
International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

DOI: 10.5121/ijcnc.2022.14201 1

PERFORMANCE EVALUATION OF

DIFFERENT RASPBERRY PI MODELS AS
MQTT SERVERS AND CLIENTS

Trent N. Ford, Eric Gamess and Christopher Ogden

MCIS Department, Jacksonville State University, Jacksonville, AL, USA

ABSTRACT

Performance analysis for devices in Internet of Things (IoT) environments is an important consideration,

especially with their increasing integration in technological solutions, worldwide. The Single Board

Computers (SBCs) of the Raspberry Pi Foundation have been widely accepted by the community, and

hence, they have been incorporated in numerous IoT projects. To ease their integration, it is essential to

assess their network performance. In this paper, we made an empirical performance evaluation of one of

the most popular network protocols for IoT environments, named the Message Queuing Telemetry

Transport (MQTT) protocol, on Raspberry Pi. To do so, we set up two different testbeds scenarios and

assessed the performance with benchmarks. At the software level, we focused on Mosquitto, a popular

open-source MQTT broker implementation and client library. Our principal metric is the transmission

time, but we also investigated the throughput. In our experiments, we varied several parameters, such as

the size of the payload of the published messages, the WiFi bandwidth, the QoS level, the security level
(MQTT vs. MQTT with TLS), and the hardware for the clients and broker. We focus mainly on packet sizes

ranging from 100 to 25,000 bytes. We also investigate how these low-cost devices handle a TCP SYN flood

attack. In the research work presented within this paper, we aim to guide developers, researchers, network

administrators, and hobbyists who plan to use these low-cost devices in an MQTT or IoT network by

showing the performance that they should expect according to different Raspberry Pi options.

KEYWORDS

MQTT, Mosquitto, Benchmark, Performance Evaluation, Raspberry Pi, DoS Attack.

1. INTRODUCTION

Internet of Things (IoT) devices are devices that have some data processing and transmission

capabilities. Since their cost is going down, they have been increasingly integrated into all kinds
of technological solutions. Hence, the performance analysis of IoT devices is becoming an

important consideration. To foster their smoother integration, it is fundamental to expand

researcher, industrial, and consumer knowledge concerning their network performance. Common

messaging protocols that have been used in IoT environments include Message Queuing
Telemetry Transport (MQTT) [1][2], Constrained Application Protocol (CoAP) [3][4], Advanced

Message Queuing Protocol (AMQP) [5][6], eXtensible Messaging and Presence Protocol

(XMPP) [7][8], and DDS (Data Distribution Service) [9]. MQTT and CoAP appear to be the
most frequently used.

In this work, we evaluate the performance of several Raspberry Pi Single Board Computers

(SBCs) as MQTT servers (brokers) and clients (publishers and subscribers). Our experiments
were done in testbed environments, using a transmission time benchmark that we previously

developed [10] and a throughput benchmark proposed in [11]. We varied several parameters such

https://airccse.org/journal/ijc2022.html
https://doi.org/10.5121/ijcnc.2022.14201

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

2

as the size of the payload of the published messages, the WiFi bandwidth, the QoS level, the
security level (MQTT vs. MQTT with TLS), and the hardware for the clients and broker. With

this work, we aim to guide developers, researchers, network administrators, and hobbyists who

are planning to use low-cost Raspberry Pi SBCs in an MQTT or IoT network, and empirically

examine and analyze what the expected performance is between these options.

The rest of the paper is structured as follows. In Section 2, we discuss a number of peer-reviewed

literature work conducted within this research area. Section 3 provides a high-level overview of
the technologies used in this research: MQTT, TLS, and Raspberry Pi SBCs. We describe the

benchmarking tools used for our performance assessment in Section 4. In Section 5, we present

the testbeds utilized for our experiments. We show, examine, and analyze the results of our
experiments in Section 6. Finally, Section 7 concludes and summarizes the results of this paper as

well as discusses future avenues for further research work within the area of study.

2. RELATED WORK

Some related works are dedicated to comparing several messaging protocols for IoT

environments. Various research groups focused on contrasting functionalities, while others are

more dedicated to performance evaluation using real testbeds or simulation tools. For example,
Imane, Tomader, and Nabil [12] presented the relevance of IoT for the implementation of smart

healthcare systems. They started with a summary of some existing healthcare systems by

enumerating their strengths and weaknesses, before discussing in which context CoAP or MQTT

should be chosen. They did not conduct any performance comparison evaluation but offered
advice on selecting the most adequate network protocol for several different situations. The

authors of [13] did a practical assessment of CoAP and MQTT in a testbed environment. They

reported results related to the communication delay and the network traffic required for a variety
of simple tasks. As clients, an ESP8266 [14] and an ODROID [15] were used. Çorak, Okay,

Güzel, Murt, and Ozdemir [16] quantitatively compared the performance of CoAP, MQTT, and

XMPP in a real-world testbed, and reported results such as the packet creation time and packet
transmission time. The testbed consisted of one Intel Galileo Gen 2 board, one laptop (Intel Core

i7-6700HQ CPU at 2.60 GHz and 4 GB of RAM), and some sensors. The sensors were connected

to the Intel Galileo Gen 2 board, where the publisher was running. In the laptop, the authors

executed the broker and the subscriber. Banno, Ohsawa, Kitagawa, Takada, and Yoshizawa [17]
compared the performance of several MQTT brokers (Mosquitto [18], HiveMQ [19], and EMQ X

[19]) and reported metrics such as latency and throughput. The authors developed their own

MQTT performance testing tool. The testbed consisted of one Ethernet switch and four PCs that
were running a publisher, a broker, a subscriber, and an NTP server, respectively. The publisher

and subscriber synchronized their time using the NTP server. Laaroussi and Novo [20] presented

a performance analysis of the security protocols employed with MQTT and CoAP, and reported

parameters such as latency and throughput. The MQTT clients (both the publisher and the
subscriber) were installed in an Intel Core i5 CPU at 2.60 GHz with 16 GB of RAM, while the

broker was running in a Dell Latitude 7480 laptop with an Intel Core i7 CPU at 2.80 GHz and 16

GB of RAM. While the previous research groups used empirical experimentation for their
evaluations, a number of other research groups have opted for conducting their assessments using

simulators. As an example, Larmo, Carpio, Arvidson, and Chirikov [21] studied the performance

of sensors reporting their captured samples over CoAP and MQTT, running on top of two
different radio interfaces, namely Bluetooth Low Energy (BLE) and IEEE 802.11ah. The

evaluations were performed using an Ericsson internal event-based radio network system

simulator with detailed models of application, transport, network, and datalink layers for both

BLE and WiFi.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

3

Other performance evaluation works are focused on MQTT. Pipatsakulroj, Visoottiviseth, and
Takano [22] developed muMQ, a high-performance MQTT broker that efficiently utilizes multi-

core CPUs. To assess their new broker, the research team compared its performance with the one

of Mosquitto, for parameters that include latency, throughput, and CPU usage. They conducted

their experiments by running the broker in a machine equipped with a 20-core CPU (Intel Xeon
E5-2650 @ 2.30 GHz) and 252 GB of RAM. As for client machines, they used virtual machines

created on a computer with an 8-core CPU (Intel Xeon E620 @ 2.4 GHz) and 20 GB of RAM. In

[23], the authors evaluated the usage of a Raspberry Pi Zero W as an MQTT gateway between
sensors and a broker. They installed the sensors locally, while the broker was in the cloud (public

broker). The gateway worked as the data-processing device closer to the sensors, and as a bridge

to the Internet. The authors reported performance metrics such as the processor temperature and
CPU utilization. In a home environment, MQTT performed better than CoAP on a Raspberry Pi 3

[24]. In [25], Baranauskas, Toldinas, and Lozinskis assessed a Raspberry Pi 2 as a broker in a

testbed environment. The clients (both the publisher and the subscriber) were running in an

ESP32 [14]. When using a Raspberry Pi 2 as a broker, the authors found that QoS 0 consumed
6.7% more energy than QoS 1 for MQTT with TLS. In [10], Gamess, Ford, and Trifas evaluated

the MQTT protocol considering large payload sizes (ranging from 512 to 1,048,576 bytes) for the

published messages, in testbed environments primarily based on conventional PCs. In one of the
scenarios, the broker was changed to different models of Raspberry Pi.

As can be seen from this literature survey, little research work has been published that evaluates
the performance of MQTT through the use of Raspberry Pi devices in an IoT network. In contrast

to all the previous literature work done within this research area that we surveyed, in this effort,

we conducted a number of empirical assessments that varied the role of low-cost devices,

Raspberry Pi SBCs, and determined how they compare to each other and against a PC with
average specifications, using benchmarks. We focused on two parameters, namely the

transmission time and throughput. We also investigated how these low-cost devices handle a DoS

attack, using Hping3 [26] to flood them with TCP SYN segments.

3. TECHNOLOGIES

3.1. Message Queuing Telemetry Transport

Message Queuing Telemetry Transport (MQTT) [1][2] is a machine-to-machine data exchange

protocol for IoT devices. MQTT uses a publish/subscribe model with a broker. There are a few

versions of the standard, with versions 3.1.1 [27][28] and 5.0 [29] as the most popular. TCP is the
transport protocol used by MQTT, with two reserved ports: 1883 (MQTT without security) and

8883 (MQTT over TLS). MQTT topics are a form of addressing that allows MQTT clients to

share information, through a broker. An MQTT broker, also known as an MQTT server, is the
message hub. It keeps track of which devices subscribe to which topics, receives all published

messages, and forwards them according to subscriptions. A client can be a publisher, a

subscriber, or both as necessary.

3.2. Transport Layer Security

Transport Layer Security (TLS) [30][31][32] is one of the most frequently used security

standards for network communication. Its most common usage is for securing sessions between a

web server and a web browser [33]. It is a continuation of earlier SSL protocols. The main
distinction between the TLS and SSL protocols is a question of who authored and who controlled

them. SSL was initially proprietary from Netscape; TLS has always been an open standard

created by the Internet Engineering Task Force since version 1.0 [30][33]. Both protocols use

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

4

X.509 [34] certificate standards, issued by an entity known as a Certificate Authority (CA). The
certificates allow TLS to use asymmetric encryption to exchange a symmetrical key that is

unique to a session. This is known as the handshake [33]. The asymmetrical aspect of the

handshake makes it challenging to get access to the session key, while the session key allows for

faster communication. The initial handshake is slightly resource-intensive for lower-powered and
less capable devices, but the session key encryption has been noted to only have a small effect on

performance [35]. The MQTT protocol does not have its own security layer, and it relies on the

security provided by TLS [35]. Different ciphers are being explored for use with MQTT to lessen
the overhead [35]. Shapsough, Aloul, and Zualkernan [35] concluded that low-cost, low-power

MQTT devices increasingly offer a challenge for developers and security researchers to address

the vulnerabilities while minimizing the impact on performance.

3.3. Raspberry Pi

The Single Board Computers (SBCs) from the Raspberry Pi Foundation are cheap, effective, and

highly versatile. They run a flavor of Linux, so technically, they can do anything that a desktop

computer with Linux can do. For example, a Raspberry Pi can be used as a desktop computer, an
email or web server, a network storage device, a gaming console, a media center, or a controller

for sensors and actuators [36]. They are also used to promote STEM education and for custom

DIY projects [37]. The Raspberry Pi Foundation wants to democratize technology and provide

access to tools to do so [38]. They created cheap general-purpose computers (e.g., US$15 for a
Raspberry Pi Zero 2 W) and claim that their SBCs are actively being used in many places such as

interactive museum exhibits, schools, national postal sorting offices, and government call centers

[38]. Their goal is to eliminate the barriers that priced people out of technology for education,
entertainment, and creativity. There is also a large open-source community and forums for

Raspberry Pi OS [39] and troubleshooting projects using Raspberry Pis [40].

For this paper, we focused our experiments on the Raspberry Pi Zero W [41] (RPi Zero W), the

Raspberry Pi Zero 2 W [42] (RPi Zero 2 W), and the Raspberry Pi 3 Model B [43] (RPi 3B). We

chose these models for their popularity and their low-cost (US$10 for RPi Zero W, US$15 for

RPi Zero 2 W, and $US35 for RPi 3B).

4. BENCHMARKING TOOLS

In a previous paper [10], we developed a novel benchmark for determining the transmission time

(time required for a PUBLISH message to go from the publisher to the subscriber, through the
broker) in an MQTT environment. Briefly, this benchmark tool is written in the C programming

language and uses the Mosquitto client library [18]. It requires two clients (clt1 and clt2) where

one client (clt1) publishes a message that is sent to the broker and forwarded to the other client
(clt2), triggering that client (clt2) to do the same thing. This gives a round-trip transmission time,

so the one-way transmission time (or transmission time) can be calculated as half of it. The

benchmark repeats the message’s exchange multiple times, and the overall time is divided by the
number of round-trip exchanges to minimize errors. The researcher can set several parameters,

including the ability to specify the payload size of the PUBLISH messages and the QoS level. In

this paper, we will refer to this benchmark as the transmission time benchmark.

Another benchmarking tool used in this paper is from [11]. It is written in the Go programming

language and uses the Eclipse Paho library [44] (the Eclipse Paho project provides open-source,

mainly client-side, implementations of MQTT and MQTT-SN in a variety of programming
languages). It reports the throughput, defined as the number of PUBLISH messages sent/received

per second. The benchmark needs two clients (a publisher and a subscriber) and a common topic.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

5

The subscriber establishes a connection with the broker, subscribes to the common topic, and
waits for the messages published by the publisher. The publisher establishes a connection with

the broker and sends a specific number of messages to the common topic (the inter-departure

time of the PUBLISH messages is one of the benchmark parameters). Once having sent all the

PUBLISH messages, the publisher ends its connection with the broker and shows the throughput
at its level (sending throughput). As soon as the subscriber has received all the PUBLISH

messages, it ends its connection with the broker and reports the throughput at its level (receiving

throughput). This benchmark has a number of other parameters, such as the payload size of the
PUBLISH messages and the support for TLS. In this paper, we will refer to this benchmark as the

throughput benchmark.

5. EXPERIMENTAL SETUP

For our experiments, we used three Raspberry Pi Zero W, three Raspberry Pi Zero 2 W, two

Raspberry Pi 3 Model B, and four standard PCs of identical characteristics. We removed the

original microSD cards of the SBCs and replaced them with 64 GB SanDisk Extreme
microSDXC UHS-I Memory Cards (SDSQXA2-064G-GN6MA). They are considered as one of

the fastest microSD cards of the market, with up to 160 MB/s and 60 MB/s for the reading and

writing speeds, respectively. The specifications of the PCs were: Dell OptiPlex 3030 AIO, with a
64-bit Intel quad-core i3-4130 CPU at 3.4 GHz, 16 GB of RAM, a 512 GB SSD, a 1 Gbps

Ethernet NIC, and an Intel Wireless 7260 Network Adapter (dual-band WiFi adapter with support

to IEEE 802.11 a/b/n/g/ac). Debian amd64 11.1 (codename “Bullseye”) was installed as the

operating system.

The Raspberry Pi Zero W (RPi Zero W) [41] is based on a 32-bit Broadcom BCM2835 single-

core ARM1176JZF-S SoC @ 1.0 GHz, 512 MB of RAM, one 2.4 GHz IEEE 802.11b/g/n WiFi
interface, one micro USB On-The-Go port, and one mini HDMI connector. The Raspberry Pi

Zero 2 W (RPi Zero 2 W) [42] was released in October 2021. It is the last SBC of the Raspberry

Pi Foundation. It is based on an RP3A0, which consists of the integration of a 64-bit Broadcom
BCM2710A1 quad-core Cortex-A53 @ 1.0 GHz and 512 MB of RAM, in a single chip. It also

has one 2.4 GHz IEEE 802.11b/g/n WiFi interface, one micro USB On-The-Go port, and one

mini HDMI connector. It can be easily overclocked to 1.3 GHz, with an adequate heat sink. The

Raspberry Pi 3 Model B (RPi 3B) [43] is based on a 64-bit Broadcom BCM2837 quad-core
Cortex-A53 SoC @ 1.2 GHz, 1 GB of RAM, one 10/100 Mbps Ethernet interface, one 2.4 GHz

IEEE 802.11b/g/n WiFi interface, four USB 2.0 ports, and one full-size HDMI connector.

Many operating systems are available for Raspberry Pi, but we opted for the 32-bit version of the

Raspberry Pi OS (armhf), released in October 2021. This operating system is based on Debian

Bullseye. Of the three distributions (“Lite”, “Desktop”, and “Desktop and Recommended

Software”) supported by the Raspberry Pi Foundation, we chose the “Lite” distribution, which
consists of 493 packages, that do not include a desktop environment. It is worth mentioning that

the 64-bit version of Raspberry Pi OS (arm64) is still in the beta stage, and cannot be run on an

RPi Zero W.

The WiFi router had the following characteristics: NETGEAR AC1200 Smart WiFi Router

R6220, with an 880 MHz MediaTek processor that has two radio bands (IEEE 802.11b/g/n in the
2.4 GHz band and IEEE 802.11a/n/ac in the 5 GHz band), 128 MB of flash, and 128 MB of

RAM. In the 2.4 GHz band, the bandwidth can be set up to a maximum of 54, 145, or 300 Mbps.

We did not use the 5 GHz band, since the SBCs that we tested do not support it.

We opted for Mosquitto [18] version 2.0.11 as the broker in all the experiments and configured it

for MQTT version 3.1.1. It is an open-source message broker that implements MQTT versions

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

6

3.1, 3.1.1, and 5.0. We selected Mosquitto as the broker of all our experiments due to its open-
source license, maturity, wide availability, simple installation, and overall ease of use.

Figure 1. Testbed without a DoS Attack

We used two testbeds for our experiments. Figure 1 was the testbed for all the experiments

without a DoS attack and consisted of two clients and one broker. We varied the hardware for the
clients and the broker. However, the hardware for both clients was always identical. Each

subsequent experiment will specify which hardware was used.

Figure 2. Testbed for the DoS Attack

As shown in Figure 2, the testbed for the DoS attack is very similar to the setup in Figure 1. The

two clients and the two attackers were PCs, with the specifications mentioned previously. The
broker device was a Raspberry Pi and was varied for different experiments.

For both Figures 1 and 2, the communication between devices was controlled by the WiFi router

(NETGEAR AC1200 Smart WiFi Router R6220), using WiFi Protected Access 2 (WPA2). The
PCs and SBCs were placed 4 meters from the wireless router, with no obstacles between them.

Also, IPv4 was employed as the network protocol for all the experiments discussed within this

paper.

6. PERFORMANCE RESULTS AND ANALYSIS

In this section, we give and analyze the results of our experiments. In order to ensure the

consistency and validity of our empirical results, each experiment was conducted several times
(minimum 10 times), and the results depicted in the figures correspond to the performance results

averaged from the repeated experimental runs.

NETGEAR R6220

Client clt1 Client clt2Broker

Legitimate User

NETGEAR R6220

Client clt1 Broker

PUBLISH
Topic=“test/clt1”

PUBLISH
Topic=“test/clt1”

PUBLISH
Topic=“test/clt2”

PUBLISH
Topic=“test/clt2”

Victim

Attacker Attacker

Legitimate User
Client clt2

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

7

6.1. WiFi Bandwidth Variation

The objective of this experiment is to determine the impact of the WiFi bandwidth over the

transmission time of a PUBLISH message. To do so, we used the testbed depicted in Figure 1.
Clients clt1 and clt2 were running the transmission time benchmark described in Section 4, with

QoS 0. In this experiment, we varied the WiFi bandwidth on the 2.4 GHz band using the router’s

built-in settings (maximum 54, 145, and 300 Mbps). Raspberry Pi devices acted as the clients and
published the messages, while a PC was the broker.

Figures 3, 4, and 5 show the experiment’s results using the RPi Zero W, the RPi Zero 2 W, and

the RPi 3B, respectively. The MQTT payload of the PUBLISH messages was varied from 100 to
25,000 bytes. The figures have three bars for each payload size: 54 Mbps in blue, 145 Mbps in

orange, and 300 Mbps in grey. It is noted that when the wireless router was configured at 54, 145,

and 300 Mbps, respectively, all the Raspberry Pi SBCs had a bitrate that capped out at 54, 72.2,
and 72.2 Mbps, respectively, while the PC’s bitrate capped at 54, 144.4, and 144.4 Mbps,

respectively.

Figure 3. Transmission Time when Using RPi Zero W as Clients with WiFi Bandwidth Variation

Figure 4. Transmission Time when Using RPi Zero 2 W as Clients with WiFi Bandwidth Variation

0

10

20

30

40

50

60

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

54 Mbps 145 Mbps 300 Mbps

0

5

10

15

20

25

30

35

40

45

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

54 Mbps 145 Mbps 300 Mbps

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

8

Figure 5. Transmission Time when Using RPi 3B as Clients with WiFi Bandwidth Variation

Across all devices, as seen in Figures 3, 4, and 5, 54 Mbps had the slowest transmission times.

Likely due to the bitrate caps innate to the device hardware, 145 Mbps and 300 Mbps yielded

very similar results. As a consequence of this bitrate cap, all the subsequent experiments were
carried out by setting up the wireless router at a maximum bandwidth of 145 Mbps.

6.2. Client Hardware Variation

This experiment aims to determine the impact of the client hardware over the transmission time

of a PUBLISH message. To do so, we used the testbed depicted in Figure 1. Clients clt1 and clt2
were running the transmission time benchmark described in Section 4, with QoS 0. In this

experiment, we varied the clients’ hardware; clients clt1 and clt2 were both changed out so that

both clients in the experiment were running the same hardware and software. Raspberry Pi

devices acted as the clients and published the messages, while a PC was the broker.

The MQTT payload of the PUBLISH messages was varied from 100 to 25,000 bytes. The WiFi

bandwidth was set to a maximum of 145 Mbps at the router using the 2.4 GHz band. Figure 6 has
four bars for each payload size: RPi Zero W in blue, RPi Zero 2 W in orange, RPi 3B in grey, and

RPi Zero 2 W Overclocked in yellow. It is worth remembering that all the Raspberry Pi SBCs

had a bitrate that capped out at 72.2 Mbps, while the PC’s bitrate capped out at 144.4 Mbps.

Figure 6. Transmission Time when Making Client Variation

0

5

10

15

20

25

30

35

40

45

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

54 Mbps 145 Mbps 300 Mbps

0

5

10

15

20

25

30

T
ra

n
sm

is
si

o
n

 T
im

e
(m

s)

Message Payload (Bytes)

RPi Zero W RPi Zero 2 W RPi 3B RPi Zero 2 W Overclocked

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

9

As shown in Figure 6, the RPi 3B performed slightly better overall compared to the RPi Zero 2
W (when overclocked and when not), but their performance is nearly the same. Overclocking the

RPi Zero 2 W did not have a significant impact but was slightly faster. We think that most of the

time is spent in transmission, and not in computing, resulting in this slight difference. The poorest

performance was for the RPi Zero W, with the difference becoming greater with the increasing
payload size.

6.3. Large Payload Variation

The goal of this experiment is to determine the impact of a large payload over the transmission

time of a PUBLISH message. To do so, we used the testbed depicted in Figure 1. Clients clt1 and
clt2 were running the transmission time benchmark described in Section 4, with QoS 0.

Raspberry Pi devices acted as the clients and published the messages, while a PC was the broker.

The MQTT payload of the PUBLISH messages was varied from 100,000 to 1,000,000 bytes. The

WiFi bandwidth was set to a maximum of 145 Mbps at the router using the 2.4 GHz band. Figure

7 has three bars for each payload size: RPi Zero W in blue, RPi Zero 2 W in orange, and RPi 3B
in grey.

Figure 7. Transmission Time of Large Payloads with Client Variation

As shown in Figure 7, the performance of the RPi 3B was slightly better overall compared to the
RPi Zero 2 W. Both of these Raspberry Pi devices significantly outperformed the RPi Zero W in

this experiment, with the performance differences becoming greater with increasing payload

sizes.

6.4. Client and Broker Hardware Variation

Choosing the most suitable hardware for the broker often comes down to a compromise between

cost and capability. This experiment aimed to determine the impact of the client and broker

hardware over the transmission time of a PUBLISH message. To do so, we used the testbed

depicted in Figure 1. Both clients clt1 and clt2 were running the transmission time benchmark
described in Section 4, with QoS 0. In this experiment, we varied the hardware of the clients and

the broker so that all devices in the experiment were running the same hardware and software.

Raspberry Pi devices acted as the clients and published the messages, while an identical
Raspberry Pi device performed as the broker.

0

100

200

300

400

500

600

700

800

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

RPi Zero W RPi Zero 2 W RPi 3B

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

10

The MQTT payload of the PUBLISH messages was varied from 100 to 25,000 bytes. The WiFi
bandwidth was set to a maximum of 145 Mbps at the router using the 2.4 GHz band. Figure 8 has

three bars for each payload size: RPi Zero W in blue, RPi Zero 2 W in orange, and RPi Zero 2 W

Overclocked in grey.

Figure 8. Transmission Time when Making Client and Broker Variation

By analyzing Figure 6 (the broker is a PC) and Figure 8 (the broker is a Raspberry Pi), we can
observe that the overall transmission time increases when using a Raspberry Pi as a broker. When

finding the average percentage difference across the tested points, the RPi Zero W, the RPi Zero

2 W, and the RPi Zero 2 W Overclocked had 37.47%, 32.90%, and 29.26% slower transmission

times than when using the PC as the broker. Unfortunately, we did not have a third RPi 3B
available for our experiments, but it is likely to follow a trend similar to the one observed for the

RPi Zero 2 W, based on the results shown so far.

6.5. QoS Level Variation

It is worth reminding that MQTT has native support for Quality of Service (QoS). It defines three
levels of QoS where QoS 0 is at most one delivery (fire and forget), QoS 1 is at least one delivery

(acknowledged delivery), and QoS 2 is exactly one delivery (assured delivery). With QoS 0, a

publication is done through a single message between the MQTT client and server (PUBLISH).
With QoS 1 and when there are no communication problems, a publication requires two

messages (PUBLISH and PUBACK). With QoS 2 and without issues in the communication, a

publication requires four messages (PUBLISH, PUBREC, PUBREL, and PUBCOMP). Hence,

there is an increase in network traffic with an upper QoS level, but it is usually acceptable for
important messages.

The goal of this experiment is to determine the impact of the QoS level over the transmission
time of a PUBLISH message. To do so, we used the testbed depicted in Figure 1. Clients clt1 and

clt2 were running the transmission time benchmark described in Section 4, where we varied the

QoS level (0, 1, and 2). Raspberry Pi devices acted as the clients and published the messages,
while a PC performed as the broker.

Figures 9, 10, and 11 depict the results of the experiments using RPi Zero W, RPi Zero 2 W, and

RPi 3B as clients, respectively. The MQTT payload of the PUBLISH messages was varied from
100 to 25,000 bytes. The WiFi bandwidth was set to a maximum of 145 Mbps at the router using

0

5

10

15

20

25

30

35
T

ra
n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

RPi Zero W RPi Zero 2 W RPi Zero 2 W Overclocked

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

11

the 2.4 GHz band. The figures have three bars for each payload size: QoS 0 in blue, QoS 1 in
orange, and QoS 2 in grey.

Figure 9. Transmission Time when Using RPi Zero W as Clients with QoS Variation

As can be seen in Figures 9, 10, and 11, QoS 0 (i.e., at most once) has the shortest transmission

time, followed by QoS 1 (i.e., at least once), then QoS 2 (i.e., exactly once). The RPi Zero W is

the slowest of the devices, while the RPi Zero 2 W and the RPi 3B perform similarly.
Interestingly, there are significant spikes in transmission time for a payload of a PUBLISH

message that can be sent within one TCP segment, for both QoS 1 and QoS 2. Hence, in these

cases, it might be better for programmers to extend the payload with random bytes and force the

usage of a second TCP segment since it should significantly reduce the transmission time.

Figure 10. Transmission Time when Using RPi Zero 2 W as Clients with QoS Variation

0

10

20

30

40

50

60

70

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

QoS 0 QoS 1 QoS 2

0

10

20

30

40

50

60

70

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

QoS 0 QoS 1 QoS 2

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

12

Figure 11. Transmission Time when Using RPi 3B as Clients with QoS Variation

6.6. Throughput of Messages with Security Variation

This experiment aims to determine the impact of security on the transmission of PUBLISH

messages. To do so, we used the testbed depicted in Figure 1. Clients clt1 and clt2 were running

the throughput benchmark described in Section 4, with QoS 0. We varied whether the

communication was secured (with TLS) or not (without TLS) in this experiment. We used TLS
version 1.2. Raspberry Pi devices acted as the clients and published the messages, while a PC

performed as the broker.

The publisher (clt1) was set to publish 500 messages per second (inter-departure time of two

milliseconds). Figures 12 and 13 depict the throughput at the level of the subscriber (clt2) without

and with TLS, respectively, that is, the number of PUBLISH messages that could make it to the

subscriber, per second. The MQTT payload of the PUBLISH messages was varied from 100 to
25,000 bytes. The WiFi bandwidth was set to a maximum of 145 Mbps at the router using the 2.4

GHz band. Figures 12 and 13 have three bars for each payload size: RPi Zero W in blue, RPi

Zero 2 W in orange, and RPi 3B in grey. The experiments were run for thirty seconds for each
payload size.

Figure 12. Throughput at the Level of the Subscriber without Security (without TLS)

0

10

20

30

40

50

60

70

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

QoS 0 QoS 1 QoS 2

0

50

100

150

200

250

300

350

400

450

T
h
ro

u
g
h

p
u
t

(m
es

sa
g
e/

se
co

n
d
)

Message Payload (Bytes)

RPi Zero W RPi Zero 2 W RPi 3B

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

13

Figure 13. Throughput at the Level of the Subscriber with Security (with TLS version 1.2)

According to Figures 12 and 13, adding TLS security slowed the performance. The majority of
the differences are minor, except for the RPi Zero W, where the impact of TLS is noticeable for

payload sizes between 1,000 and 5,000 bytes.

The worst performance recorded in this experiment was for the RPi Zero W. Meanwhile, the RPi

Zero 2 W and the RPi 3B yielded similar results to each other for small payloads. However, the

RPi Zero 2 W outperformed the RPi 3B for larger payloads in this experiment.

6.7. Performance under a DoS Attack

A Denial-of-Service (DoS) attack is an attack meant to slowdown or shutdown a network service

or resource, making it inaccessible to the intended users. In general, DoS attacks are

accomplished by flooding the target with traffic, or sending it packets that trigger a crash due to
bugs. Constrained devices are an easy target for DoS attacks, resulting in a great deal of time and

money for the victim to handle. Hence, the importance is assessing DoS attacks on MQTT for

Raspberry Pi.

The goal of this experiment is to determine the impact of a DoS attack on the transmission time

of a PUBLISH message. To do so, we used the testbed depicted in Figure 2. Clients clt1 and clt2

were running the transmission time benchmark described in Section 4, with QoS 0. In this
experiment, we varied the hardware of the broker. Clients clt1 and clt2 were both PCs, and

another two PCs were used as the attackers. All four PCs have the specifications described in

Section 5.

To carry out the DoS attack, we flooded the broker with TCP SYN segments generated by

Hping3 [26], an open-source packet generator and analyzer for the TCP/IP protocol suite. We

used the following command, where options –V, –S, –i, and –p enable verbose output, send
TCP SYN segments to the target, indicate the interval of time between the sending of two

consecutive segments (inter-departure time), and specify the destination TCP port (1883 for

MQTT), respectively. The argument at the end of the command is the victim’s IP address (i.e.,
MQTT broker).

0

50

100

150

200

250

300

350

400

450

T
h
ro

u
g
h
p
u
t

(m
es

sa
g
e/

se
co

n
d
)

Message Payload (Bytes)

RPi Zero W RPi Zero 2 W RPi 3B

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

14

hping3 –V –S –i <interval> –p 1883 <brokerIPAddress>

Figures 14, 15, and 16 illustrate the effects of the TCP SYN flood attack over the transmission

time with an inter-departure time of 1 ms for an RPi Zero W, RPi Zero 2 W, and RPi 3B as a
broker, respectively. The MQTT payload of the PUBLISH messages was varied from 100 to

25,000 bytes. The WiFi bandwidth was set to a maximum of 145 Mbps at the router using the 2.4

GHz band. For each payload size, the figures have three bars: no attacker in blue, 1 attacker in
orange, and 2 attackers in grey.

Figure 14. Transmission Time During a DoS Attack when Using an RPi Zero W as the Broker

Figure 15. Transmission Time During a DoS Attack when Using an RPi Zero 2 W as the Broker

0

10

20

30

40

50

60

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

No Attacker 1 Attacker 2 Attackers

0

10

20

30

40

50

60

70

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

No Attacker 1 Attacker 2 Attackers

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

15

Figure 16: Transmission Time During a DoS Attack when Using an RPi 3B as the Broker

In Figure 14, the two attackers successfully stalled the RPi Zero W broker, so we were unable to

get any MQTT transmissions through the network. This is the reason why there are only results

for no attacker (in blue) and one attacker (in orange) in this case. As shown in Figure 16, the RPi
3B handled the attack the best, followed by the RPi Zero 2 W shown in Figure 15. In all figures,

it is noticeable that each attacker creates a significant increase over the transmission time

observed by the legitimate MQTT traffic.

7. CONCLUSIONS AND FUTURE WORK

It is estimated that over 152,000 new IoT devices will connect to the Internet every minute by

2025. MQTT seems to be the most accepted messaging transport protocol for them. The
introduction of so many IoT devices makes understanding their capabilities with respect to

MQTT a matter of ever more critical importance.

In this paper, we set up MQTT experimental scenarios that varied the roles within the network
oflow-cost devices, Raspberry Pi SBCs, and determined how each device compared not only

against one another, but also against PCs of average specifications. According to our

experiments, each Raspberry Pi could be a good to adequate broker for some circumstances, as
they only increased transmission time by 29.26%-37.47% (RPi Zero 2 W Overclocked: 29.26%,

RPi Zero 2 W: 32.90%, and RPi Zero W: 37.47%) compared to an average PC as the broker (see

Section 6.4). When performing a DoS attack on the Raspberry Pi as a broker, the RPi Zero W
could only handle one attacker. As shown in Section 6 of this paper, the RPi Zero 2 W and RPi

3B devices were both capable of handling the 1 and 2 attacker scenarios, at the cost of a very

noticeable increase in overall transmission time. When factoring in the TLS protocol, the RPi

Zero 2 W performed the best as a broker out of the Raspberry Pi devices that we tested in the
experiments discussed within the scope of this paper.

The broker and client are both an essential part of an MQTT implementation, but there will only
be one broker to many clients, so low-cost but capable devices become more of a priority for

clients. With this in mind, we also performed other experiments with the Raspberry Pi SBCs

acting as clients. We found that when varying the network bandwidth, the faster-allowed speed
unsurprisingly yielded better transmission time results, at least up to the bitrate cap of the

devices. Lower levels of QoS also have faster transmission times.

0

10

20

30

40

50

60

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

Message Payload (Bytes)

No Attacker 1 Attacker 2 Attackers

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

16

In general, the RPi 3B and RPi Zero 2 W often performed with similar experimental results to
one another, so both could fit the same role. The RPi Zero W had the poorest performance in all

circumstances but is a much cheaper option compared to the other IoT devices examined, tested,

and analyzed within this paper.

In our future research work, we plan to analyze the performance of several MQTT brokers, such

as VerneMQ, ActiveMQ, RabbitMQ, and Mosquitto. We also wish to investigate the

performance of MQTT when using IPv6, instead of IPv4. Finally, we are interested in proposing
some mathematical models that approximate the transmission time and the maximum throughput

in basic MQTT scenarios.

CONFLICTS OF INTEREST

The author declares no conflict of interest.

ACKNOWLEDGMENTS

We are grateful to “Faculty Commons” and the “College of Science & Mathematics” at

Jacksonville State University for partially funding this project.

REFERENCES

[1] T. Pulver, Hands-On Internet of Things with MQTT. Packt Publishing, 2019.

[2] “MQTT Homepage.” https://mqtt.org

[3] “CoAP – Constrained Application Protocol Homepage.” https://coap.technology

[4] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),” RFC 7252.
Internet Engineering Task Force (IETF), Jun. 2014.

[5] “AMQP Homepage.” https://www.amqp.org

[6] “Advanced Message Queuing Protocol (AMQP) Version 1.0,” OASIS Standard, Oct. 2012.

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

[7] “XMPP | The Universal Messaging Standard.” https://xmpp.org

[8] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and

Presence,” RFC 6121. Internet Engineering Task Force (IETF), Mar. 2011.

[9] Object Management Group (OMG), “OMG Data Distribution Service (DDS) Version 1.4,” Apr.

2015. https://www.omg.org/spec/DDS/1.4/PDF

[10] E. Gamess, T. N. Ford, and M. Trifas, “Performance Evaluation of a Widely used Implementation of

the MQTT Protocol with Large Payloads in Normal Operation and Under a DoS Attack,” in
Proceedings of the 2021 ACM Southeast Conference (ACMSE 2021), May 2021, pp. 154–162. doi:

10.1145/3409334.3452067.

[11] Takanorig, “MQTT-Bench: Benchmark Tool for MQTT Broker.” https://github.com/takanorig/mqtt-

bench

[12] S. Imane, M. Tomader, and H. Nabil, “Comparison between CoAP and MQTT in Smart Healthcare

and Some Threats,” in Proceedings of the 2018 International Symposium on Advanced Electrical and

Communication Technologies (ISAECT 2018), Nov. 2018, pp. 1–4. doi:

10.1109/ISAECT.2018.8618698.

[13] H. W. van der Westhuizen and G. P. Hancke, “Practical Comparison between CoAP and MQTT -

Sensor to Server Level,” in Proceedings of the 2018 IEEE Wireless Advanced Conference (WiAd

2018), Jun. 2018, pp. 1–6. doi: 10.1109/WIAD.2018.8588443.
[14] N. Cameron, Electronics Projects with the ESP8266 and ESP32, 1st edition. Apress, 2020. doi:

10.1007/978-1-4842-6336-5.

[15] A. Lintermann, D. Pleiter, and W. Schröder, “Performance of ODROID-MC1 for Scientific Flow

Problems,” Future Generation Computer Systems, vol. 95, pp. 149–162, 2019, doi:

10.1016/j.future.2018.12.059.

[16] B. H. Çorak, F. Y. Okay, M. Güzel, Ş. Murt, and S. Ozdemir, “Comparative Analysis of IoT

Communication Protocols,” in Proceedings of the 2018 International Symposium on Networks,

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

17

Computers and Communications (ISNCC 2018), Jun. 2018, pp. 1–6. doi:

10.1109/ISNCC.2018.8530963.

[17] R. Banno, K. Ohsawa, Y. Kitagawa, T. Takada, and T. Yoshizawa, “Measuring Performance of

MQTT v5.0 Brokers with MQTTLoader,” in Proceedings of the 2021 IEEE 18th Consumer

Communications and Networking Conference (CCNC 2021), Jan. 2021, pp. 1–2. doi:
10.1109/CCNC49032.2021.9369467.

[18] R. A. Light, “Mosquitto: Server and Client Implementation of the MQTT Protocol,” The Journal of

Open Source Software, vol. 2, no. 13, pp. 1–2, 2017, doi: 10.21105/joss.00265.

[19] M. Bender, E. Kirdan, M. O. Pahl, and G. Carle, “Open-source MQTT evaluation,” 2021. doi:

10.1109/CCNC49032.2021.9369499.

[20] Z. Laaroussi and O. Novo, “A Performance Analysis of the Security Communication in CoAP and

MQTT,” in Proceedings of the 2021 IEEE 18th Consumer Communications and Networking

Conference (CCNC 2021), Jan. 2021, pp. 1–6. doi: 10.1109/CCNC49032.2021.9369565.

[21] A. Larmo, F. del Carpio, P. Arvidson, and R. Chirikov, “Comparison of CoAP and MQTT

Performance over Capillary Radios,” in Proceedings of the 2018 Global Internet of Things Summit

(GIoTS 2018), Jun. 2018, pp. 1–6. doi: 10.1109/GIOTS.2018.8534576.

[22] W. Pipatsakulroj, V. Visoottiviseth, and R. Takano, “muMQ: A Lightweight and Scalable MQTT
Broker,” in Proceedings of the 2017 IEEE Workshop on Local and Metropolitan Area Networks

(LANMAN 2017), Jun. 2017, vol. 2017-June, pp. 1–6. doi: 10.1109/LANMAN.2017.7972165.

[23] D. B. C. Lima, R. M. B. da Silva Lima, D. de Farias Medeiros, R. I. S. Pereira, C. P. de Souza, and O.

Baiocchi, “A Performance Evaluation of Raspberry Pi Zero W Based Gateway Running MQTT

Broker for IoT,” in Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics

and Mobile Communication Conference (IEMCON 2019), Oct. 2019, pp. 0076–0081. doi:

10.1109/IEMCON.2019.8936206.

[24] Y. Guamán, G. Ninahualpa, G. Salazar, and T. Guarda, “Comparative Performance Analysis between

MQTT and CoAP Protocols for IoT with Raspberry Pi 3 in IEEE 802.11 Environments,” in

Proceedings of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI

2020), Jun. 2020, pp. 1–6. doi: 10.23919/CISTI49556.2020.9140905.
[25] E. Baranauskas, J. Toldinas, and B. Lozinskis, “Evaluation of the Impact on Energy Consumption of

MQTT Protocol over TLS,” in CEUR Workshop Proceedings, May 2019, pp. 56–60.

[26] “Hping3 Homepage.” http://www.hping.org/hping3.html

[27] A. Banks and R. Gupta, “MQTT Version 3.1.1,” OASIS Standard, Oct. 2014. http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[28] ISO, “ISO/IEC 20922:2016 - Information Technology - Message Queuing Telemetry Transport

(MQTT) v3.1.1,” International Organization for Standardization, 2016, [Online]. Available:

https://www.iso.org/standard/69466.html

[29] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT Version 5.0,” OASIS Standard, Mar.

2019. https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.pdf

[30] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246. Internet Engineering Task Force

(IETF), Jan. 1999.
[31] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol - Version 1.2,” RFC 5246.

Internet Engineering Task Force (IETF), Aug. 2008.

[32] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” RFC 8446. Internet

Engineering Task Force (IETF), Aug. 2018.

[33] R. Grimmick, “TLS vs SSL: What’s the Difference & How it Works | Varonis,” Sep. 2021.

https://blogvaronis2.wpengine.com/tls-vs-ssl

[34] “X.509: Information Technology - Open Systems Interconnection - The Directory: Public-key and

Attribute Certificate Frameworks.” https://www.itu.int/rec/T-REC-X.509

[35] S. Shapsough, F. Aloul, and I. A. Zualkernan, “Securing Low-Resource Edge Devices for IoT

Systems,” in Proceedings of the 2018 International Symposium in Sensing and Instrumentation in IoT

Era (ISSI 2018), Sep. 2018, pp. 1–4. doi: 10.1109/ISSI.2018.8538135.
[36] T. Klosowski, “Why We Love the Raspberry Pi | Reviews by Wirecutter,” Nov. 2021.

https://www.nytimes.com/wirecutter/reviews/raspberry-pi

[37] “Teach, Learn, and Make with Raspberry Pi.” https://www.raspberrypi.org

[38] “Raspberry Pi - About Us.” https://www.raspberrypi.com/about

[39] “Raspberry Pi OS – Raspberry Pi.” https://www.raspberrypi.com/software

[40] “Raspberry Pi Forums - Index Page.” https://forums.raspberrypi.com

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

18

[41] “Raspberry Pi Zero W – Raspberry Pi.” https://www.raspberrypi.com/products/raspberry-pi-zero-w

[42] “Raspberry Pi Zero 2 W – Raspberry Pi.” https://www.raspberrypi.com/products/raspberry-pi-zero-2-

w

[43] “Raspberry Pi 3 Model B – Raspberry Pi.” https://www.raspberrypi.com/products/raspberry-pi-3-

model-b
[44] “Eclipse Paho | The Eclipse Foundation.” https://www.eclipse.org/paho

	MQTT, Mosquitto, Benchmark, Performance Evaluation, Raspberry Pi, DoS Attack.

