
International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

DOI: 10.5121/ijcnc.2022.14205 77

COGNITIVE RADIO RESOURCE SCHEDULING USING

MULTI-AGENT Q-LEARNING FOR LTE

Najem N. Sirhan and Manel Martinez-Ramon

Electrical and Computer Engineering Department, University of New Mexico,

Albuquerque, New Mexico, USA

ABSTRACT

In this paper, we propose, implement, and test two novel downlink LTE scheduling algorithms. The

implementation and testing of these algorithms were in Matlab, and they are based on the use of

Reinforcement Learning (RL), more specifically, the Q-learning technique for scheduling two types of

users. The first algorithm is called a Collaborative scheduling algorithm, and the second algorithm is

called a Competitive scheduling algorithm. The first type of the scheduled users is the Primary Users
(PUs), and they are the licensed subscribers that pay for their service. The second type of the scheduled

users is the Secondary Users (SUs), and they could be un-licensed subscribers that don't pay for their

service, device-to-device communications, or sensors. Each user whether it’s a primary or secondary is

considered as an agent. In the Collaborative scheduling algorithm, the primary user agents will

collaborate in order to make a joint scheduling decision about allocating the resource blocks to each one

of them, then the secondary user agents will compete among themselves to use the remaining resource

blocks. In the Competitive scheduling algorithm, the primary user agents will compete among themselves

over the available resources, then the secondary user agents will compete among themselves over the

remaining resources. Experimental results show that both scheduling algorithms converged to almost 90%

utilization of the spectrum, and provided fair shares of the spectrum among users.

KEYWORDS

Long Term Evolution (LTE), Radio Resource Management, Packet Scheduling, Cognitive Radio, Multi-

agent Q-learning, Matlab

1. INTRODUCTION

1.1. Research Problem

According to the Federal Communication Commission (FCC) in [8], when mobile operators use
the fixed spectrum assignment of spectrum resources, these spectrum resources may be under-

utilized as shown in Figure 1. This is because of the irregular demands by licensed subscribers

that vary according to time and geographical area. In other words, Spectrum underutilization can
occur when some resource blocks that are assigned to licensed users at some particular times are

not being used. These un-used resource blocks are called white spaces or spectrum holes. To

solve this underutilization problem and make the most out of a spectrum, Dynamic Spectrum

Sharing (DSS) that is based on dynamic spectrum assignment has to be deployed instead of the
fixed spectrum assignment. This made a lot of scientists research on the different implications of

communication and signal processing that are needed for Dynamic Spectrum Access (DSA)

networks. DSA is a set of techniques that aims to better utilize the use of the licensed spectrum by
detecting the spectrum holes due to underutilizing the use of it and allowing unlicensed users to

use it as well [1] [28]. The concepts of spectrum holes and dynamic spectrum access are shown in

Figure 2.

https://airccse.org/journal/ijc2022.html
https://doi.org/10.5121/ijcnc.2022.14205

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

78

Figure 1. Spectrum occupancy in the suburb of Brno as measured by a team of researchers for a six-day

period. In the upper graph, the maximum power obtained during this measurement period is displayed. In
the lower chart, the power profile for the average power of the upper chart is displayed [23].

Figure 2. The concept of spectrum holes is used to refer to an unused resource of the spectrum, and how the

use of dynamic spectrum access can be used to allow other type of users to utilize the use of these

resources [2]

The research problem which this paper proposes two algorithms to solve can be formulated as
follows; scheduling two types of users over the downlink radio channels, the primary users over

the available radio resource blocks, and the secondary users over the remaining resources. The

scheduling process is done every Transmission Time Interval (TTI), which equals 1 ms. Each

user whether it’s a primary or secondary is considered an agent. The primary user agents will use
the collaborative approach in order to make a joint decision about allocating the resource blocks

to them, or the competitive approach depending on the scheduling algorithm that is used. And the

remaining resource blocks will be sensed by the secondary user agents, and then to be used. The
secondary user agents will use the competitive approach to compete among themselves to use

these remaining resource blocks. Both the primary and the secondary users can access the

network pool of radio resources, that is provided by the macro-cell. However, the secondary users

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

79

have lower priority than the primary users, and they are transparent to primary users, which
means that the primary users will consider that the whole resource blocks are available to them

only, and they will access these resources as if the secondary users don't exist. And in the cases if

a secondary user is using an available radio resource at a current time slot, but a primary user is

about to use the same radio resource at the next time slot, the secondary user has to withdraw and
free this resource to be used by the primary user.

1.2. Cognitive Radio (CR)

According to [13], Cognitive Radio (CR) is defined as a form of wireless communication in

which a transceiver can intelligently detect which communication channels are in use and which
are not, and can be dynamically configured to move into a vacant channel while avoiding

occupied ones.

Cognitive radio systems were designed to optimally use the electromagnetic spectrum through

their ability to detect vacant channels and move into them. This goal is achieved through a

learning cycle that cognitive radio systems go through. This learning cycle consists of three main
stages, perception, learning, and reasoning, and it is shown in Figure 3. Perception is the first

stage of the learning cycle, and it starts by sensing the spectrum in order to collect data about the

surrounding radio environment, e.g., the channels' conditions and their availabilities. CR systems

should not only sense and are aware of the medium, but it should also have the ability to learn
and reason. Learning is the second stage and most important stage, and this is because it includes

transforming the obtained information about the radio environment into knowledge through the

use of classification methodologies. The reasoning is the final stage in this cycle, in which the
obtained knowledge is used to make decisions that meet with the cognitive radio objectives, e.g.,

optimizing the usage of the spectrum to maximize the system's throughput [13] [22].

Figure 3. Cognitive radio learning cycle

1.3. Reinforcement Learning (RL)

Reinforcement Learning (RL) could be explained in its most simplistic terms, it implies a

situation in which a learning agent is left alone and not told what to do, and it has to form a basic
understanding of its environment. RL offers a powerful set of tools for sequential decision-

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

80

making under uncertainty. In RL, there are five main elements, the learning agents, actions,
policy rules, rewards, and the system model. The learning agent learns what to do “what action to

perform” in a situation “state” in an environment by trying an action despite being uncertain

about the action's effect on the environment in that situation. Then, the learner maps the effect of

this action in that situation for the environment with the performed action in order to maximize a
numerical reward signal. This mapping between the actions and rewards is called the policy rules

which define the behavior of the learning agent [22] [14].

An agent was defined by [18] as autonomous to the extent that its behavior is determined by its

own experience. A more precise definition of a learning agent is found in [9], in which a learning

agent is an agent that develops through own experience and with the help of some built-in
knowledge, in which an action policy will be directly mapped from its observations and internal

conditions.

Now, as regards the use of RL in CR, it is recommended for spectrum sensing and Medium
Access Control (MAC) protocols, as in [27]. RL plays a key part in the development of cognitive

radio systems, and it forms the framework upon which cognitive radio systems are built. This is

because the basic and most important characteristic of cognitive learning is its ability to learn in
an autonomous way [5].

1.4. Q-Learning and its use in CR

Q-learning which was proposed by [25] is a model free reinforcement learning techniques, it

could be used even if the channels were not known or the channels Markov model was not
known, which means that the learning agent doesn't need to know the Markov chain of all the

previous states of the channels in-order to take an action, it uses what is called a Q-table instead.

In Q-learning based system models, learning agent exists in an environment which have a finite
number of states, which keeps changing according to the actions that are taken by the agent or

other existing agents in the same environment. These different states form the set of states S. The

learning agent can sense it's current state st at time t, in which st⊂S. Based on this current state,

the learning agent will choose an action a from a set of actions A to be executed in time t+1.
Based on this executed action and its effect on the environment, a reward function rt+1(st,a) will

be calculated, the higher the reward the higher the probability of choosing this performed action

[22] [12] [15].

In each Q-learning-based model, a Q-table Q(s,a) is constructed and updated. The formula that is

used to update an entry in the Q-table is called the Q-Learning formula as proposed by [25], and
it is as follows:

Q(st , an) ← (1 – α) Q(st , an) + α[(rt+1 (st , an) + γ𝑚𝑎𝑥
𝑎𝑖

Q(st +1, ai)] (1)

In cognitive radio, the environment is the radio channels and their states, st⊂S, st will represent

the availability of these channels at time t, and S will be the set of all the radio channels' states at
all time. Each radio channel will have two states, either Idle (I), or Busy (B).

The action a of selecting radio channels belong to the actions set A, a⊂A = {a1, ..., an}. The
decision policy of choosing an action a in time period t, to be executed in time period t+1 is

based on a maximum argument,𝑚𝑎𝑥
𝑎𝑖

 Q(st+1,ai), where i = {1, ..., n}, ai representing all the

actions in the action set at state st+1.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

81

The reward rt+1, is the immediate reward that is obtained after executing action a in state st+1.

rt+1⊂r, where r is the set of rewards. rt is defined by the system designer, it could be defined as

the actual achieved user's communication throughput, or it could be defined as the Jain's fairness

index.

The learning rate is denoted by α⊂(0,1). The discount factor is denoted by γ⊂ [0,1), and it

determines the importance of future reward.

1.5. Multi-Agent Q-Learning and its use in CR

In multi-agent Q-learning algorithms, learning agents either collaborate or compete among each
other. In the case of collaborative learning agents, the system is called a collaborative multi-agent

system, and in the case of competitive learning agents, the system is called a competitive multi-

agent system. The main difference between these two systems is that the collaborative learning
agents' decision making policies are based on maximizing the joint reward. While, the

competitive learning agent's decision making policies are based on maximizing their own

individual rewards [17].

In the case of the collaborative approach, part of the channel has to be reserved for information

sharing. However, in the case of competitive approach, there is no need for information sharing.

In addition to this, in the collaborative approach, there is one centralised node that contains one
Q-table for all the agents, in which they cooperate by sharing their sensing information in order to

update the centralised shared policies. However, in the competitive approach, each agent senses

the medium by considering other agents part of the Radio Frequency (RF) environment, and each
agent updates its own Q-table [22] [3] [4].

2. RELATED WORK

In the literature, there exist many packet scheduling algorithms that are based on calculating a
utility function. Each of these algorithms has its own unique utility function, whether to increase

the throughput, or to decrease the delay, or to improve the fairness. The utility function

calculation is the core process of scheduling with this type of algorithms. This is because it
contains all the necessary parameters which are included in calculating the best scheduling

decision that meets with the radio environment states and the users' requirements [19][20][21].

In addition to packet schedulers that are based on calculating a utility function, there are other
types of packet schedulers found in the literature that are based on the use of the Q-learning

algorithm. However, they exist in a much lesser amount. In Q-learning-based LTE scheduling

algorithms, constructing a Q-table is the core process of scheduling with this type of algorithms.
Constructing and updating the Q-table depends on three main elements, the state, action, and

reward. The reward is calculated after executing an action by a learning agent in a certain time

and the radio environment state. Assigning the reward function is crucial in the agent's learning
process and in regulating its behaviour. This is because calculating the reward indicates to the

learning agent how much gain it can get by executing an action and how much effect it has on the

environment. The repeated cycle of the agent's learning process will update and construct the Q-

table, in which it will contain optimal action policies that will eventually lead to an optimized
scheduling decision.

In [6], the authors proposed an algorithm that uses RL technique to choose a scheduling rule from
a pool of scheduling rules, in which the action was defined as what scheduling algorithm to use,

and the reward was calculated based on the system throughput, system capacity, and spectral

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

82

efficiency. The authors modelled their work theoretically without implementing the model in a
simulation environment.

In [7], the authors have proposed a scheduling algorithm that is based on using the Q-learning

approach. They use Q-learning to choose which scheduling algorithm to use for scheduling the
resources among users. The authors aimed at their scheduling algorithm to achieve a trade-off

between throughput and fairness. In their model, their Q-table's entries consist of two elements,

the action and the obtained reward. Their action is what scheduling algorithm to choose, and the
reward is based on calculating the average throughput and fairness. They used the LTE-Sim [16]

simulator in order to do their simulation. Their results were in terms of the average normalized

system throughput.

In [11], the authors proposed a scheduling algorithm that is based on the use of Q-learning, and

they implemented, and run experiments to test it using the LTE System level Simulator [10]. The

authors proposed two forms of their algorithm. One for a single agent Q-learning platform, in
which the eNodeB acts as an agent. And another one for a multi-agent Q-learning platform, in

which each eNodeB is an agent, and all these agents coordinate with each other in a harmonized

way, and that is why they called their algorithm, the Harmonized Q-learning algorithm. Their
results were in terms of user wideband Signal to Noise Ratio (SINR), and the average user

spectral Efficiency.

In [24], the authors presented two Q-learning approaches in allocating the unused radio resources

by the licensed users to unlicensed users. The two Q-learning approaches were the cooperative Q-

learning and non-cooperative Q-learning approach, and they presented these approaches in the

form of formulas. The authors also evaluated these approaches by running tests over their model.
In their model, they did not use licensed users, but they mimicked their presence by varying the

number of unused radio resources. In their evaluation tests, they included four access schemes for

unlicensed users to access the unused radio resources. The four access schemes were, the random,
non-cooperative, partial cooperation, in which some users cooperate and others don't cooperate,

and full cooperative access scheme. Their evaluation test results showed that the full cooperation

access scheme had the best results in terms of throughput and fairness, then followed by the

partial cooperation, then followed by the non-cooperative, and finally followed by the random
access scheme which had the lowest results.

3. PROPOSED SOLUTION 1 – COLLABORATIVE SCHEDULING ALGORITHM

The first scheduling algorithm that is proposed and implemented in Matlab is the Collaborative

scheduling algorithm, Algorithm 1. In this algorithm the scheduling process is divided into two

stages; the first scheduling stage is performed for the primary users, and the second one, which

comes after is performed for the secondary users. It combines two Q-learning approaches, the
collaborative approach that is based on modifying the work proposed by [5] for primary users,

and the competitive approach that is based on the work proposed by [25] for secondary users.

Algorithm 1 Collaborative Scheduling Algorithm

Input: no. PUs, no. SUs, no. RBs, no. epoch, exploration parameter e
Output: PUs shared Q-table, SUs Q-tables
Initialize all parameters: Q-tables, PU Actions set APU , SU Actions set ASU , state of
RBs set S

for t = 1 to no. epoch do

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

83

 for i = 1 to N, where N = no. PUs do
 if no. available RBs > 0 then
 if rand < = e then
 PU agent i will explore by taking an action ai randomly from APU
 else
 PU agent i will exploit by taking an action ai from APU based on the

 Expectation Values table
 end if
 A−i = APU − {ai}
 end if
 Mark the used RBs in the sub-state st as busy for PU agent i
 end for
 Form the joint action (a−i ∪ ai) to be executed in the following state
 Calculate the obtained reward rt+1 after excuting the joint action (a−i ∪ ai) according to

 the Jain’s fairness index: rt+1 = ((∑𝑁
𝑖=1 𝑇𝑖)

2) / (N ∑𝑁
𝑖=1 𝑇𝑖

2)
 Ti denotes the throughput obtained for primary user i. N is the number of primary
 users which is 5

 Update the shared Q-table according to the following Q-learning formula:

 Q(st , (a
−i ∪ ai)) ← (1 – α) Q(st , (a

−i ∪ ai)) +α[(rt+1 (st , (a
−i ∪ ai)) + γ V(st +1)]

for i = 1 to N do

 PU agent i will update its counters about other PU agents taking their actions
 PU agent I will calculate the product of probabilities of other PU agents taking

 their actions: ∏𝑗 ≠ 𝑖{𝑃𝑟𝑖𝑎−𝑖[𝑗]}

 PU agent i will update the Expectation Value of its indivisual action ai in its
 expectation value table:

 EV(ai)=∑𝑎−𝑖∈𝐴−𝑖
𝑄(𝑎−𝑖 ∪ 𝑎𝑖)∏𝑗 ≠ 𝑖{𝑃𝑟𝑖𝑎−𝑖[𝑗]}

 end for

for k = 1 to no. SUs do

 if no. free RBs in the sub-state st > 0 then
 if rand < = e then

 SU agent k will explore by taking a random action ak from ASU

 else
 SU agent k will exploit by taking a greedy action ak from ASU

 end if
 SU agent k will calculate the reward of executing action ak

 SU agent k will update its Q-table based on the Q-Learning formula:
 Q(st , a

k) ← (1 – α) Q(st , a
k) +α[(rt+1 (st , a

k) + γ V(st +1)]

 end if
 A-k = ASU – {ak}

 end for

end for

State set S

The set S represent all the observed states of all the Resource Blocks (RBs) at all the running

time.
S = {s0 , s1 , ..., st−1 , st , st+1 , ..., sno.epoch }
st = {RB1 , ..., RBx}, where x = no.RBs

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

84

st ⊂ S, st is a sub-set of the set S that represent the states of all the available RBs at time t. And it

is the same for all users agents, the primary users agents, and the secondary users agents. Each

resource block has three states, free, or busy for a primary user, or busy for a secondary user.

Primary users scheduling stage

The primary users scheduling stage starts by each primary user agent taking an action from the
primary users action set, then these actions will form one joint action. Then the scheduler will

calculate the obtained reward from executing this joint action. Then the scheduler will update the

PUs shared Q-table.

Actions and Actions set

The primary user actions set APU consists of multiple actions, each action has a different number
of resource blocks with unique indexes. This will avoid collisions between primary users agents

since they all have access to this action set.

APU = {a1

PU , ..., an
PU}, aPU is an action to be taken by primary user agent, n is the number of

actions in APU .

In regard to the decision policy that is deployed for choosing an action, it is based on either
exploration or exploitation, and this is determined based on the value of the exploration

parameter e. The value of this parameter determines the probability of exploration and the

probability of exploitation. For example, if e = 0.5, then there is a 50% probability of an agent to
explore, and 50% probability of an agent to exploit.

In the case of exploration, the agent will make a random choice in taking an action from the
primary user action set. In the case of exploitation, the agent will make its choice to take an

action based on the expectation formula values in the joint Q-table, to execute an individual

action which forms with other agents’ actions the best joint action that exists in the shared Q-

table. The best joint action will be associated with the highest reward.

After the first primary user’s agent takes an action, the scheduler will update the primary users

action set as, A-i = APU - {ai}, so that each agent will take a different action, this will help in
avoiding any collision between primary users. Then the next primary user agent will enter the

same loop, and this loop will be repeated until all primary user agents take action. The result of

all the individual actions that were taken by the five primary user agents will contribute in

forming one joint action, to which we denote it by (a-i ∪ ai).

Rewards and Rewards set

The reward set RPU consists of all the obtained rewards at all the running time.

RPU = {r1 , ..., rt−1 , rt , rt+1 , ..., rno.epoch }. rt+1 is the reward that is obtained after executing the

joint action (a−i ∪ ai) in state st+1.

The reward function for the primary user agents is chosen to optimize the primary user's average

throughput for all the users while at the same time maintaining a fair share of the radio resources
to each user. So in this work, the scheduler calculates the obtained reward rt+1 according to Jain’s

fairness index:

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

85

rt+1 = ((∑𝑁
𝑖=1 𝑇𝑖)

2) / N ∑𝑁
𝑖=1 𝑇𝑖

2) (2)

Jain's fairness index, will rate the fairness of distributing the throughput “denoted by Ti” among

primary users, where N is the number of primary users.

Q-table and Expectation values

After executing the joint action and calculating the obtained reward, the scheduler will update the
shared Q-table. The Q-learning formula that is used to update an entry in the Q-table is as

follows:

Q(st , (a
−i ∪ ai)) ← (1 – α) Q(st , (a

−i ∪ ai)) +α[(rt+1 (st , (a
−i ∪ ai)) + γ V(st +1)] (3)

Where V(st+1) is determined by the policy of choosing an action at time t, and ai represent the

action a taken by primary user i, a-i represent the actions taken by all primary users other than

primary user i, (a−i ∪ ai) represent the joint action of all the actions taken by the primary users.
After the scheduler updates the shared Q-table, each PU agent will do the following:

First, it will update its counters about other PU agents taking their actions. The primary user

agent’s is a Joint Action Learner (JAL), which means that the agent learns about other agents

actions and their effect, in addition to the effect of its action. In order for the agent i to learn about

other agents actions and their effects, it keeps a count𝐶−𝑖
𝑎−𝑖for the number of times other agents

“which we denote to any one of them by -i” has taken action a in the past. Then agent i calculates

the probability of agent -i to take an action a-i as the following formula:

𝑃𝑟𝑖𝑎−𝑖= 𝐶−𝑖
𝑎−𝑖/ (∑𝑏−𝑖∈𝐴−𝑖

𝐶−𝑖
𝑏−𝑖) (4)

Where b-i represent all the previous actions taken by agent -i.
Second, it will calculate the product of probabilities of other PU agents taking their actions as the
following formula:

∏𝑗 ≠ 𝑖{𝑃𝑟𝑖𝑎−𝑖[𝑗]} (5)

Third, it will update the expectation value EV(ai) of its individual action ai that it took in its

Expectation Values table as the following formula:

EV(ai) = ∑𝑎−𝑖∈𝐴−𝑖
𝑄(𝑎−𝑖 ∪ 𝑎𝑖)∏𝑗 ≠ 𝑖{ 𝑃𝑟𝑖𝑎−𝑖[𝑗]} (6)

These expectation values help the PU agent in implementing its exploitation strategy.

Secondary users scheduling stage

The secondary users scheduling stage does not include any cooperation between the secondary

user agents. On the contrary, the secondary user’s agents compete on the remaining resource

blocks that are left after scheduling the primary users. The secondary users scheduling loop of
taking an action, then obtaining a reward based on executing this action, and then updating the Q-

table, is repeated for every secondary user agent.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

86

Actions and Actions set

The secondary user actions set ASU is different from the primary user actions set. It is accessed by

all the secondary user agents. It consists of multiple actions, and each action has a different

number of resource blocks in order to avoid collision between secondary users.

ASU = {a1
SU , ..., am

SU}, aSU is an action to be taken by a secondary user agent, m is the number of

actions in ASU.

These actions are designed with an upper limit on how many resource blocks the agent can get.

This upper limit is equal to the number of the remaining resource blocks over the number of
secondary users. This will prevent the secondary user agent who enters the scheduling loop first

from getting all the remaining resource blocks.

The secondary user agent will start sensing the remaining resource blocks that are left after
scheduling the primary users. If there are remaining resource blocks, the agent will take an action

from the secondary user actions set. But, if there aren't any remaining resource blocks, the agent

will not take any action.

The secondary user agent deploys two types of decision policies in choosing an action. It will

either explore or exploit, and this depends on the value of the exploration parameter e.

In the case of exploration, the agent will make a random choice in taking an action from the

secondary user actions set. In the case of exploitation, the agent will make a greedy choice of

what action to take from the secondary user actions set. The goal of the greedy choice is to take
the action that will yield the highest reward. In order for the agent to do so, it will look through

its Q-table.

Rewards

After executing an action, the secondary user agent will calculate the reward. The reward

function for each secondary user agent is chosen to optimize the secondary user's average
throughput. In this work, it was assigned to be the actual user's average throughput.

Q-Tables

After calculating the reward, the secondary user agent will associate this reward with the action

that resulted in this reward. Then the secondary user agent will build or update its own Q-table.
The agent builds its Q-table, by creating new entries as a result of exploring new actions. And the

agent updates these entries as a result of choosing a pre-existing entries in the process of

exploitation. The agent does these operations, according to the following formula:

Q(st, a

k) ← (1 – α) Q(st, a
k) + α[rt+1 (st, a

k) + γV(st+1)] (7)

Where V(st+1) is determined by the policy of choosing an action at time t, and ak represent the
action taken by secondary user k.

4. PROPOSED SOLUTION 2 – COMPETITIVE SCHEDULING ALGORITHM

The second scheduling algorithm that is proposed and implemented in Matlab is the Competitive
scheduling algorithm, Algorithm 2. In this algorithm the scheduling process is also divided into

two stages; the first scheduling stage is performed for the primary users, and the second one,

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

87

which comes after is performed for the secondary users. It uses the competitive Q-learning
approach that is based on the work proposed by [25] for both types of users, the primary and

secondary users.

Algorithm 2 Competitive Scheduling Algorithm

Input: no. PUs, no. SUs, no. RBs, no. epoch, exploration parameter e
Output: PUs Q-tables, SUs Q-tables
Initialize all parameters: Q-tables, PU Actions set APU , SU Actions set ASU , state of
RBs set S
for t = 1 to no. epoch do
 for i = 1 to N, where N = no. PUs do
 if no. available RBs > 0 then
 if rand < = e then
 PU agent i will explore by taking an action ai randomly from APU
 else
 PU agent i will exploit by taking a greedy action ai from APU
 end if
 PU agent i will calculate the reward of executing action ai
 PU agent i will update its Q-table based on the Q-Learning formula:

 Q(st , a
i) ← (1 – α) Q(st , a

i) +α[(rt+1 (st , a
i) + γ V(st +1)]

 end if
 A−i = APU − {ai}
 end for
 for k = 1 to no. SUs do
 if no. remaining RBs in the sub-state st > 0 then
 if rand < = e then

 SU agent k will explore by taking an action ak randomly from ASU

 else
 SU agent k will exploit by taking a greedy action ak from ASU

 end if
 SU agent k will calculate the reward of executing action ak

 SU agent k will update its Q-table based on the Q-Learning formula:
 Q(st , a

k) ← (1 – α) Q(st , a
k) +α[(rt+1 (st , a

k) + γ V(st +1)]

 end if
 A-k = ASU – {ak}

 end for

end for

State set S

The set S represent all the observed states of all the Resource Blocks (RBs) at all the running

time.

S = {s0 , s1 , ..., st−1 , st , st+1 , ..., sno.epoch }
st = {RB1 , ..., RBx}, where x = no.RBs
st ⊂ S, st is a sub-set of the set S that represent the states of all the available RBs at time t. And it
is the same for all users agents, the primary users agents, and the secondary users agents. Each

resource block has three states, free, or busy for a primary user, or busy for a secondary user.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

88

Primary users scheduling stage

The primary scheduling stage of the Competitive scheduling algorithm does not include any

cooperation between the primary user agents. On the contrary, the primary user agents compete

on the available resource blocks. The primary users’ scheduling loop of taking an action, then
obtaining a reward based on executing this action, and then updating the Q-table, is repeated for

every primary user agent. After the first primary user agent finishes its scheduling loop, the

scheduler will update the primary user actions set to make sure that each agent will take a
different action.

Actions and Actions set

The primary user action set APU consists of multiple actions, each action has a different number of

resource blocks with unique indexes. This will avoid collisions between primary user agents since

they all have access to this actions set.

APU = {a1
PU , ..., an

PU }, aPU is an action to be taken by the primary user agent, n is the number of

actions in APU. Each action has a different number of resource blocks with distinct indices, and
they were set in a way to create an upper limit on how much resource blocks a primary user can

get, in which a primary user can get almost fifth of the available resources at max.

The primary user agent deploys two types of decision policies in choosing an action. It will either

explore or exploit, in which it depends on the value of the exploration parameter e. In the case of

exploration, the agent will make a random choice in taking an action from the secondary user

actions set. In the case of exploitation, the agent will make a greedy choice of what action to take
from the secondary user actions set.

Rewards

After executing an action, the primary user agent will calculate the reward. The reward function

for each primary user agent is chosen to optimize the primary user's average throughput. In this

algorithm, it was assigned to be the actual user's average throughput.

Q-tables

After calculating the reward, the primary user agent will associate this reward with the action that

resulted in this reward. Then the primary user agent will build or update its own Q-table. The

agent builds its Q-table, by creating new entries as a result of exploring new actions. And the
agent updates these entries as a result of choosing a pre-existing entries in the process of

exploitation. The agent does these operations, according to the following formula:

Q(st , a
i) ← (1 – α) Q(st , a

i) +α[(rt+1 (st , a
i) + γ V(st +1)] (8)

Where V(st+1) is determined by the policy of choosing an action at time t, and ai represent action a

taken by primary user i.

Secondary users scheduling stage

The secondary users scheduling stage in the Competitive scheduling algorithm are done exactly

as the secondary users scheduling stage in the Collaborative scheduling algorithm.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

89

5. EXPERIMENTS

5.1. Experimental Setup

5.1.1. Experiments’ fixed and variable parameters

The Network deployment of the experiments' setup consists of one macro-cell which serves 5

PUs and 5 SUs. According to the 3GPP standards and specifications, the recommended range,
transmission power, and bandwidth of an LTE cellular network Macro-cell is a 1Km of diameter

that is served with an eNodeB of 43 dB power, and has a bandwidth of 15 MHz, which means

there will be a total of 75 Resource Blocks, each with a bandwidth of 0.2 MHz.

The learning rate α determines how much percentage of the new Q-value we want to update the

previous Q-value, and it reflects the impact of the learning in updating the Q-table values. It is

common in the literature to set α between 0.8 and 0.9, and in these experiments it was set to 0.8.
The discount factor γ encourage the learning agent to seek out rewards sooner than later. For

instance, if γ is 1, it will inform the learning agent that getting a high reward in the far future is as

important as getting a high reward in the current time. Also, if γ is less than 1, and lower its

value, the more important for the learning agent to get a high reward sooner than later. And if γ is
equal to 0, the learning agent will only care about the immediate reward, and completely ignore

rewards in the future. It is common in the literature to set γ to 0.9, and that’s what it was set to in

these experiments.

The exploration parameter e was varied in 0.2, 0.5, and 0.8. The Number of Epochs was set to

100 because both algorithms were able to converge very quickly. And each experiment was run
200 times and their results were averaged.

5.1.2. Experimental Scenarios

Three main experiment scenarios were applied to both algorithms, in-order to compare their

performances, and to find out the best exploration parameter e for both algorithms. The
performance measurements were based on the throughput percentages that each user acquired

from the total macro-cell bandwidth, and the fairness level of sharing the spectrum among users.

The key difference in both of these experiments' scenarios is the exploration and exploitation
probabilities, these probabilities are determined by the exploration factor e. In the first

experiment's scenario, it was set to e = 0.5. In the second experiment's scenario, it was set to e =

0.2. In the third experiment's scenario, it was set to e = 0.8. In all of these experiments' scenarios,
the primary users had a full access to the total spectrum without any limitations on each user (e.g.

any primary user could use 100% of the available resource blocks at any time), and the secondary

users were allowed to access what is left of the available resource blocks of the spectrum after

scheduling the primary users.

5.1.3. Experiments’ Objective

The aim of these experiments is to test and compare the performance of both scheduling

algorithms, and to measure how much of the spectrum each will utilize when there is 100%

demand on the spectrum. The performance measurements were based on the throughput

percentages that each user acquired from the total macro-cell bandwidth, and the fairness level of
sharing the spectrum among users.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

90

5.2. Experimental Results

The results are displayed in Figures 4, 5, 6, 7, 8, and 9. In all figures, the simulation results

display the throughput percentages on the Y-axis and the Number of Epochs on the X-axis. The
"PUs percentages" are five curves, in which each curve represents the percentage that each

primary user obtained from the spectrum. The "SUs percentages" are five curves, in which each

curve represents the percentage that each secondary user obtained from the spectrum. The Total
percentages curve represents the sum of all the ten percentages.

5.2.1. The First Scenario Applied to both Scheduling Algorithms with an Exploration

Parameter e = 0.5

As regards to the use of the Collaborative scheduling algorithm, its performance results are

displayed in Figure 4. As results shows, the algorithm converged very quickly to 91% utilization
of the spectrum total throughput. This is because the scheduling algorithm is based on the use of

the Q-learning formula, which is known to converge quickly to an optimal solution "choosing the

optimal joint action of the primary users" as long as all actions are repeatedly sampled in all
states and the action-values are represented discretely [26], which is what we followed in

building our system model. This utilization of the spectrum consisted of the sum of all the users'

percentages. However, all of this spectrum utilization resulted from what the primary users
acquired, and this was because they had a higher priority of being scheduled over the secondary

users. The distribution of the available resources followed a fair approach in which each primary

user of the five had almost 18% of the spectrum, and this is because the scheduling process was

based on actions that were influenced by the reward that is based on the Jain's fairness index.
This helps the primary user agents to make a better joint action of how the available resources

should be shared. And eventually lead to a fair distribution of the available resources and higher

utilisation of the spectrum. The remaining spectrum resources "the 9% of the spectrum" are to be
competed off by the secondary users. Since this is a low percentage, it wasn't enough for the

secondary users to acquire a significant amount that could be displayed in the figure.

Figure 4. Percentages of the total system throughput usage while using the Collaborative scheduling

algorithm with an exploration parameter of e = 0.5

As regards the use of the Competitive scheduling algorithm, its performance results are displayed

in Figure 5. As results shows, the algorithm also converged very quickly to 88\% utilization of

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

91

the spectrum total throughput. This utilization of the spectrum consisted of the sum of all the
users' percentages. The PUs percentages resulted in 75% of the spectrum, each primary user

obtained 15% of the spectrum. The distribution of the resources followed a fair approach without

the use of Jain's fairness as the function reward because there was an upper limit on how much

resources each primary user can get by controlling the number of resources that the actions in the
actions sets can provide, in which each primary user can get almost fifth of the spectrum

resources at max. About the secondary users, they got 25% of the spectrum to compete over. And

they were able to obtain 15% of the spectrum, each secondary user obtained 3% of the spectrum.
The fairway of distributing the remaining resources was also due to forcing a limit on how much

each secondary user can get at max, in which each one of them can get almost fifth of the

remaining resources at max.

Figure 5. Percentages of the total system throughput usage while using the Competitive scheduling

algorithm with an exploration parameter of e = 0.5

5.2.2. The Second and Third Scenario Applied to the Collaborative Algorithm with e = 0.2

and e = 0.8

As regards the use of the Collaborative scheduling algorithm, its performance results are
displayed in Figure 6 and Figure 7. In both of the experiments' setups, the algorithm converged

very quickly to different utilisation percentages. In the first experiment's set-up when the

exploration parameter was e = 0.2, the algorithm converged to a 85% utilization of the spectrum
total throughput. This utilization of the spectrum consisted of the sum of all the users'

percentages. However, all of this utilisation resulted from what the primary users could obtain, in

which it was distributed among them in a fair share. Each primary users obtained 17% of the

spectrum. In the second experiment's set-up when the exploration parameter was e = 0.8, the
algorithm converged to a 93% utilization of the spectrum total throughput. Also in this

experiment's set-up, all of this utilisation resulted from what the primary users could obtain, in

which it was distributed among them in a fair share. Each primary users obtained 19% of the
spectrum. This total 8% increase of the spectrum is due to increasing the exploration parameter.

The more exploration the user agent does, the more experience and knowledge it obtains. This

will help user agents to make a better joint action of how the available resources should be
shared. The choice of what joint action to take is based on the obtained reward that is calculated

according to Jain's fairness index. This will eventually lead to higher utilization of the spectrum

total throughput.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

92

Figure 6. Percentages of the total system throughput usage while using the Collaborative scheduling

algorithm with an exploration parameter of e = 0.2

Figure 7. Percentages of the total system throughput usage while using the Collaborative scheduling

algorithm with an exploration parameter of e = 0.8

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

93

Figure 8. Percentages of the total system throughput usage while using the Competitive scheduling

algorithm with an exploration parameter of e = 0.2

Figure 9. Percentages of the total system throughput usage while using the Competitive scheduling

algorithm with an exploration parameter of e = 0.8

5.2.3. The Second and Third Scenario Applied to the Competitive Algorithm with e = 0.2

and e = 0.8

As regards the use of the Competitive scheduling algorithm, its performance results are displayed

in Figure 8 and Figure 9. In both of the experiments' setups, the algorithm also converged very
quickly and to different utilization percentages. According to Figure 8, in the first experiment's

set-up when the exploration parameter was e = 0.2, the algorithm converged to 82% utilization of

the spectrum. The PUs percentages resulted in 60% of the spectrum, 12% for each primary user.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

94

This meant that the secondary users had more radio resources to compete over. This allowed the
secondary users to obtain 22% of the spectrum total throughput, 4% for each secondary user.

According to Figure 9, in the second experiment's set-up when the exploration parameter was e =

0.8, the algorithm converged to 85% utilization of the spectrum. The PUs percentages resulted in

a 70% of the spectrum, 14% for each primary user. The SUs percentages resulted in a 15% of the
spectrum total throughput, 3% for each secondary user.

6. CONCLUSION

In this paper, we proposed, implemented, and tested two novel scheduling algorithms. The

Collaborative scheduling algorithm, and the Competitive scheduling algorithm. These algorithms

schedule two types of users; the primary users, which represent the licensed subscribers, and the

secondary users, which represent the unlicensed subscribers. The implementation and testing
were done using Matlab. Testing the performance measurements was based on the throughput

percentages that each user acquired from the total macro-cell bandwidth and the fairness level of

sharing the spectrum among users. Experimental results showed that both scheduling algorithms
converged to almost 90% utilization of the spectrum. However, the Collaborative scheduling

algorithm provided all this utilization of the spectrum to the primary users, in which they pay for

their service. In terms of distributing the resources in fair shares among users, both algorithms
provided an equal degree of fairness. However, they differed in their mechanism of doing so. The

Collaborative scheduling algorithm forced the fairness by using the Jains fairness index as the

reward calculation for the joint action. The Competitive scheduling algorithm forced fairness

among the users by creating an upper limit on how much each user can get by controlling the
amount of resources that the actions in the actions sets can provide. In conclusion, it is

recommended to use the Collaborative scheduling algorithm due to the high utilization of the

spectrum which it can provide to the primary users, and due to the high fairness degree of
distributing the resources among the primary users without the need of using an upper limit on

how much each user can get. Also, our results show that the spectrum band could be utilized by

deploying efficient packet scheduling algorithms for licensed users, and can be further utilized by
allowing unlicensed users to be scheduled on spectrum holes whenever they occur.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] Akyildiz, I. F., Lee, W.Y., Vuran, M. C., Mohanty, S. (2006) “Next generation/dynamic spectrum

access/cognitive radio wireless networks: a survey”, Computer networks 50 (13), 2127–2159.

[2] Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., Mohanty, S. (2008) “A survey on spectrum management in

cognitive radio networks”, IEEE Communications magazine 46 (4), 40–48.

[3] Bkassiny, M., Li, Y., Jayaweera, S. K. (2013), “A survey on machine-learning techniques in cognitive
radios” IEEE Communications Surveys & Tutorials 15 (3), 1136–1159.

[4] Chen, Z., Qiu, R. C. (2011) “Cooperative spectrum sensing using q-learning with experimental

validation”, Proceedings of the IEEE SoutheastCon, Nashville, TN, USA, 17–20.

[5] Claus, C., Boutilier, C. (1998) “The dynamics of reinforcement learning in cooperative multiagent

systems”, AAAI/IAAI (s 746), 752.

[6] Comşa, I. S., Aydin, M., Zhang, S., Kuonen, P., Wagen, J.-F. (2011) Reinforcement learning based

radio resource scheduling in lte-advanced. In: Automation and Computing (ICAC), 2011 17th

International Conference on. IEEE, pp. 219–224.

[7] Comsa, I. S., Zhang, S., Aydin, M., Kuonen, P., Wagen, J.-F. (2012) “A novel dynamic q-learning-

based scheduler technique for lte-advanced technologies using neural networks”, In: Local Computer

Networks (LCN), 2012 IEEE 37th Conference on. IEEE, pp. 332–335.

International Journal of Computer Networks & Communications (IJCNC) Vol.14, No.2, March 2022

95

[8] FCC, Federal communications commission spectrum policy task force, "report of the spectrum

efficiency working group" [online].

Available:.https://transition.fcc.gov/sptf/files/SEWGFinalReport_1.pdf.

[9] Henrique, C., Ribeiro, C. (1999) “A tutorial on reinforcement learning techniques”, In: Proc.

International Conference on Neural Networks.
[10] Ikuno, J. C., Wrulich, M., Rupp, M. (2010) “System level simulation of lte networks”, In: Vehicular

Technology Conference (VTC 2010-Spring), IEEE 71st. IEEE, pp. 1–5.

[11] Kumar, D., Kanagaraj, N., Srilakshmi, R. (2013) “Harmonized q-learning for radio resource

management in lte based networks”, In: ITU Kaleidoscope: Building Sustainable Communities (K-

2013), 2013 Proceedings of. IEEE, pp. 1–8.

[12] Li, Y., Jayaweera, S. K., Bkassiny, M., Ghosh, C. (2014) “Learning-aided subband selection

algorithms for spectrum sensing in wide-band cognitive radios”, IEEE Transactions on Wireless

Communications 13 (4), 2012–2024.

[13] Mitola, J. (2006) “Cognitive Radio Architecture The Engineering Foundations of Radio XML”, John

Wiley & Sons.

[14] Ng, A. Y. (2003) “Shaping and policy search in reinforcement learning. Ph.D. thesis”, University of

California, Berkeley.
[15] Pool David, (2010) "artificial intelegence, foundations of computationalagents" [online]. available:.

http://artint.info/html/ArtInt_265.html.

[16] Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., Camarda, P. (2011) “Simulating lte cellular systems:

an open-source framework”, Vehicular Technology, IEEE Transactions on 60 (2), 498–513.

[17] PJ’t Hoen, K. T., Panait, L., Luke, S., la Poutré, H. (2006) “An overview of cooperative and

competitive multiagent learning” Learning and Adaptation in Multi-Agent Systems, 1–50.

[18] Russell, S., Norvig, P. (1995) “A modern approach. Artificial Intelligence”, Prentice-Hall, Egnlewood

Cliffs 25, 27.

[19] Sirhan, N. N., Heileman, G. L., Lamb, C. C., & Piro-Rael, R. (2015). Qos-based performance

evaluation of channel-aware/qos-aware scheduling algorithms for video-applications over lte/lte-a.

Computer Science & Information Technology (CS & IT), 5(7), 49-65.
[20] Sirhan, N. N., Heileman, G. L., & Lamb, C. C. (2015). Traffic offloading impact on the performance

of channel-aware/qos-aware scheduling algorithms for video-applications over lte-a hetnets using

carrier aggregation. International Journal of Computer Networks & Communications (IJCNC), 7(3),

75-90.
[21] Sirhan, N. N., Martínez-Ramón, M., Heileman, G. L., Ghani, N., & Lamb, C. C. (2016, July). Qos

performance evaluation of disjoint queue scheduler for video-applications over lte-a hetnets. In

Proceedings of the 7th International Conference on Computing Communication and Networking

Technologies (pp. 1-7).

[22] Sutton, R. S., Barto, A. G. (1998) “Reinforcement learning: An introduction”, MIT press Cambridge,

Vol. 1.
[23] Valenta, V., Marsalek, R., Baudoin, G., Villegas, M., Suarez, M., (2010) “Survey on Spectrum

Utilization in Europe: Measurements, Analyses and Observations”. 5th International ICST
Conference on Cognitive Radio Oriented Wireless Networks and Communications, Jun 2010,

Cannes, France. pp.ISBN: 978-963-9799-94-3.

[24] Venkatraman, P., Hamdaoui, B. (2011) “Cooperative q-learning for multiple secondary users in

dynamic spectrum access”, In: IWCMC. pp. 238–242.

[25] Watkins, C. J. C. H. (1989) “Learning from delayed rewards. Ph.D. thesis”, King’s College,

Cambridge.

[26] Watkins, C. J., & Dayan, P. (1992). “Q-learning”. Machine learning, 8(3), 279-292.
[27] Yau, K.-L. A., Komisarczuk, P., Teal, P. D. (2010) “Applications of reinforcement learning to

cognitive radio networks”, In: 2010 IEEE International Conference on Communications Workshops.

IEEE, pp. 1–6.

[28] Zhao, Q., Sadler, B. M. (2007) “A survey of dynamic spectrum access”, IEEE signal processing
magazine 24 (3), 79–89.

	Abstract
	Keywords
	Long Term Evolution (LTE), Radio Resource Management, Packet Scheduling, Cognitive Radio, Multi-agent Q-learning, Matlab

