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ABSTRACT 
 

Deep learning applications, especially multilayer neural network models, result in network intrusion 

detection with high accuracy. This study proposes a model that combines a multilayer neural network with 

Dense Sparse Dense (DSD) multi-stage training to simultaneously improve the criteria related to the 

performance of intrusion detection systems on a comprehensive dataset UNSW-NB15. We conduct 

experiments on many neural network models such as Recurrent Neural Network (RNN), Long-Short Term 

Memory (LSTM), Gated Recurrent Unit (GRU), etc. to evaluate the combined efficiency with each model 

through many criteria such as accuracy, detection rate, false alarm rate, precision, and F1-Score. 
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1. INTRODUCTION 
 

An Intrusion Detection System (IDS) is a network traffic monitoring system, capable of 

recognizing suspicious activities or unauthorized intrusions on the network during an attack, 

thereby providing identifiable information and giving warnings to the system and administrator. 

The development of malware poses an important challenge to the design of IDS. Malware attacks 

have become more sophisticated and challenging. Malware creators can use a variety of 

techniques to conceal their behavior and prevent IDS from being detected, so they can easily steal 

important data and disrupt the business operations of numerous individuals and organizations. 

 

IDS works in three main ways: Signature-based, Anomaly-based, and Stateful Protocol Analysis. 

Signature-based IDS compares signatures of the observed object with those of known threats. 

Anomaly-based IDS compares definitions of normal activities and the observed object to identify 

deviations and generate alarms. Stateful Protocol Analysis IDS compares predetermined profiles 

of the behavior of each protocol that is considered normal with the observed object to determine 

deviations. Except for the Signature-based method, the two other methods need to be learned to 

recognize anomalies. Therefore, over the past few decades, machine learning has been used to 

improve intrusion detection. 

 

The effectiveness of IDSs is evaluated based on their performance in identifying attacks. This 

requires a comprehensive dataset including both normal and anomalous behaviors. Previous 

datasets such as KDDCUP99 [1] and NSL-KDD [2] have been widely applied to evaluate the 

performance of IDSs. Although the performance of these datasets has been acknowledged in 

many previous studies, the evaluation of IDS using these datasets does not reflect the actual 

output performance due to several reasons. The first reason is that the KDDCUP99 dataset 
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contains a large number of redundant records in the training set. Redundant records affect the 

results of biases in intrusion detection for frequent records. Second, the fact that many records are 

missing is also a factor that changes the nature of the data. Third, the NSL-KDD dataset is an 

improved version of KDDCUP99, which solves some problems such as data imbalance between 

normal and abnormal records as well as missing values [3]. However, this dataset is not a 

comprehensive representation of the actual modern attack environment. The standard dataset 

UNSW-NB15 [4] was created to address the limitations of the previous datasets, especially, it is 

regularly updated with new data features and attacks. 

 

There have been many machine learning methods and neural network models applied to network 

intrusion detection such as RNN, LSTM, GRU. Choosing the right model for the UNSW-NB15 

dataset to improve the evaluation results is also a matter of concern [5]. In addition, one of the 

recent studies to improve training quality is that the DSD (Dense Sparse Dense) training model 

[6] has been applied effectively to some image processing and voice recognition problems. In this 

study, we focus on evaluating the efficiency of network intrusion detection based on deep neural 

network models such as RNN, LSTM, GRU by proposing a model that combines the DSD 

training method into each of these neural network models to improve the performance of network 

intrusion detection systems. 

 

The remainder of the paper is organized as follows. In section 2, we present the related work. 

Section 3 describes the proposed hybrid model. Sections 4 and 5 present the experiment, result, 

and evaluation of the proposed models. Finally, concluding remarks are given in section 6. 

 

2. RELATED WORK 
 

2.1. Deep Neural Network 
 

The neural network is a technique created to simulate the human brain for pattern recognition and 

are used in a variety of learning tasks. Generally, it consists of three layers, one for input, one for 

output, and at least one hidden layer between them. The input goes from the input layer through 

the hidden layers, to the output layer through a set of neuronal nodes in each layer, whether it is a 

linear or non-linear relationship. DNN shows that there is more than one hidden layer in a neural 

network. It is widely used in supervised and unsupervised learning, as well as for classification 

and clustering. In a few recent studies, DNN is widely used in detecting network intrusions [7] 

and web phishing [8]. 

 

In this model, a group of neurons  is passed to the hidden layers as input data. These neurons are 

connected by the weight factor, which represents the importance of the input value. The more 

valuable neurons, the greater the impact on the next layer of neurons. Many types of Artificial 

Neural Networks have been developed, the first and simplest Neural Network widely used is the 

Feed-Forward Neural Network. In this type of network, information is transmitted in parallel 

from the input layer directly through the hidden layers and then into the output layer without 

loops. 

 

2.2. Recurrent Neural Network (RNN) 
 

RNN [9] is an extension of a straightforward neural network, designed to recognize patterns in 

data series. This network is regressive because it performs the same task for every element of the 

sequence with the output depending on previous computations. [10]. 
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RNN can be viewed as a way to share weights over time, as illustrated in Figure 1. The following 

equations (1) and (2) are used to compute the state ht and the hidden output Ot in terms of the 

RNN: 

 

ℎ𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑡) (1) 

𝑂𝑡 = 𝜏(𝑊𝑜ℎ𝑡) (2) 

 

Where σ and  are sigmoid and softmax activation functions, respectively, xt is an input vector at 

time t, ht is a hidden state vector at time t, Wi is an input weight matrix, U is a weight matrix 

between hidden layers, Wo is the output weight matrix and bt is the bias coefficient. 

 

 
 

Figure 1. Simple RNN architecture 

 

The RNN model has a major drawback, at each time in the training process, similar weights are 

used to compute the Ot output, which causes the output to be incorrect. Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) models have been proposed to solve this 

problem. 

 

2.3. Long Short-Term Memory (LSTM) 
 

The Long Short Term Memory (LSTM) network [9] is a variant of the recurrent neural network 

proposed as one of the machine learning techniques to solve many sequential data problems. 

LSTM helps maintain errors that can propagate back layers over time. LSTM is used to increase 

the accuracy of the output, as well as to make the RNN more useful for long-term memory tasks. 

The LSTM architecture, as illustrated in Figure 2, consists of four main components; input port 

(i), forget port (f), output port (o), and memory cell (c). 

 

 
 

Figure 2. The core architecture of the LSTM block [9] 

 

The LSTM block makes decisions about whether to store, read, and write through open or closed 

ports, and each block of memory corresponds to a specific time. The communication ports are 

based on a set of weights. Some weights, like input and hidden states, are adjusted during the 
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learning process. Equations from (3) to (8) are used to represent the relationship between input 

and output at time t in each LSTM block. 

 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

𝑗𝑡 = 𝜔(𝑊𝑗[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑗) (5) 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑗𝑡 (6) 

𝑧𝑡 = 𝜎(𝑊𝑗[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑗) (7) 

ℎ𝑡 = 𝑧𝑡 × 𝜔(𝑐𝑡) (8) 

 

Where σ and  are the activation functions sigmoid and tanh, respectively, xt is an input vector at 

time t, ht is the output vector at time t, W and b are the weight matrix and bias coefficient, 

respectively. ft is a forget function used to filter out unnecessary information, it and jt are used to 

insert new information into memory cells, zt outputs relevant information. 

 

2.4. Gated Recurrent Unit (GRU) 
 

GRU is a variant of LSTM introduced by K.Cho [10]. Basically, The GRU is an LSTM with no 

output ports, so it writes all the content from memory to the larger network at a time. However, it 

is refined using an updated gate that is added to the GRU block. The updated port is a 

combination of an input port and a forget port. The GRU model is proposed to simplify the 

architecture of the LSTM model. The structure of the GRU is shown in Figure 3. Equations (9) to 

(12) show the relationship between the input and the predicted outcome. 

 

 
 

Figure 3. The core architecture of the GRU block [9] 

 

𝑣𝑡 = 𝜎(𝑊𝑣[𝑜𝑡−1, 𝑥𝑡] + 𝑥𝑡) (9) 

𝑠𝑡 = 𝜎(𝑊𝑣[𝑜𝑡−1, 𝑥𝑡]) (10) 

𝑜′𝑡 = 𝜔(𝑊𝑣[𝑠𝑡 × 𝑜𝑡−1, 𝑥𝑡]) (11) 

𝑜𝑡 = (1 − 𝑣𝑡) × 𝑜𝑡−1 + 𝑣𝑡 × 𝑜′𝑡 (12) 

 

Where the feature space (input) is represented by x and the prediction is represented by ot, vt is 

the updated function. W is the weight optimized during the training process. σ and  are sigmoid 

and tanh activation functions respectively to keep the information passing through the GRU 

within a specific range. 
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2.5. Dense Sparse Dense (DSD) 

 
Complex multi-layer neural models give good results and can obtain highly nonlinear 

relationships between feature data and output. The disadvantage of these large models is that they 

are prone to noise in the training dataset. This leads to overfitting [11] and high variance [12]. 

However, if the model is reduced to a less complex form, the machine learning system may miss 

the relevant relationships between the features and the output, leading to the problem of under-

fitting [11] and high bias [13]. This is a very challenging problem because bias and variance are 

difficult to optimize at the same time. 

 

By pruning and re-dense the network, the DSD training model changes the optimization process 

and improves the optimization performance with significant results. Some of the factors that 

make the DSD training model effective are: 

 

- Saddle point: DSD overcomes saddle points by trimming and thickening the model. 

- Significantly better minima: DSD reduced the loss and error on both the training set and 

the validation on ImageNet. 
- Frequent and Sparse Training: Both sparse training and DSD ultimately reduce the 

variance and lead to lower errors. 

- Strong Re-initialization: DSD allows to optimize second chances during training to 

restart using a robust sparse training solution. 
 

In the study [6], Song and colleagues introduced DSD, a “dense – sparse – dense” training model 

by selecting connections to discard and recover others later. The authors tested their DSD model 

with GoogLeNet, VGGNet, and ResNet on the ImageNet dataset, NeuralTalk BLEU on the 

Flickr-8K dataset, and DeepSpeech-1&2 on the WSJ'93 dataset. Experimental results show that 

the DSD training model has brought significant efficiency on image processing and voice 

recognition datasets applied on deep neural networks. 

 

3. HYBRID NEURAL NETWORK MODEL 
 

Realizing that recurrent neural networks (RNN/LSTM/GRU) can effectively learn to generate 

highly nonlinear relationships between input and output features, this study proposes a 

hybridmodel combining RNN/LSTM/GRU with a 3-stage DSD training scheme to improve 

network intrusion detection efficiency. We set the number of neurons of all hidden layers to 32. 

The proposed model includes: 

 

 
 

Figure 4. Simple RNN/LSTM/GRU architecture with 3 hidden layers 
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- The simple 3 hidden layers RNN/LSTM/GRU neural network is shown in Figure 4; 

- The hybrid training model DSD-3hRNN/DSD-3hLSTM/DSD-3hGRU uses a three-stage 

process: dense (Dense - D), sparse (Sparse - S), re-dense (reDense - D) is applied on the 

simple neural network model with 3 hidden layers (3h). The stages are illustrated in 

Figure 5 (DSD-3hRNN), Figure 6 (DSD-3hLSTM), and Figure 7 (DSD-3hGRU). 

 

The proposed model contains three hidden layers. Each layer is fully connected to the next layer 

in the network, where ReLU function is used in hidden layers and sigmoid function is used in the 

output layer for binary classification while the softmax function is used in the output layer for 

multiclass classification. 

 

3.1. Determining the number of hidden layers 
 

Problems requiring more than two hidden layers are unusual for deep learning. Two or fewer 

layers are usually sufficient with simple datasets. However, with complex datasets, additional 

layers can be useful. The following table summarizes the capabilities of some popular layered 

architectures. We can clarify this as follows: 

 

- If the number of hidden layers is one, the result can approximate any function that 

contains a continuous mapping from one finite space to another. 

- If the number of hidden layers is two, the result can represent an arbitrary decision 

boundary to arbitrary accuracy with rational activation functions and can approximate 

any smooth mapping to any accuracy. 

- If the number of hidden layers is more than two, additional layers can learn complex 

representations. 

 

Besides, we tried to train the model with more than 3 hidden layers, the result is not only similar 

to the 3-hidden layer model but also takes more time. Therefore, we decided to choose a 3-hidden 

layer model for this dataset. 

 

3.2. Determining the number of neurons in hidden layers 
 

Using too few neurons in hidden layers will lead to under-fitting. Using too many neurons in 

hidden layers can lead to over-fitting problems. To select the number of neurons per hidden layer, 

we use some rules as follows: 

 

- The number of neurons in the hidden layer is between the size of the input layer and the 

size of the output layer. 

- The number of neurons in the hidden layer is 2/3 the size of the input layer, plus the size 

of the output layer. 

- The number of neurons in the hidden layer is less than twice the size of the input layer. 
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Figure 5. Hybrid DSD-3hRNN model 

 
Table 1. Configuration of the proposed 3 hidden-layer DSD-3hRNN model 

 

Layer (Type) Output Format # Parameters 

rnn_1 (SimpleRNN) (None, None, 32) 2,112 

drop_out_1 (Dropout) (None, None, 32) 0 

rnn_2 (SimpleRNN) (None, None, 32) 2,080 

drop_out_2 (Dropout) (None, None, 32) 0 

rnn_3 (SimpleRNN) (None, 32) 2,080 

drop_out_3 (Dropout) (None, 32) 0 

dense_1 (Dense) (None, 1) 33 

activation_1(Activation) (None, 1) 0 

Total number of parameters 6,305 
 
Algorithm 1. DSD-RNN training procedure 

 

Initialization: 𝑊(0)𝑤𝑖𝑡ℎ𝑊(0)𝑁(0, 𝛴)  

Output: 𝑊𝑖
(𝑡);𝑊𝑜

(𝑡)
 

Thefirst Phase: Initialize Dense Phase 

while not converged do 

 𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑖
(𝑡−1); 𝑥(𝑡−1)) 

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1)) 

 𝑡 = 𝑡 + 1 
end 

The second Phase: SparsePhase 

// initialize the mask by sorting and keeping the k weights at the top 

𝑆𝑖 = 𝑠𝑜𝑟𝑡(|𝑊𝑖
(𝑡−1)|) ; 𝑆𝑜 = 𝑠𝑜𝑟𝑡(|𝑊𝑜

(𝑡−1)|) 

𝜆𝑖 = 𝑆𝑖𝑘𝑖; 𝜆𝑜 = 𝑆𝑜𝑘𝑜 

𝑀𝑎𝑠𝑘𝑖 = 1(|𝑊𝑖
(𝑡−1)|) > 𝜆𝑖; 𝑀𝑎𝑠𝑘𝑜 = 1(|𝑊𝑜

(𝑡−1)|) > 𝜆𝑜 
whilenot converged do  

 𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑖
(𝑡−1); 𝑥(𝑡−1)) 

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1)) 
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 𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡). 𝑀𝑎𝑠𝑘𝑖 

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡). 𝑀𝑎𝑠𝑘𝑜 
t = t + 1 

end  

The last Phase: reDensePhase 

whilenot convergeddo 

𝑊𝑖
(𝑡) = 𝑊𝑖

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑖
(𝑡−1); 𝑥(𝑡−1)) 

 𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1)) 

𝑡 = 𝑡 + 1 
end  

goto Sparse Phase for iterator DSD; 

 

The model of 3 hidden layers with LSTM using DSD training is shown in Figure 6. The 

recommended configuration of the DSD-3hLSTM model is described in Table 2. The detailed 

training procedure is described in Algorithm 2. 

 
Table 2. Configuration of the proposed 3 hidden-layer DSD-3hLSTM model 

 

Layer (Type) Output Format # Parameters 

lstm_1 (LSTM) (None, None, 32) 8,448 

drop_out_1 (Dropout) (None, None, 32) 0 

lstm_2 (LSTM) (None, None, 32) 8,320 

drop_out_2 (Dropout) (None, None, 32) 0 

lstm_3 (LSTM) (None, 32) 8,320 

drop_out_3 (Dropout) (None, 32) 0 

dense_1 (Dense) (None, 1) 33 

activation_1(Activation) (None, 1) 0 

Total number of parameters 25,121 

 

 
 

Figure 6. Hybrid DSD-3hRNN model 
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Algorithm 2. DSD-LSTM training procedure 

 

Initialization: 𝑊(0)𝑤𝑖𝑡ℎ𝑊(0)𝑁(0, 𝛴) 

Output: 𝑊𝑓
(𝑡);𝑊ℎ

(𝑡);𝑊𝑢
(𝑡);𝑊𝑜

(𝑡)
 

Thefirst Phase: Initialize Dense Phase 

whilenot converged do 

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑓
(𝑡−1); 𝑥(𝑡−1))𝑊ℎ

(𝑡) = 𝑊ℎ
(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊ℎ

(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1)) 

𝑡 = 𝑡 + 1 
end  

The second Phase: SparsePhase 

// initialize the mask by sorting and keeping the k weights at the top 

𝑆𝑓 = 𝑠𝑜𝑟𝑡(|𝑊𝑓
(𝑡−1)|); 𝑆ℎ = 𝑠𝑜𝑟𝑡(|𝑊ℎ

(𝑡−1)|) 

𝑆𝑢 = 𝑠𝑜𝑟𝑡(|𝑊𝑢
(𝑡−1)|); 𝑆𝑜 = 𝑠𝑜𝑟𝑡(|𝑊𝑜

(𝑡−1)|) 

𝜆𝑓 = 𝑆𝑓𝑘𝑓; 𝜆ℎ = 𝑆ℎ𝑘ℎ; 𝜆𝑢 = 𝑆𝑢𝑘𝑢 ; 𝜆𝑜 = 𝑆𝑜𝑘𝑜 

𝑀𝑎𝑠𝑘𝑓 = 1(|𝑊𝑓
(𝑡−1)|) > 𝜆𝑓; 𝑀𝑎𝑠𝑘ℎ = 1(|𝑊ℎ

(𝑡−1)|) > 𝜆ℎ;  

𝑀𝑎𝑠𝑘𝑢 = 1(|𝑊𝑢
(𝑡−1)|) > 𝜆𝑢;𝑀𝑎𝑠𝑘𝑜 = 1(|𝑊𝑜

(𝑡−1)|) > 𝜆𝑜 
whilenot converged do  

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑓
(𝑡−1); 𝑥(𝑡−1)) 

𝑊ℎ
(𝑡) = 𝑊ℎ

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊ℎ
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡). 𝑀𝑎𝑠𝑘𝑓 

𝑊ℎ
(𝑡) = 𝑊ℎ

(𝑡). 𝑀𝑎𝑠𝑘ℎ 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡). 𝑀𝑎𝑠𝑘𝑢 

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡). 𝑀𝑎𝑠𝑘𝑜 
𝑡 = 𝑡 + 1 

end  

The last Phase: reDensePhase 

whilenot convergeddo  

𝑊𝑓
(𝑡) = 𝑊𝑓

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑓
(𝑡−1); 𝑥(𝑡−1))𝑊ℎ

(𝑡) = 𝑊ℎ
(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊ℎ

(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑜
(𝑡) = 𝑊𝑜

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑜
(𝑡−1); 𝑥(𝑡−1)) 

𝑡 = 𝑡 + 1 
end  

goto Sparse Phase for iterator DSD; 

 

The model of 3 hidden layers with GRU using DSD training is shown in Figure 7. The 

recommended configuration of the DSD-3hGRU model is described in Table 3. The detailed 

training procedure is described in Algorithm 3. 
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Figure 7. Hybrid DSD-3hGRU model 

 
Table 3. Configuration of the proposed 3 hidden-layer DSD-3hGRU model 

 

Layer (Type) Output Format # Parameters 

gru_1 (GRU) (None, None, 32) 6,336 

drop_out_1 (Dropout) (None, None, 32) 0 

gru_2 (GRU) (None, None, 32) 6,240 

drop_out_2 (Dropout) (None, None, 32) 0 

gru_3 (GRU) (None, 32) 6,240 

drop_out_3 (Dropout) (None, 32) 0 

dense_1 (Dense) (None, 1) 33 

activation_1(Activation) (None, 1) 0 

Total number of parameters 18,849 

 
Algorithm 3. DSD-GRU training procedure 

 

Initialization:𝑊
(0)𝑤𝑖𝑡ℎ𝑊(0)𝑁(0, 𝛴) 

Output:𝑊𝑟
(𝑡),𝑊𝑧

(𝑡),𝑊𝑢
(𝑡)
 

Thefirst Phase: Initialize Dense Phase 

while not convergeddo 

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑟
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑧
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1)) 

𝑡 = 𝑡 + 1 
end 

The second Phase: SparsePhase 

//initialize the mask by sorting and keeping the k weights at the top 

𝑆𝑟 = 𝑠𝑜𝑟𝑡(|𝑊𝑟
(𝑡−1)|) ; 𝑆𝑧 = 𝑠𝑜𝑟𝑡(|𝑊𝑧

(𝑡−1)|);𝑆𝑢 = 𝑠𝑜𝑟𝑡(|𝑊𝑢
(𝑡−1)|) 

𝜆𝑟 = 𝑆𝑟𝑘𝑟; 𝜆𝑧 = 𝑆𝑧𝑘𝑧; 𝜆𝑟 = 𝑆𝑢𝑘𝑢;  

𝑀𝑎𝑠𝑘𝑟 = 1(|𝑊𝑟
(𝑡−1)|) > 𝜆𝑟;  

𝑀𝑎𝑠𝑘𝑧 = 1(|𝑊𝑧
(𝑡−1)|) > 𝜆𝑧;  

𝑀𝑎𝑠𝑘𝑢 = 1(|𝑊𝑢
(𝑡−1)|) > 𝜆𝑢;  
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whilenot converged do 

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑟
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑧
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡). 𝑀𝑎𝑠𝑘𝑟 

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡). 𝑀𝑎𝑠𝑘𝑧 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡). 𝑀𝑎𝑠𝑘𝑢 
𝑡 = 𝑡 + 1 

end  

The last Phase: reDensePhase 

whilenot convergeddo 

𝑊𝑟
(𝑡) = 𝑊𝑟

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑟
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑧
(𝑡) = 𝑊𝑧

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑧
(𝑡−1); 𝑥(𝑡−1)) 

𝑊𝑢
(𝑡) = 𝑊𝑢

(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊𝑢
(𝑡−1); 𝑥(𝑡−1)) 

𝑡 = 𝑡 + 1 
end  

goto Sparse Phase for iterator DSD; 

 

4. EXPERIMENT 
 

4.1. Dataset Description 
 

To evaluate the effectiveness of IDS, a standard intrusive dataset is required. These datasets are 

important for testing and evaluating intrusion detection methods. The quality of the collected data 

affects the effectiveness of anomaly detection techniques. Some of the benchmark datasets used 

widely are KDD Cup 1999 [1] and NSL-KDD [2]. However, they still have certain limitations. 

The UNSW NB15 benchmark dataset [4] was created to address these challenges. The raw 

network packets of the UNSW-NB 15 dataset was created by the IXIA PerfectStorm tool in the 

Cyber Range Lab of UNSW Canberra for generating a hybrid of real modern normal activities 

and synthetic contemporary attack behaviors. The comprehensive dataset contains a total of 

2,540,044 records. 

 

The comprehensive dataset described in Table 4 has 49 features with classified labels. In Table 4, 

dur is the information about total time; proto is the protocol; service is the type of service (http, 

ftp, smtp, ssh,...); state represents the protocol state; spkts is the number of packets from source to 

destination; dpkts is the number of packets from the destination to the source; sbytes is the 

number of bytes from source to destination; dbytes is the number of bytes from the destination to 

the source; sttl is the TTL value from source to destination; dttl is the TTL value from destination 

to source; sload is the number of source bits; dload is the number of destination bits; sloss are 

source packets that are retransmitted or dropped; dloss is the destination packets retransmitted or 

dropped (ms); sinpkt is the arrival time between source packets (ms); dinpkt is the arrival time 

between destination packets; sjit is the source jitter (ms); djit is the target jitter (ms); swin is the 

value of the source broadcast TCP size; stcpb is the sequence number of the source TCP; 

is_sm_ips_ports indicates that if the source and destination IP addresses are equal as well as the 

source and destination port numbers are equal, this variable takes the value 1 otherwise it takes 

the value 0; dtcpb is the sequence number of the destination TCP; dwin is the value of the 

destination broadcast TCP size; tcprtt is the round-trip time to establish a TCP connection, which 

is the sum of synack and ackdat; synack is the TCP connection establishment time between the 

SYN and SYN_ACK packets; ackdat is the TCP connection establishment time between 

SYN_ACK and ACK packets; smean is the average stream packet size transmitted by src; dmean 
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is the average value of stream packet size transmitted by dst; trans_depth represents the link 

depth in the connection of the http request/response transaction; response_body_len is the actual 

uncompressed content size of the data transmitted from the http service; ct_srv_src is the number 

of connections containing the same service and source address in the last 100 connections; 

ct_state_ttl is the number for each state according to the specific range of values for the 

source/destination TTL; ct_dst_ltm is the number of connections with the same destination 

address in the last 100 connections; ct_src_dport_ltm is the number of connections with the same 

source address and destination port in the last 100 connections; ct_dst_sport_ltm is the number of 

connections with the same destination address and source port in the last 100 connections; 

is_ftp_login indicates that if the ftp session is accessed by the user and password it takes the value 

1, otherwise it takes the value 0; ct_ftp_cmd is the number of threads with commands in the ftp 

session; ct_flw_http_mthd is the thread number with methods like Get and Post in the http 

service; ct_src_ltm is the number of connections with the same source address in the last 100 

connections; ct_srv_dst is the number of connections with the same service and destination 

address in the last 100 connections; attack_cat is the name of each type of attack. In this dataset, 

the label takes 0 for normal and 1 for attack record. 

 
Table 4. Features of the UNSWNB-15 dataset 

 

No.  Feature Type  No.  Feature Type 

1  srcrip  nominal  26  res_bdy_len  integer 

2  sport  integer  27  sjit  float 

3  dstip  nominal  28  djit  float 

4  dsport  nominal  29  stime  time 

5  proto  nominal  30  ltime  time 

6  state  nominal  31  sintpkt  float 

7  dur  float  32  dintpkt  float 

8  sbytes  integer  33  tcprtt  float 

9  sttl  integer  34  synack  float 

10  dttl  integer  35  ackdat  float 

11  sloss  integer  36  is_sm_ips_ports  binary 

12  dloss  integer  37  ct_state_ttl  integer 

13  dload  float  38  ct_flw_http_mthd  integer 

14  service  nominal  39  is_ftp_login  binary 

15  sload  float  40  ct_ftp_cmd  integer 

16  dload  float  41  ct_srv_src  integer 

17  spkts  integer  42  ct_src_dst  integer 

18  dpkts  integer  43  ct_dst_ltm  integer 

19  swin  integer  44  ct_src_ltm  integer 

20  dwin  integer  45  ct_src_dport_ltm  integer 

21  stcpb  integer  46  ct_dst_sport_ltm  integer 

22  dtcpb  integer  47  ct_dst_src_ltm  Integer 

23  smeansz  integer  48  attack_cat  nominal 

24  dmeansz  integer  49  label  binary 

25  trans_depth  integer    
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4.2. Data Preprocessing 
 

4.2.1. Convert nominal feature to numeric form 
 

The process of converting nominal features into numeric form is called Numericalization. In the 

UNSW-NB15 dataset, there are 40 numeric features and 4 nominal features. Since the input value 

of RNN, LSTM, GRU must be a numeric matrix, we have to convert some nominal features, such 

as “proto”, “service” and “state” into numeric form. We convert these sets of numbers using the 

scikit-sklearn LabelEncoder library [12]. For example, the proto feature in the dataset with non-

identical values including tcp, udp, and rdp will be encoded with the corresponding label to the 

numbers 1, 2, and 3. 

 

The dataset contains 10 types, one is normal and nine types of attacks (anomaly) including 

generics, exploits, fuzzers, DoS, reconnaissance, analysis, backdoor, shellcode, and worms. Table 

5 shows the class classification details of the UNSW-NB15 dataset. 

 
Table 5. Classification of attacks in the UNSW-NB15 dataset 

 
Classification Records Description 

Normal 2,218,761 Normal data 

Generic 215,481 A technique that works to bypass the block-cipher (with a given 

block and key size) without considering the blockcipher's 

structure 

Exploits 44,525 An attacker knows about a security problem in an operating 

system or a piece of software and takes advantage of it to exploit 

the vulnerability 

Fuzzers 24,246 Causes a program or network to crash by feeding it randomly 

generated data 

DoS 16,353 A technique that makes a server or network resource unavailable 

to a user, usually by temporarily interrupting or suspending the 

services of a server connected to the Internet 

Reconnaissance 13,987 Information gathering attack 

Analysis 2,677 It contains various attacks by port scanning, spam, and html file 

penetration 

Backdoor 2,329 A technique in which it bypasses a system's security mechanism 

to gain access to a computer or system data 

Shellcode 1,511 A small piece of code is used as a payload in exploiting software 

vulnerabilities 

Worms 174 Attackers self-replicate to spread to other computers. Usually, it 

uses a computer network to spread itself, relying on security 

flaws on the target computer to exploit 

Total 2,540,044  

 

4.2.2. Feature selection 
 

In [14], Malek Al-Zewairi and colleagues tested and found the most important features in the 

UNSW-NB15 dataset and showed the performance of the best model (i.e. the deep learning 

model using the top 20% set with a threshold of 0.4482) as shown in Table 6. Therefore, in this 

study, we reuse the Top 20% of the most important features for our experiments. 
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Table 6. Importance of features 

 

 Number 

offeatures 
Important features 

Top 5% 19 service, proto, state, swin, sttl, dttl, dmeansz, ct srv dst, 

dwin, ct_state_ttl, trans depth, djit, spkts, sjit, 

ct_dst_sport_ltm, sloss, dsport, sload, ct_dst_src_ltm 

Top 10% 25 Top 5%, ct_srv_src, dload, dloss, synack, ackdat, dtcpb 

Top 15% 31 Top 10%, ct_src_ltm, tcprtt, ltime, stcpb, smeansz, dpkts 

Top 20% 33 Top 15%, stime, dur 

Top 25% 35 Top 20%, sport, ct_src_dport_ltm 

Full of features 45 Top 25%, dbytes, ct dst ltm, sbytes, sintpkt, ct flw http 

mthd, res_bdy_len, is_sm_ips_ports, dintpkt, ct ftp cmd, 

is_ftp_login 

 

4.2.3. Data Normalization Min-Max 
 

Normalization is a scaling technique in which values are shifted and resized so that they end up 

between 0 and 1. Normalization requires that we know or be able to accurately estimate the 

minimum and maximum values that can be observed. 

 

Because the scope of raw data is very wide and varied, in some machine learning algorithms, the 

objective function will not work properly if it is not normalized. Another reason for the feature 

normalization to be applied is that the prediction accuracy will increase compared to no 

normalization [15]. In this experiment, we use Min-Max normalization given by equation (13). 

 

𝑥′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥)
 (13) 

 

4.3. Experimental Environment 
 

In this study, binary classification based on RNN, LSTM, GRU networks is selected. This model 

is trained on the comprehensive dataset UNSW-NB15. The algorithm is built on Python language 

and Keras library, Sklearn, runs on Tensorflow platform and Anaconda environment. 

 

The experiment was performed on an Acer Nitro5 laptop, with a CPU configuration Intel Core 

i5-9300 2.4 GHz, 16 GB memory, and GPU 3 Gigabytes. Experiments have been designed to 

study the performance between 3 neural network models RNN, LSTM, and GRU in binary 

classification (normal, anomaly). The simple RNN, LSTM, and GRU models are the same, only 

differing in the core architecture of the neuron, specifically: 

 

- The RNN/LSTM/GRU layers consist of 32 neuron units; 

- Dropout layers has a dropout rate of 0.1; 

- The Dense layer uses the sigmoid activation function. 

 

In which, the Dropout layer helps to avoid overfitting, the last Dense layer is the output layer to 

evaluate the output as 1 or 0 (i.e. anomaly or normal). Each phase applies DSD to all 3 models 

DSD-3hRNN/DSD-3hLSTM/DSD-3hGRU. However, the final phase which is the re-dense phase 

restores the connections, the learning rate is reduced to 0.0001 in this phase. 

 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.1, January 2022 

131 

5. RESULT EVALUATION 
 

5.1. Evaluation Method 
 

We use 5 common metrics to evaluate intrusion detection performance including Accuracy, 

Detection Rate, Precision, False Alarm Rate, and F1 score. Table 7 presents the confusion matrix 

including true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP 

and TN indicate that the attacked (anomaly) state and the normal state are classified correctly. FP 

indicates that a normal record is predicted incorrectly, i.e., the IDS warns of an unrealistic attack. 

The FN indicates that an attack record is incorrectly classified, i.e., the IDS does not warn and 

assume it as a normal record. 

 
Table 7. Confusion Matrix 

 

 Prediction – Anomaly Prediction – Normal 

Reality– Anomaly TP FN 

Reality– Normal FP TN 
 

Accuracy –how close the measurements are to a particular value, representing the number of 

correctly classified instances of data over the total number of predictions. Accuracy may not be a 

good metric if the dataset is unbalanced (i.e. both negative and positive classes have different 

amounts of data). The formula calculating precision is defined in (14). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (14) 

 

False Alarm Rate (FAR) - also known as False Positive Rate. This measure is calculated 

according to formula (15). The ideal ratio for this metric is as low as possible, i.e. the lower 

number of misclassifications is the better. 

 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (15) 

 

Precision –how close the measurements are. Precision is 1 only when numerator and 

denominator are equal (TP=TP+FP), this also means FP is 0. The formula calculating Precision is 

defined in (16). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (16) 

 

Detection Rate (DR or Recall) –DR is 1 only if the numerator and denominator are equal (TP = 

TP + FN), this also means that the FN is 0. This criterion aims to evaluate the generalization of 

the found model and is determined by the formula (17). 

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 

 

We always expect both Precision and DR to be good, i.e. either the FP and FN values should be 

as close to zero as possible. Therefore, we need a measurement parameter that takes into account 

both Precision and DR, which is F1-score, determined by the formula (18). 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝐷𝑅)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐷𝑅
 (18) 

 

F1-score is called a harmonic mean of the Precision and DR criteria. It tends to take the value 

closest to whichever is the smaller between the Precision and DR values. Therefore, the F1-score 

is a more objective representation of the performance of a machine learning model. Compared 

with the Accuracy, F1-score is more suitable to evaluate the instructive detection performance of 

unbalanced datasets. 

 

5.2. Result and Evaluation 
 

The training model is performed with the following cases: 

 

- Case 1: RNN, LSTM, GRU model is trained on the UNSW-NB15 dataset. 

- Case 2: RNN, LSTM, GRU model is trained on UNSW-NB15 dataset combined with 

DSD training scheme. 

 

The above cases are all trained with Cross-validation [13], the sparsity parameter is 25, the epoch 

number is 10, and the batch_size is 32. The evaluation results are presented in Table 8 (case 1) 

and Table 9 (case 2). The evaluation criteria include Accuracy, FAR, Precision, Recall, and F1-

score. Experimental results are listed in Table 8 and Table 9. 

 
Table 8. Evaluation of RNN, LSTM, and GRU models on the UNSW-NB15 

 

 FAR% Acc% Prec% DR% F1-score% 

RNN 0.7643 98.8401 85.8300 91.0615 88.3684 

LSTM 0.3711 98.7613 91.7982 81.6980 86.4541 

GRU 0.3430 98.8346 92.4533 82.6614 87.2836 

 
Table 9. Evaluation of DSD-3hRNN, DSD-3hLSTM, DSD-3hGRU on the UNSW-NB15 

 

 FAR% Acc% Prec% DR% F1-score% 

DSD-3hRNN 0.2884 98.8532 93.5267 81.9724 87.3692 

DSD-3hLSTM 0.2619 98.9540 94.1910 83.5346 88.5433 

DSD-3hGRU 0.3435 98.8849 92.5306 83.7119 87.9006 

 

In Table 8, all three models have similar results in terms of accuracy. However, in terms of DR 

and F1-score, RNN gives the best results (91.0615% and 88.3684%). The FAR criterion shows 

that the multilayer neural network model GRU and LSTM give better results than the multilayer 

neural network model RNN (0.3711% and 0.3430% respectively, the smaller FAR, the better 

performance). Meanwhile, the GRU gives the best result in the Precision criterion with 

92,4533%. 

 

In Table 9, all three models have similar results in terms of accuracy. DSD-3hLSTM gives the 

best results in many criteria. Specifically, FAR is the lowest with 0.2619%, other criteria such as 

Precision, and F1-score are the highest at 94.1910%, and 88,5433%, respectively. For DR 

criteria, DSD-3hLSTM is equivalent to DSD-3hGRU. 
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Figure 8. FAR comparison chart between RNN, LSTM, GRU with DSD and without DSD 

 

 
 

Figure 9. Accuracy comparison chart between RNN, LSTM, GRU with DSD and without DSD  

 

With the results obtained in tables 10, 11, and 12, we see that combining the DSD training 

scheme with the hidden 3-layer neural network gives better results than the original models. Most 

of the criteria are improved as follows: 

 

- The proposed model DSD-3hRNN: FAR (reduced by 0.4759%), Accuracy (increased by 

0.0131%), Precision (increased by 7.6966%) compared with the original RNN neural 

network. 

- The proposed model DSD-3hLSTM: FAR (reduced by 0.1092%), Accuracy (increased 

by 0.1927%), Precision (increased by 2.3928%), DR (increased by 1.8365%), F1-score 

(increased by 2.089%) compared with the original LSTM neural network. 

- The proposed model DSD-3hGRU: Accuracy (increased 0.0503%), Precision (increased 

of 0.0773%), DR (increased of 1,0504%), F1-score (increased of 0.617 %) compared 

with the original GRU neural network model. 
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Table 10. Evaluation of the DSD-3hRNN and RNN on the UNSW-NB15 dataset 

 

 FAR% Acc% Prec% DR% F1-score% 

DSD-3hRNN 0.2884 98.8532 93.5267 81.9724 87.3692 

RNN 0.7643 98.8401 85.8300 91.0615 88.3684 

 
Table 11. Evaluation of the DSD-3hLSTM and LSTM on the UNSW-NB15 dataset 

 

 FAR% Acc% Prec% DR% F1-score% 

DSD-3hLSTM 0.2619 98.9540 94.1910 83.5346 88.5433 

LSTM 0.3711 98.7613 91.7982 81.6980 86.4541 

 
Table 12. Evaluation of DSD-3hGRU and GRU on the UNSW-NB15 dataset 

 

 FAR% Acc% Prec% DR% F1-score% 

DSD-3hGRU 0.3435 98.8849 92.5306 83.7119 87.9006 

GRU 0.3430 98.8346 92.4533 82.6614 87.2836 

 

For a simpler look, we extract results based on two key criteria (FAR and Accuracy) to show in 

Figures 8 and 9. With the FAR criterion, we found that DSD-3hRNN gives a significant 

improvement compared with the original model (reduced by 0.4759%). With Accuracy criterion, 

all 3 models are improved, but DSD-3hLSTM is improved the most (increased 0.1927%). 

 

RNN has a problem with “vanishing gradient” (gradient is used to update the value of the weight 

matrix in RNN and it gets smaller layer by layer when done show back propagation). When the 

gradient becomes very small (value is close to 0) then the value of the weight matrix will not be 

updated further and hence the neural network will stop learning at this layer. However, when 

using DSD, the RNN will be weighted and retrained again. This helps to restore the weights, 

overcomes the "vanishing gradient" problem, and increases the training efficiency in the final 

Dense phase. Meanwhile, LSTM has added ports (forget port, update gate and tanh function) to 

overcome the problem of “vanishing gradient”, so the intrusion detection efficiency of LSTM by 

DSD training is better improved when DSD is applied to the RNN. However, because GRU is the 

proposed model to simplify the architecture of the LSTM model. It uses the update port to replace 

the input and forget ports. This simplification of the architecture helps GRU improve the learning 

time, but the efficiency level is not equal to the LSTM. 

 

Besides, we also collect results from other studies [16], [17], [18], and [19] to compare with our 

results. The results in Table 13 show that our proposed solution has better performance in many 

criteria in detecting network intrusion than previous studies as follows: 

 

- The accuracy of the proposed model DSD-3hRNN is 98,8532%, DSD-3hLSTM is 

98,9541%, and DSD-3hGRU is 98,8849%. 

- The false alarm rate of the proposed model DSD-3hRNN is 0.2884%, DSD-3hLSTM is 

0.2619%, DSD-3hGRU is 0.3435%. 

- For the remaining criteria (Precision, DR, F1-score), we did not collect corresponding 

data for comparison. 
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Table 13. Performance comparison of the proposed training model with other studies 

 

Model FAR (%) Acc (%) Pre 

(%) 

DR 

(%) 

F1-score (%) 

DSD-3hRNN (proposal) 0.2884 98.8532 93.5267 81.9724 87.3692 

DSD-3hLSTM (proposal) 0.2619 98.9540 94.1910 83.5346 88.5433 

DSD-3hGRU (proposal) 0.3435 98.8849 92.5306 83.7119 87.9006 

Decision Tree [15] 15.78 85.56 - - - 

Logistic Regression [15] 18.48 83.15 - - - 

Nave Bayes [15] 18.56 82.07 - - - 

Artificial Neural Network 

[15] 

21.13 81.34 - - - 

EM-Clustering [15] 23.79 78.47 - - - 

Ramp-KSVCR [16] 2.46 93.52 - - - 

PSI-NetVisor [17] 2.81 94.54 - - - 

Deep Learning [14] 0.56 98.99 - - - 

 

Thus, the false alarm rates of the 3 proposed models are quite good, much lower than that of 

other proposed models. The accuracy of the proposed model is equivalent to Deep Learning [14] 

and higher than the remains [15, 16, 17]. In general, harmonizing the criteria, the DSD-3hLSTM 

training scheme gives the best result in the 3 proposed models with False Alarm Rate of 

0.2619%, Accuracy of 98.954%, Precision of 94.1910%, F1-score of 88.5433%. 

 

6. CONCLUSIONS 
 

This paper presented a method to improve the performance of intrusion detection systems by 

integrating big data technologies and deep learning techniques. UNSW-NB15 dataset is used to 

evaluate the proposed approach. We proposed the hybrid model of a hidden 3-layer neural 

network with the DSD training scheme: Hybrid DSD-3hRNN model, Hybrid DSD-3hLSTM 

model, Hybrid DSD-3hGRU model. In the experiment, three proposed models are trained with 

sparsity parameters of 25, batch_size of 32. The evaluation criteria are: Accuracy, FAR, 

Precision, Recall and F1 Score. All experiments are conducted on Anaconda environment with 

the Keras & TensorFlow 2.The results obtained in tables 10, 11, and 12, we see that combining 

the DSD training scheme with the hidden 3-layer neural network gives better results than the 

original models. 

 

The novelty in our proposed model is there as on able number of hidden layers chosen to solve 

both under-fitting and over-fitting problems that most deep learning models have to face. 

However, there are still some limitations in experimenting and evaluating the proposed model. 

We have to check many times to find the appropriate parameter, such as the value of the sparsity 

parameter, the number of hidden layers, the number of neurons per layer. In addition, we do not 

have a complete assessment of the experimental time. 

 

The next research will be studying the DSD scheme to find the appropriate set of parameters 

(epochs, learning rate, sparsity) and activation functions (reLU, Leaky ReLU, Swish, etc.) to 

improve the instructive detection efficiency. Besides, to index the specific type of attack, we also 

intend to study the DSD training scheme merged with deep neural networks such as CNN, DNN 

using other attack datasets including labeled and unlabeled records. 
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