hRNN/DSD-3hLSTM/DSD-3hGRU. However, the final phase which is the re-dense phase

restores the connections, the learning rate is reduced to 0.0001 in this phase.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

131

5. RESULT EVALUATION

5.1. Evaluation Method

We use 5 common metrics to evaluate intrusion detection performance including Accuracy,

Detection Rate, Precision, False Alarm Rate, and F1 score. Table 7 presents the confusion matrix

including true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP

and TN indicate that the attacked (anomaly) state and the normal state are classified correctly. FP

indicates that a normal record is predicted incorrectly, i.e., the IDS warns of an unrealistic attack.

The FN indicates that an attack record is incorrectly classified, i.e., the IDS does not warn and

assume it as a normal record.

Table 7. Confusion Matrix

 Prediction – Anomaly Prediction – Normal

Reality– Anomaly TP FN

Reality– Normal FP TN

Accuracy –how close the measurements are to a particular value, representing the number of

correctly classified instances of data over the total number of predictions. Accuracy may not be a

good metric if the dataset is unbalanced (i.e. both negative and positive classes have different

amounts of data). The formula calculating precision is defined in (14).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (14)

False Alarm Rate (FAR) - also known as False Positive Rate. This measure is calculated

according to formula (15). The ideal ratio for this metric is as low as possible, i.e. the lower

number of misclassifications is the better.

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (15)

Precision –how close the measurements are. Precision is 1 only when numerator and

denominator are equal (TP=TP+FP), this also means FP is 0. The formula calculating Precision is

defined in (16).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (16)

Detection Rate (DR or Recall) –DR is 1 only if the numerator and denominator are equal (TP =

TP + FN), this also means that the FN is 0. This criterion aims to evaluate the generalization of

the found model and is determined by the formula (17).

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17)

We always expect both Precision and DR to be good, i.e. either the FP and FN values should be

as close to zero as possible. Therefore, we need a measurement parameter that takes into account

both Precision and DR, which is F1-score, determined by the formula (18).

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

132

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝐷𝑅)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐷𝑅
 (18)

F1-score is called a harmonic mean of the Precision and DR criteria. It tends to take the value

closest to whichever is the smaller between the Precision and DR values. Therefore, the F1-score

is a more objective representation of the performance of a machine learning model. Compared

with the Accuracy, F1-score is more suitable to evaluate the instructive detection performance of

unbalanced datasets.

5.2. Result and Evaluation

The training model is performed with the following cases:

- Case 1: RNN, LSTM, GRU model is trained on the UNSW-NB15 dataset.

- Case 2: RNN, LSTM, GRU model is trained on UNSW-NB15 dataset combined with

DSD training scheme.

The above cases are all trained with Cross-validation [13], the sparsity parameter is 25, the epoch

number is 10, and the batch_size is 32. The evaluation results are presented in Table 8 (case 1)

and Table 9 (case 2). The evaluation criteria include Accuracy, FAR, Precision, Recall, and F1-

score. Experimental results are listed in Table 8 and Table 9.

Table 8. Evaluation of RNN, LSTM, and GRU models on the UNSW-NB15

 FAR% Acc% Prec% DR% F1-score%

RNN 0.7643 98.8401 85.8300 91.0615 88.3684

LSTM 0.3711 98.7613 91.7982 81.6980 86.4541

GRU 0.3430 98.8346 92.4533 82.6614 87.2836

Table 9. Evaluation of DSD-3hRNN, DSD-3hLSTM, DSD-3hGRU on the UNSW-NB15

 FAR% Acc% Prec% DR% F1-score%

DSD-3hRNN 0.2884 98.8532 93.5267 81.9724 87.3692

DSD-3hLSTM 0.2619 98.9540 94.1910 83.5346 88.5433

DSD-3hGRU 0.3435 98.8849 92.5306 83.7119 87.9006

In Table 8, all three models have similar results in terms of accuracy. However, in terms of DR

and F1-score, RNN gives the best results (91.0615% and 88.3684%). The FAR criterion shows

that the multilayer neural network model GRU and LSTM give better results than the multilayer

neural network model RNN (0.3711% and 0.3430% respectively, the smaller FAR, the better

performance). Meanwhile, the GRU gives the best result in the Precision criterion with

92,4533%.

In Table 9, all three models have similar results in terms of accuracy. DSD-3hLSTM gives the

best results in many criteria. Specifically, FAR is the lowest with 0.2619%, other criteria such as

Precision, and F1-score are the highest at 94.1910%, and 88,5433%, respectively. For DR

criteria, DSD-3hLSTM is equivalent to DSD-3hGRU.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

133

Figure 8. FAR comparison chart between RNN, LSTM, GRU with DSD and without DSD

Figure 9. Accuracy comparison chart between RNN, LSTM, GRU with DSD and without DSD

With the results obtained in tables 10, 11, and 12, we see that combining the DSD training

scheme with the hidden 3-layer neural network gives better results than the original models. Most

of the criteria are improved as follows:

- The proposed model DSD-3hRNN: FAR (reduced by 0.4759%), Accuracy (increased by

0.0131%), Precision (increased by 7.6966%) compared with the original RNN neural

network.

- The proposed model DSD-3hLSTM: FAR (reduced by 0.1092%), Accuracy (increased

by 0.1927%), Precision (increased by 2.3928%), DR (increased by 1.8365%), F1-score

(increased by 2.089%) compared with the original LSTM neural network.

- The proposed model DSD-3hGRU: Accuracy (increased 0.0503%), Precision (increased

of 0.0773%), DR (increased of 1,0504%), F1-score (increased of 0.617 %) compared

with the original GRU neural network model.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

134

Table 10. Evaluation of the DSD-3hRNN and RNN on the UNSW-NB15 dataset

 FAR% Acc% Prec% DR% F1-score%

DSD-3hRNN 0.2884 98.8532 93.5267 81.9724 87.3692

RNN 0.7643 98.8401 85.8300 91.0615 88.3684

Table 11. Evaluation of the DSD-3hLSTM and LSTM on the UNSW-NB15 dataset

 FAR% Acc% Prec% DR% F1-score%

DSD-3hLSTM 0.2619 98.9540 94.1910 83.5346 88.5433

LSTM 0.3711 98.7613 91.7982 81.6980 86.4541

Table 12. Evaluation of DSD-3hGRU and GRU on the UNSW-NB15 dataset

 FAR% Acc% Prec% DR% F1-score%

DSD-3hGRU 0.3435 98.8849 92.5306 83.7119 87.9006

GRU 0.3430 98.8346 92.4533 82.6614 87.2836

For a simpler look, we extract results based on two key criteria (FAR and Accuracy) to show in

Figures 8 and 9. With the FAR criterion, we found that DSD-3hRNN gives a significant

improvement compared with the original model (reduced by 0.4759%). With Accuracy criterion,

all 3 models are improved, but DSD-3hLSTM is improved the most (increased 0.1927%).

RNN has a problem with “vanishing gradient” (gradient is used to update the value of the weight

matrix in RNN and it gets smaller layer by layer when done show back propagation). When the

gradient becomes very small (value is close to 0) then the value of the weight matrix will not be

updated further and hence the neural network will stop learning at this layer. However, when

using DSD, the RNN will be weighted and retrained again. This helps to restore the weights,

overcomes the "vanishing gradient" problem, and increases the training efficiency in the final

Dense phase. Meanwhile, LSTM has added ports (forget port, update gate and tanh function) to

overcome the problem of “vanishing gradient”, so the intrusion detection efficiency of LSTM by

DSD training is better improved when DSD is applied to the RNN. However, because GRU is the

proposed model to simplify the architecture of the LSTM model. It uses the update port to replace

the input and forget ports. This simplification of the architecture helps GRU improve the learning

time, but the efficiency level is not equal to the LSTM.

Besides, we also collect results from other studies [16], [17], [18], and [19] to compare with our

results. The results in Table 13 show that our proposed solution has better performance in many

criteria in detecting network intrusion than previous studies as follows:

- The accuracy of the proposed model DSD-3hRNN is 98,8532%, DSD-3hLSTM is

98,9541%, and DSD-3hGRU is 98,8849%.

- The false alarm rate of the proposed model DSD-3hRNN is 0.2884%, DSD-3hLSTM is

0.2619%, DSD-3hGRU is 0.3435%.

- For the remaining criteria (Precision, DR, F1-score), we did not collect corresponding

data for comparison.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

135

Table 13. Performance comparison of the proposed training model with other studies

Model FAR (%) Acc (%) Pre

(%)

DR

(%)

F1-score (%)

DSD-3hRNN (proposal) 0.2884 98.8532 93.5267 81.9724 87.3692

DSD-3hLSTM (proposal) 0.2619 98.9540 94.1910 83.5346 88.5433

DSD-3hGRU (proposal) 0.3435 98.8849 92.5306 83.7119 87.9006

Decision Tree [15] 15.78 85.56 - - -

Logistic Regression [15] 18.48 83.15 - - -

Nave Bayes [15] 18.56 82.07 - - -

Artificial Neural Network

[15]

21.13 81.34 - - -

EM-Clustering [15] 23.79 78.47 - - -

Ramp-KSVCR [16] 2.46 93.52 - - -

PSI-NetVisor [17] 2.81 94.54 - - -

Deep Learning [14] 0.56 98.99 - - -

Thus, the false alarm rates of the 3 proposed models are quite good, much lower than that of

other proposed models. The accuracy of the proposed model is equivalent to Deep Learning [14]

and higher than the remains [15, 16, 17]. In general, harmonizing the criteria, the DSD-3hLSTM

training scheme gives the best result in the 3 proposed models with False Alarm Rate of

0.2619%, Accuracy of 98.954%, Precision of 94.1910%, F1-score of 88.5433%.

6. CONCLUSIONS

This paper presented a method to improve the performance of intrusion detection systems by

integrating big data technologies and deep learning techniques. UNSW-NB15 dataset is used to

evaluate the proposed approach. We proposed the hybrid model of a hidden 3-layer neural

network with the DSD training scheme: Hybrid DSD-3hRNN model, Hybrid DSD-3hLSTM

model, Hybrid DSD-3hGRU model. In the experiment, three proposed models are trained with

sparsity parameters of 25, batch_size of 32. The evaluation criteria are: Accuracy, FAR,

Precision, Recall and F1 Score. All experiments are conducted on Anaconda environment with

the Keras & TensorFlow 2.The results obtained in tables 10, 11, and 12, we see that combining

the DSD training scheme with the hidden 3-layer neural network gives better results than the

original models.

The novelty in our proposed model is there as on able number of hidden layers chosen to solve

both under-fitting and over-fitting problems that most deep learning models have to face.

However, there are still some limitations in experimenting and evaluating the proposed model.

We have to check many times to find the appropriate parameter, such as the value of the sparsity

parameter, the number of hidden layers, the number of neurons per layer. In addition, we do not

have a complete assessment of the experimental time.

The next research will be studying the DSD scheme to find the appropriate set of parameters

(epochs, learning rate, sparsity) and activation functions (reLU, Leaky ReLU, Swish, etc.) to

improve the instructive detection efficiency. Besides, to index the specific type of attack, we also

intend to study the DSD training scheme merged with deep neural networks such as CNN, DNN

using other attack datasets including labeled and unlabeled records.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

136

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] Hettich, S. and Bay, S. D., “KDD Cup 1999 Data” 28 October 1999. [Online]. Available:

http://kdd.ics.uci.edu. [Accessed 02 Feb 2020].

[2] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed Analysis of the KDD CUP 99

Dataset”, 2009. [Online]. Available: https://www.unb.ca/cic/datasets/.

[3] Nour Moustafa, Jill Slay, “UNSW-NB15: A Comprehensive Dataset for Network” in Military

Communications and Information Systems Conference (MilCIS), Canberra, Australia, 2015.

[4] Moustafa, Nour Moustafa Abdelhameed, “The UNSW-NB15 Dataset Description” 14 November

2018. [Online]. Available: https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-

NB15-Datasets/. [Accessed 02 August 2020].

[5] Vinayakumar R et al., “A Comparative Analysis of Deep learning Approaches for Network Intrusion

Detection Systems (N-IDSs)” International Journal of Digital Crime and Forensics, vol. 11, no. 3, p.

25, July 2019.

[6] Song Han∗, Huizi Mao, Enhao Gong, Shijian Tang, William J. Dally, “DSD: Dense-Sparse-Dense

Training For Deep Neural Networks” in ICLR 2017, 2017.

[7] Mohammed Awad1 and Alaeddin Alabdallah, “Addressing Imbalanced Classes Problem Of Intrusion

Detection System Using Weighted Extreme Learning Machine”, International Journal of Computer

Networks & Communications (IJCNC), Vol.11, No.5, 2019

[8] Saad Al-Ahmadi1 and Yasser Alharbi A deep learning technique for web phishing detection

combined url features and visual similarity, Journal of Computer Networks & Communications

(IJCNC), Vol.12, No.5, September 2020

[9] Anani, Wafaa, “Recurrent Neural Network Architectures Toward Intrusion Detection” in Recurrent

Neural Network Architectures Toward Intrusion Detection, Electronic Thesis and Dissertation

Repository. 5625, 2018.

[10] K. Cho, J. Chung, C .Gulcehre, and Y. Bengio, “Empirical evaluation of gated recurrent neural

networks on sequence modeling” Computing Research Repository (CoRR), 2014.

[11] Brownlee, Jason, “Overfitting and Underfitting With Machine Learning Algorithms” 12 August

2019. [Online]. Available: https://machinelearningmastery.com/overfitting-and-underfitting-with-

machine-learning-algorithms/. [Accessed 03 August 2020].

[12] Gupta, Prashant, “Cross-Validation in Machine Learning” Towards Data Science, 05 June 2017.

[Online]. Available: https://towardsdatascience.com/cross-validation-in-machine-learning-

72924a69872f. [Accessed 02 August 2020].

[13] Brownlee, Jason, “Gentle Introduction to the Bias-Variance Trade-Off in Machine Learning” 25

October 2019. [Online]. Available: https://machinelearningmastery.com/gentle-introduction-to-the-

bias-variance-trade-off-in-machine-learning/. [Accessed 03 August 2020].

[14] Pedregosa et al., “Scikit-learn: Machine Learning in Python” 2011. [Online]. Available: https://scikit-

learn.org/stable/modules/.

[15] Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift”, Computer Science - Machine Learning, 2015.

[16] Malek Al-Zewairi, Sufyan Almajali, Arafat Awajan, “Experimental Evaluation of a Multi-Layer

Feed-Forward Artificial Neural Network Classifier for Network Intrusion Detection System”,The

2017 International Conference on New Trends in Computing Sciences, At Amman, Jordan, 2017.

[17] N. Moustafa and J. Slay, “The evaluation of network anomaly detection systems: Statistical analysis

of the UNSW-NB15 dataset and the comparison with the KDD99 dataset”, Information Security

Journal: A Global Perspective, Jan 2016.

[18] Seyed Mojtaba Hosseini Bamakan, H. Wang, and Y. Shi, “Ramp loss k-support vector classification-

regression; a robust and sparse multi-class approach to the intrusion detection problem”,Knowledge-

Based Systems, vol. 126, pp. 113-126, 2017.

[19] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “PSI-NetVisor: Program semantic aware

intrusion detection at network and hypervisor layer in cloud”, Journal of Intelligent &Fuzzy Systems,

vol. 32, p. 2909–2921, 2017.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022

137

AUTHORS

Trong Thua Huynh is currently the Head of Information Security Department, Faculty

of Information Technology, Posts and Telecommunications Institute of Technology in

Ho Chi Minh City, Vietnam. He received a Bachelor's degree in Information

Technology from Ho Chi Minh City University of Natural Sciences, a Master degree in

Computer Engineering at Kyung Hee University, Korea, and a Ph.D. degree in

Computer Science at the Ho Chi Minh City University of Technology, Vietnam

National University at Ho Chi Minh City. His key areas of research include

Information Security in IoT, Blockchain, Cryptography, and Digital Forensics.

Hoang Thanh Nguyen is currently the Lecturer in Ho Chi Minh City, Vietnam. He

received a Master’s Degree in Information Systems from the Institute of Post and

Telecommunications Technology. His research areas are Information Security,

Machine Learning.

	Abstract
	Keywords
	UNSW-NB15, deep learning, IDS, neural network.

