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ABSTRACT 

 
The key enhancement in the medium access control (MAC) layer is frame aggregation introduced by the 

IEEE 802.11n/ac standard to accommodate the growing traffic demand in the WLAN by allowing multiple 

packets aggregated per transmission. Frame aggregation efficiently reduces control overhead in the MAC 

layer, such as the MAC header and thus it helps to enhance transmission efficiency and throughput 

performance of WLAN. However, heterogeneous traffic demand among streams in the WLAN downlink 
MU-MIMO channel creates a challenge to efficiently utilize the benefits of frame aggregation. 

Transmission efficiency is also compromised during frame size setting determination because when a 

frame size is larger, the impact of the overhead frame can be lower, but they are also more vulnerable to 

transmission errors. Thus, this trade-off between maximizing frame size and minimizing overhead frames 

should be addressed by employing an adaptive frame aggregation technique to derive the optimal frame 

size that would maximize the throughput in WLAN downlink MU-MIMO channel. Moreover, when frame 

aggregation approach is employed, more frames must wait before transmission in a buffer which causes a 

delay in the performance of WLAN. Thus, analysing the trade-off between maximizing throughput and 

minimizing delay is a critical issue that should also be addressed to enhance the performance of WLAN. 

However, the majority of the existing adaptive aggregation algorithms in the WLAN downlink MU-MIMO 

channel are focused to maximize the throughput or minimize the delay. The main contribution of this paper 
is to propose a machine learning-based frame size optimization algorithm by extending our earlier 

approach in considering the cost of delay to maximize the system throughput of WLAN. The effectiveness of 

the proposed scheme is evaluated over the FIFO Baseline Approach and earlier conventional approaches 

under the effects of various traffic patterns, channel conditions, and the number of STAs. 
 

KEYWORDS 
 

Delay, downlink MU-MIMO, frame size optimization, WLAN, heterogeneous traffic, machine learning, 

neural network, throughput optimization. 

 

1. INTRODUCTION 
 
Wireless technology has been continuously evolving to support basic coverage and satisfy the 

advanced needs of today’s network [1]. To improve the system performance of WLAN, IEEE 

802.11 introduced single-user MIMO (SU-MIMO) [2] from IEEE 802.11n [3] and multi-user 
multiple in multiple out (MU-MIMO) in IEEE802.11ac [2-4]. SU-MIMO transmission is the 

conventional approach that allows multiple transmission of data streams to a single station. The 

SU-MIMO WLAN is effective if the connecting stations are equipped with multiple receiving 
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antennas. However, in a WLAN that connects many stations, due to the limitation of receiving 
antennas at receiving stations, SU-MIMO cannot efficiently utilize the full advantage of multiple 

transmission antennas found at access points (APs) [2]. As a result, this situation causes 

degradation in the system performance in terms of system capacity and user throughput. As a 

consequence of this background, by adopting MU-MIMO, simultaneous data transmission to 
multiple stations (STAs) is achieved by forming virtual spatial transmission channels between the 

AP and the multiple receiving STAs [2].  
 
The other key enhancement in the medium access control (MAC) layer is frame aggregation 

introduced by the IEEE 802.11n/ac to accommodate the growing traffic demand in the network.  

By using frame aggregation technique, multiple packets can be aggregated for a single 
transmission thus this reduces overhead frame consumption in the MAC layer, such as the MAC 

header. This approach provides a throughput enhancement and transmission efficiency in WLAN 

[5-8]. However, heterogeneous traffic demand among streams in the WLAN downlink MU-

MIMO channel creates a challenge to efficiently utilize the benefits of frame aggregation. This is 
because of that, when shorter and longer streams are grouped in downlink MU-MIMO 

transmission, wasted space channel time will occur which is a time duration where a part of 

spatial streams carries a data frame whereas the others do not [9-11]. To accommodate the 
airtime of the shorter streams, frame pad bits, called padding bits, can be added at the tail of the 

shorter stream until it has the same transmission duration as the longer streams.  However, this 

approach severely degrades transmission efficiency [11]. Transmission efficiency is also 
analyzed in terms of errors occurring during frame size setting because when a frame size is 

larger the impact of the overhead frame can be lower, but they are also more vulnerable to 

transmission errors. This trade-off is addressed by frame aggregation techniques to derive the 

optimal frame size that would maximize transmission efficiency. The IEEE 802.11n/ac standard 
introduces two basic aggregation methods: the aggregated MAC service data unit (A-MSDU) and 

the aggregated MAC protocol data unit (A-MPDU) [9,12]. Thus, to enhance the system 

throughput and transmission efficiency in every MU-MIMO transmission, signaling overhead 
and frame error rate should also be reduced. Moreover, there is always a trade between 

maximizing throughput and minimizing delay when frame aggregation is adopted [12-14] 

because more frames must wait before transmission in a buffer. In this regard, the adaptive 

aggregation mechanism (AAM) proposed by [14] studied that there is a trade-off between 
maximizing throughput and minimizing delay when frame aggregation is adopted. This study 

considered the varying nature of the packet size and the packet arrival time to assemble the target 

aggregate packet size in considering the minimum delay. In the work [13], the delay lower limit 
(DLL) in the IEEE 802.11 wireless network was studied using the DCF model. However, this 

study considered best-case scenarios such as an ideal channel condition with only one active 

station that always has frames to send and receive frames and send acknowledgments (ACKs). 
However, both [13] and [14] were considered single-user WLAN scenarios. 
 

In the case of an MU-MIMO-enabled WLAN, the majority of the existing studies have only 

attempted to maximize the throughput or minimize the delay. For instance, work [16] proposed a 
machine learning-based frame size optimization to improve the system throughput performance 

of WLAN in the downlink MU-MIMO channel. Different channel conditions, traffic patterns, 

and number of competing stations are considered in this study. However, the effect of delay is not 
studied while maximizing the throughput. But the trade-off between maximizing throughput and 

minimizing delay needs to be considered when frame aggregation approaches are adopted [14]. 

The main contribution of this paper is to propose a machine learning-based frame size 
optimization algorithm by extending our earlier approach in considering the cost of transmission 

delay. In this approach, the optimal frame size setting is achieved by adopting an adaptive 

aggregation approach that can cope with the dynamic effects of the traffic pattern and channel 

conditions.  
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Due to the increasing complexity of wireless networks along with unsophisticated deployment, 
distributed management systems, and density of network systems, it is becoming a challenge to 

efficiently operate the IEEE 802.11 networks. The dominant approach to solving these 

performance-related problems is to apply machine learning (ML). ML is a type of artificial 

intelligence where algorithms can learn from training data without being explicitly programmed 
[15]. There are two types of learning strategies in machine learning such as online learning (also 

called incremental learning) and offline learning (or batch learning) [15 -17]. In online learning, 

the algorithm updates its parameters after learning from each training instance which allows the 
learning algorithm to keep learning on the fly [16,17]. Our proposed ML approach adopts an 

online learning approach to cope with the time-varying channel conditions and traffic patterns. In 

this approach, the Access Point (AP) collects the “frame size-system throughput patterns” which 
contain knowledge about the effects of transmission delay), traffic condition, channel condition, 

and a number of stations (STAs). Based on these patterns, the neural network is used to correctly 

model the system throughput as a function of the system frame size. Once the training is 

completed by the neural network, the gradient information obtained is used to adjust the system 
frame size. Finally, the effectiveness of the proposed scheme is validated under various traffic 

patterns, channel conditions, and the number of STAs for WLAN downlink MU-MIMO 

channels.  
 

The rest of the paper is organized as follows, in Section 2, we introduce related works about the 

frame aggregation schemes and the performance challenges of multi-user transmissions in the 
WLAN downlink MU-MIMO channel. The description of the proposed approach is discussed in 

Section 3. In Section 4, results and discussions are presented to evaluate the performance of the 

proposed approach under various channel conditions, traffic models, and a number of stations. 

Finally, the conclusions are given in Section 5.  
 

2. RELATED WORK  
 

In this section, some previous studies on frame size optimization problems in WLAN will be 
discussed. According to [16], a machine learning-based frame size optimization approach is 

proposed aiming to improve the system throughput performance of WLAN in the downlink MU-

MIMO channel. In this approach different channel conditions, traffic patterns, and a number of 

competing stations are considered to evaluate the performance of the proposed approach. 
However, this approach did not study the effect of delay while maximizing throughput thus, it 

provides a suboptimal solution. The work in [17] proposed a machine learning-based frame size 

optimization approach in considering both channel conditions and contention effects of users to 
maximize the throughput performance of WLAN. However, this approach similarly ignored the 

issue of delay, and it can not operate in the IEEE 802.11 MU-MIMO-enabled WLAN. In 

addressing the energy-throughput trade-off, [18] proposed an online learning-based frame 

aggregation, Intelligent Energy-Efficient Frame Aggregation (IE2FA), to design an energy-
efficient MAC for high throughput wireless local area network (HT-WLAN). According to the 

simulation results, they improved network performance significantly compared to the other 

existing studies. Aiming to maximize goodput, [19] proposed an adaptive ML-based approach for 

frame size selection on a per-user basis by taking into account channel conditions and global 

performance indicators. The main approach of this study is to propose ML techniques in the 

specific case of Software-Defined Wireless Local Area Networks (SD-WLAN) particularly 

focusing on frame length optimization. According to the results, by analyzing a multitude 

scenarios, an average improvement of 18.36% is achieved in goodput over standard aggregation 

mechanisms. However, the issue of delay is not addressed in both [18] and [19]. [20] proposed a 

frame-aggregation size determination approach in the WLAN downlink MU-MIMO channel to 
improve channel utilization. This approach considered the issue of delay for frames waiting in 
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transmission queues and attempted to reduce the delay by appropriately determining the 
aggregation size according to the traffic variation. However, the authors did not elaborate on the 

effects of channel errors, and different traffic situations, also the study mainly focused to enhance 

channel utilization. The work in [21] proposed an adaptive aggregation algorithm in the downlink 

MU-MIMO channel in considering the issue of minimizing the cost of increased delay. This 
approach considers both queue delay and transmission delay to improve the system throughput 

performic of WLAN. According to the results, maximum throughput performance is achieved 

with a minimum delay over the baseline FIFO algorithm evaluated under the effects of traffic 
patterns, channel conditions, and a number of stations. The main difference between our 

approach and [21] is that we adopted a machine learning-based frame size optimization solution 

to enhance the system throughput of WLAN in considering the cost of transmission delay in 
particular.  
 

According to [22], queueing length and number of active nodes have significant impacts on the 

system throughput performance. Thus, their frame size-based frame aggregation scheme achieved 
the maximum system throughput performance by generating the same frame length in all spatial 

streams. However, the limitation of this approach is that the issue of delay is ignored, and the 

frame aggregation policy is not adaptive to the change in the conditions of traffic and channel 
conditions. By employing a novel user selection criterion that provides a high priority to the 

stations expecting high throughput in the next MU-MIMO transmission and having a large 

amount of data to reduce signaling overhead, [23] proposed a frame duration-based frame 
aggregation scheme. The main approach of this study is equalizing the transmission time of all 

spatial streams in all streams according to their Modulation and Coding (MCS) level thus, the 

maximum system throughput performance is achieved by minimizing the space channel time in 

the WLAN downlink MU-MIMO channel. However, the main focus of this approach is to 
improve the system throughput of WLAN without studying the issue of delay. Moreover, in 

focusing on the effects of adding a padding bit, [24,25] provides a strategy of replacing padding 

bits with data frames from other users in one stream, thus the space of frame padding bits will be 
filled by important frames aiming to improve the transmission efficiency. However, this approach 

violates the rules of MU transmissions by increasing the complexity of both the transmission and 

reception process to allow the transmission to multiple destinations within a special stream. 

According to the literature, there is little research exploring the use of ML techniques to tackle 
frame size optimization problems in WLAN, particularly in considering the trade-off between 

maximizing the throughput and minimizing delay.  

 

3. PROPOSED APPROACH  
 

Aiming to tackle the effects of heterogenous traffic demand among streams in WLAN downlink 

MU-MIMO, a machine-learning-based adaptive approach is proposed for frame-size optimization 
that attempts to maximize the system throughput performance of WLAN in minimizing delay. 

Different traffic models are adopted such as (Pareto, Weibull, or fractional Brownian Motion 

(fBM) [9, 10] to generate different traffic scenarios. The AP collected the data set as a pattern of 
“frame size–system throughput “which contains knowledge about the effects of traffic patterns, 

channel conditions, number of stations, and minimum transmission delay using the simulation 

environment [21] which considers both transmission delay and queue delay. However, the data 

collection in this study particularly considers transmission delay. Transmission delay is defined in 
this study as the time duration a station takes from sensing the channel state i.e., idle or busy to 

transmitting a frame until it receives the Acknowledgment (ACK) of the frame [19]. A specific 

aggregation algorithm cannot always contribute to the maximum throughput performance in 
minimizing transmission delay under the actual dynamic conditions of heterogeneous traffic 

patterns and channel conditions of WLAN. In addressing these challenges, different frame 
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aggregation policies such as (FIFO FA (baseline approach), Equal Frame Size FA, Equal MPDUs 
Agg FA, and Avg Num MPDUs FA) are adopted [9,10, 19] in this experiment to achieve the 

adaptive aggregation strategy. Moreover, the time required for completing a single MU-MIMO 

transmission depends on the types of aggregation policies employed. Thus, the adaptive 

aggregation approach is significant in determining the minimum delay. In downlink MU-MIMO 
transmission, the longer frame determines the transmission delay in a single MU- MIMO 

transmission [19] which is defined as max (TData) in formula (1) which presents the 

mathematical expression used for the transmission delay considered in this study. 
 

(1. (1) 
 

Therefore, in the simulation, the average system transmission delay ( ) is 

computed per MU-MIMO transmission as the ratio of the sum of the transmission delay and the 

number of stations, as illustrated in formula (2). Where n represents a number of stations in the 

network and t is the simulation time. 
 

       (2) 
 

The average delay of each aggregation policy is evaluated to determine the optimal aggregation 

policy that provides the minimum system delay. Thus, the optimal aggregation policy is always 

the one that provides the minimum transmission delay [21]. 
 

Under the actual dynamic effects of channel conditions and traffic patterns, it is difficult to obtain 

an accurate throughput function f(frm) in all network conditions. The main contribution of this 
study is to study how the throughput Thr can be maximized by optimizing the frame size frm. To 

solve such an optimization problem the well-known gradient ascent algorithm is adopted in this 

study that can build the knowledge and accurately model the throughput Thr as a function of the 
frame size frm. After the knowledge building, the gradient information obtained from the neural 

networks is used to adaptively adjust the frame size based on the gradient information. In the 

formation of the frame-size optimization problem, the throughput Thr is a complex function of 

the frame size frm under the conditions of minimum delay, channel conditions, traffic patterns, 
and a number of stations. Formula (3) shows the throughput function f varies to the frame size 

due to the above-specified changing conditions.  

 

        (3) 
 

Thus, the local maximum of the throughput function Thr = f(frm) can be found by adaptively 
adjusting frame size frm using gradient ascent, by taking steps that are proportional to the 

gradient. For instance, at the nth time of adjustment, the frame size was frm(n), and the throughput 

was Thr(n). At the next time of adjustment, the frame size frm will be set as shown in formula 

(4). 

 

         (4) 

 

Where  depends on the gradient of the estimated throughput  with respect to 
, i.e., 

 

                                                                                            (5)   
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The parameter μ is a variable adjustment rate heuristically selected for different network 
scenarios.  

  

To cope with the effects of time-varying channel conditions and heterogeneous traffic patterns, 

the online machine learning strategy is employed to achieve the data collection, knowledge 
building, and frame-size adjustment kept online. The proposed MLP ML approach consists of 

one hidden layer with four neurons and an output layer. The backpropagation algorithm only 

consists of two passes: 1) a forward pass and 2) a backward pass [16,17]. To obtain the gradient 
information which is used to adjust the frame size, we add a third pass, i.e., the 

tuning pass that will be discussed in Section 3.1. In the proposed MLP approach, the 

backpropagation algorithm is used to adjust the network and minimize the error between the 
actual response and the desired (target). The description and summary of notations used in this 

study are presented in Table 1. 

 
Table 1. Simulation Parameter and Notation Summary 

 
Parameters Symbol Value 

# Of Antenna at AP NAnt 4 

# Of Stations NumSTA 2–4 

VoIP traffic payload size  100Byte 

Video traffic payload size  1000Byte 

Learning Rate  ɳ 0.5 

Mean Square Error Threshold MES 0.00001 

Epoch Threshold  1000 times 

Activation Function Sigmoid (σ)  

Number of training patterns n  

Indices of neurons in different layers i, j  

Frame size(input) of nth training pattern frm(n)  

Target response for neuron j Thr(n)  

Actual response of the nth training pattern        

Synaptic weight in layer l connecting the output 

neuron of i to the input neuron j at iteration n  
 

Weight sum of all synaptic inputs plus bias of 

neuron j in layer l at iteration n.  
 

Signal of output of neuron j in layer l at iteration n  
 

Local gradient of neuron j in layer l in the tuning 

pass of hidden layer 
) 

 

Local gradient of neuron j in layer l in the tuning 

pass of the output layer  
 

Adjustment rate µ  

 

3.1. Tuning Pass Strategy 
 

The diagram shown in Figure 1 illustrates the signal flow of the tuning pass in the machine 

learning model to estimate the gradient 
 

and the key to adjusting the frame size to 

maximize the throughput in minimizing delay. The initial weight is denoted as  in the neural 

network is randomly chosen. The synaptic weights that have been well adjusted in the backward 

pass are set as fixed in the tuning pass. An adaptive learning rate is adopted to improve the 
convergence speed [16].  
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Figure 1. Flow chart of the proposed machine learning approach consisting of tuning pass, which depicts 

the derivation of the local gradients and the gradient for frame size adjustment. 

 

In the following discussion, the procedure how the estimated gradient   is computed by 

adopting [16]. Considering the hidden layer, the local gradient for the tuning pass is 

defined as follows:   

 

                                                          (6) 

 

Where  in formula (6) is the weight sum of synaptic input plus bias of neuron j in layer l. 

Similarly, considering the output layer, the local gradient  is defined as follows: 

 
 

                              (7) 

 

While considering the hidden layer, the local gradient can be expressed as follows using 

the chain rule: 

 
 

                                                    

 

                                                                                      (8) 
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Therefore, using results (7) and (8), the gradient can be written as follows: 
  

 
 

                                                                                                                  (9) 

 

Where  can be defined as   . Thus, the second term at the 

rightmost side of equation (9) can be written as: 

 

 

 

                                                               

   

 

                                   (10) 

 

 

Therefore, the gradient                                 (11)        

The derivation of the local gradients at each layer and the gradient is depicted in Figure 

1. Based on the result from equation (11), the frame size frm is adjusted as shown in formulas (4) 

and (5). 

 

4. RESULTS AND DISCUSSION 
 

In this section, the experimental procedure is discussed. The performance of the proposed 

machine learning-based adaptive approach will be evaluated by considering the effects of channel 
conditions, heterogeneous traffic patterns, and a number of stations. 

 

4.1. Experimental Procedure 
 

This experiment is conducted to enhance the performance of our previous machine-leaning-based 

adaptive approach for frame size optimization to maximize the system throughput performance of 
WLAN in the downlink MU-MIMO channel [16]. However, this earlier work didn’t consider the 

issue of delay. Thus, to collect the training data set as a pattern of “frame size - system 

throughput”, we adopt the simulation environment [21]. Because, according to [21] both queue 
delay and transmission delay are considered in the simulation, but in this experiment, the data 

collection is conducted only by considering the transmission delay. The frame size in the data set 

represents the input data set that represents the average offered traffic load generated in the 
network to obtain the corresponding target system throughput. System throughput is the target 

data set that determines the maximum system throughput values achieved [21]. The training data 

set is collected once every 50 seconds in considering different network scenarios such as channel 

conditions, traffic patterns, number of stations, and the minimum transmission delay. Thus 50 
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samples will be collected for each training to train the neural network until the stopping criteria 
of Mean Square Error (MES) fall below 0.00001 or when the training epoch exceeds 1000 times 

is satisfied by using Forward and backward passes iteratively.  Then the weight is updated 

following the procedure in the backward pass. The error threshold and the maximum number of 

iterations determine the accuracy of the function and the computing cost. Finally, once the 
training is over and the knowledge-building model is achieved, the tuning pass will be invoked to 

adjust the frame size frm by using gradient information from the neural network. 

 
We adopted the same simulation parameters considered in [16] as we are attempting to extend the 

limitation of this earlier work in considering the issue of delay which is one of the significant 

performance evaluation metrics in networking. To evaluate the performance of the proposed 
approach, different comparative approaches in terms of system throughput performance are 

considered in the experiment such as FIFO FA (Baseline Approach) which does not employ an 

adaptive aggregation scheme, Adaptive FA Conv. Approach 1 [9] is an adaptive aggregation 
algorithm that did not consider channel error and the cost of delay aiming to achieve only 

maximize the throughput and Adaptive FA Conv. Approach 2 [10] is an adaptive approach that 

can achieve the maximum system throughput by considering the effects of channel error and the 
cost of increased delay. However, both [9, 10] didn’t adopt a machine learning-based 

optimization solution. The abbreviations ‘FA’ and ‘Conv.’ in this paper refer to ‘frame 

aggregation’ and ‘conventional’ respectively. Thus, the performance of our proposed ML 

approach will be evaluated over the FIFO FA (Baseline Approach), Adaptive FA Conv. 
Approach 1, and Adaptive FA Conv. Approach 2.      

  

In general, the proposed machine-learning-based adaptive approach will be evaluated under the 
following performance factors. In Section (4.2) the performance of the proposed ML approach is 

evaluated under the effects of different traffic models such as Pareto, Weibull, and fBM.  In 

Section (4.3) the performance of the proposed approach is evaluated under the effect of channel 
conditions where  SNR= 5, 10, and 20 dB. In Section (4.4) the performance of the proposed 

approach under a varying number of STAs (2,3,4) is evaluated. Finally, the performance of the 

proposed ML approach is evaluated in terms of system throughput versus optimal system frame 

size in Section (4.5). All experiments are conducted with a traffic mix of 50% VoIP and 50% [10] 
video with a constant frame size of 100 Byte and 1000 Byte, respectively.  

  

4.2. Performance Under the Effect of Various Traffic Models 
 

In this section, the performance of the proposed ML approach is evaluated under the effects of 

different traffic models such as Pareto, Weibull, and fBM [9], SNR = 10 dB, and NumSTA= 4. 
According to the result, the proposed approach achieved different performances in different 

traffic models while the same number of stations and channel conditions are considered. For 

instance, the proposed approach copes better with the Weibull traffic model with a maximum 
performance of 807Mbps than the Pareto traffic model 667Mbps which is the least even when 

compared with fBM 705Mbps. These results demonstrated how the optimal system throughput 

performance of WLAN in the downlink MU-MIMO channel is affected by the heterogeneous 

traffic patterns among spatial streams in different traffic conditions. The average maximum 
system throughput achieved by the proposed ML approach, FIFO FA (Baseline Approach),  

Adaptive FA Conv. Approach 1, and Adaptive FA Conv. Approach 2 under the conditions of 

different traffic models is illustrated in Table 2.  
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Table 2. Simulation result achieved by the FIFO FA (Baseline Approach), Adaptive FA Conv. Approach 1, 

Adaptive FA Conv. Approach 2, and   Proposed ML approach for average system throughput performance 

in Mbps under the effects of different traffic models. 

 

Comparative Approaches     Traffic Models  

       Pareto        Weibull    fBM 

FIFO FA (Baseline Approach) 692.87875 397.50775 482.20575 

Adaptive FA Conv. Approach 1 868.09675 695.20775 724.73675 

Adaptive FA Conv. Approach 2 809.04125 674.4325 706.42475 

Proposed ML Approach 807.872 667.94675 705.45175 
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Figure 2. Performance of average system throughput under the effects of heterogenous traffic models when 

SNR = 10dB. 

 

As the result shows in Figure 2, Adaptive FA Conv. Approach 1 achieved the maximum 

performance in all traffic models as it was only concerned with the maximum throughput with the 
expense of delay and ideal channel conditions. Similarly, Adaptive FA Conv. Approach 2 

achieved a better performance than the proposed approach. But this approach doesn’t consider 

the issue of delay even though transmission error is considered. However, the proposed ML 
approach achieved the maximum performance of 807Mbps by the Weibull traffic model which is 

closer to the performance 809Mbps with Adaptive FA Conv. Approach 2. The FIFO (Baseline 

Approach) achieved the worst performance of all traffic models particularly the least 

performance of 397Mbps achieved using the Pareto traffic model due to its non-adaptive 
aggregation policy employed in it. Thus, these results indicate that traffic patterns in the network 

determine the system's performance.  

 

4.3. Performance Under the Effects of Channel Conditions 
 
The performance of the proposed approach under different channel conditions when SNR = 5, 10, 

and 20dB, and NumSTA =4 is evaluated in this section. When the SNR value increases the channel 

quality improves thus the throughput performance is enhanced as the occurrence of transmission 

frame error rate will be less. As shown in Figure 3 (a), (b), and (c), for the case of different traffic 
models such as Pareto, Weibull, and fBM, the system throughput performance of all approaches 
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increases when the channel quality improved from 5dB to 20dB. However, the proposed ML 
approach achieved better performance than that of the FIFO (Baseline Approach) due to the 

adaptive aggregation approach adopted in the Proposed ML Approach. On the contrary, the 

Proposed ML approach achieved the lowest performance of 673Mbps in the Pareto traffic model 

compared with 696Mbps achieved by Adaptive FA Conv. Approach 1 and Adaptive FA Conv. 
Approach 2 when SNR=20dB. This is due to the reason that both Adaptive FA Conv. Approach 1 

and Adaptive FA Conv. Approach 2 approach only focuses on maximizing throughput with a cost 

of maximum delay which provides a suboptimal solution. On the contrary, under the worst 
channel condition, e.g. SNR = 5dB in the figure, a better performance of 330Mbps is achieved by 

the Weibull traffic, and the worst 266Mbps is achieved by fBM traffic. This result illustrates that 

the system throughput performance is affected by traffic patterns even under the same channel 
condition. However, the proposed approach achieved maximum performance better than FIFO 

FA (Baseline Approach) as it employed an adaptive aggregation approach to realize the optimal 

system throughput. Table 3 illustrates quantitative performance results of the average system 

throughput performances achieved by the FIFO FA (Baseline Approach), Adaptive FA Conv. 
Approach 1, and Adaptive FA Conv. Approach 2 and Proposed ML Approach, under the effects 

of different channel conditions and traffic models. 

 
Table 3. Simulation result achieved by the Proposed ML Approach, Maximum Throughput, and FIFO 

(Baseline Approach) for average system throughput performance in Mbps under the effects of different 

traffic models and channel conditions. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Comparative Approaches     
Traffic 

Models 
   SNR (dB) 

 

Weibull 

5(dB) 10(dB) 20(dB) 

FIFO FA (Baseline Approach) 288.020 692.878 784.021 

Adaptive FA Conv. Approach 1 868.096 868.096 868.096 

Adaptive FA Conv. Approach 2 331.562 809.041 868.096 

Proposed ML Approach 330.067 807.872 857.716 

FIFO FA (Baseline Approach)  181.847 397.507 442.630 

Adaptive FA Conv. Approach 1 Pareto 695.207 695.207 695.207 

Adaptive FA Conv. Approach 2  295.262 674.432 695.207 

Proposed ML Approach  287.630 667.9467 673.619 

FIFO FA (Baseline Approach)  180.726 482.20575 535.097 

Adaptive FA Conv. Approach 1 fBM 724.736 724.7367 724.7367 

Adaptive FA Conv. Approach 2 

 

267.664 706.4247 724.7367 

Proposed ML Approach 266.499 705.4517 723.764 
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a) Weibull Traffic Model            b) Pareto Traffic Model 

 

 
 c) fBM Traffic Model 

 
Figure 3. System throughput versus SNR for different traffic models such as Pareto, Weibull, and fBM 

when NumSTAs= 4. 

 

FIFO FA (Baseline Approach) achieved the worst performance 181Mbps and 180Mbps in the 
worst channel condition of 5dB by the Pareto and fBM traffic models respectively. In general, the 

FIFO FA (Baseline approach) aggregation policy is the worst compared to the proposed approach 

in all scenarios because of the non-adaptive aggregation strategy it employs. However, the 
Proposed ML Approach always achieved the maximum performance close to Adaptive FA Conv. 

Approach 1, and Adaptive FA Conv. Approach 2 only considers the achievement of maximum 

throughput with the cost of maximum delay [9,10]. 
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4.4. Performance Under the Effects of Number of Stations 
 

Figure 4 (a), (b), and (c), demonstrate the performance of the proposed approach evaluated under 

the effect of a different number of stations (NumSTA =2, 3, and 4), and when the channel 
condition is SNR=10dB for the case of Weibull, Pareto, and fBM traffic models. As the results 

show, the system throughput performance significantly increases in all traffic models as the 

traffic rate increase when the number of stations ranges from 2 to 4. However, the performance of 
the proposed ML approach achieved different performances in different traffic models due to the 

effect of heterogeneous traffic patterns even under the same number of stations. The quantitative 

comparative results of the average optimal system throughput achieved by the FIFO FA (Baseline 

Approach), Adaptive FA Conv. Approach 1, Adaptive FA Conv. Approach 2, and the Proposed 
ML Approach under the effects of a variable number of STAs are illustrated in Table 4. 

 

Table 4. Simulation results achieved by comparative approaches such as FIFO FA (Baseline Approach), 

Adaptive FA Conv. Approach 1, Adaptive FA Conv. Approach 2, and   Proposed ML approach for average 
system throughput in Mbps under the effects of variable number of stations in Weibull, Pareto, and fBM 

traffic models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparative Approaches     
Traffic 

Models 
Number of Stations 

 

Weibull 

2 3 4 

FIFO FA (Baseline Approach) 440.9687 489.502 692.8787 

Adaptive FA Conv. Approach 1 501.84 662.1969 868.0967 

Adaptive FA Conv. Approach 2 450.9877 618.7347 809.0412 

Proposed ML Approach 428.3877 617.7457 807.872 

FIFO FA (Baseline Approach)  307.5327 320.9385 397.5077 

Adaptive FA Conv. Approach 1 Pareto 529.9385 529.9385 695.2077 

Adaptive FA Conv. Approach 2  432.1387 524.8727 674.432 

Proposed ML Approach  428.1055 523.189 667.9467 

FIFO FA (Baseline Approach)  316.3205 421.6932 482.2057 

Adaptive FA Conv. Approach 1 fBM 564.47 564.47 724.7367 

Adaptive FA Conv. Approach 2 

 

389.5777 555.8375 706.4247 

Proposed ML Approach 365.8767 553.0777 705.4517 
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c) fBM Traffic Model 

 
Figure 4. System throughput versus number of stations when the channel condition is SNR =10dB for the 

Weibull, Pareto, and fBM traffic models. 

 

As shown in the results in Figure 4, when the number of stations increases in all traffic models, 
the system throughput performance increases as the traffic load increases with an increasing 

number of stations from 2 to 4. However, different performance is achieved depending on the 

traffic condition. For instance, 807Mbps is the maximum performance achieved by the Weibull 

traffic model while 667Mbps is achieved by the Pareto traffic model. The Adaptive FA Conv. 
Approach 1 outperforms all approaches as it always considers maximizing throughput in ideal 

channel conditions and the expense of delay. However, the proposed approach always 

outperforms the FIFO (Baseline Approaches) in all scenarios due to the adaptive aggregation 
strategy it adopts. In this regard, the maximum performance of 807Mbps in the case of the 

Weibull traffic model is achieved by the proposed approach whereas the lower performance of 

667Mbps is achieved in the Pareto traffic with the same number of STAs equals 4. Likewise, 
when the number of stations equals 2, the maximum performance of 428Mbps is achieved by the 
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Weibull and Pareto traffic models and the least 365Mbps by the fBM traffic model. These results 
show that number of stations affects the performance of the system throughput under the 

conditions of heterogeneous traffic patterns among streams in the downlink MU-MIMO channel. 

However, the proposed approach always achieved the maximum system throughput performance 

better than the FIFO FA (Baseline Approach) but closest to the Adaptive FA Conv. Approach 1, 
Adaptive FA Conv. Approach 2 [9,10] which are only considered the maximum throughput with 

the expense of delay.   

 

4.5. Performance of System Throughput Vs. Optimal Frame Size 
 
Figure 5 (a), (b), and (c) show the performance of system throughput with increasing System 

frame size considering SNR= 10 dB, NumSTA = 4. To examine the effect of traffic conditions on 

the performance of the proposed ML approach, traffic models such as Weibull, Pareto, and fBM 
are considered. As the results show, the throughput performance of the proposed ML approach 

increased when the size of the frame increased. However different traffic models achieved 

different performances due to the effects of heterogeneous traffic patterns. For instance, the 

maximum performance of 874Mbps is achieved when the optimal frame size is 1Mbyte by the 
Weibull traffic model whereas the 816Mbps is the maximum performance by the Pareto when the 

frame size is 1Mbyte.  Adaptive FA Conv. Approach 1 achieved the maximum performance in all 

traffic models because this approach only focuses on maximizing the throughput with the 
expense of maximum delay and free from transmission error. However, the FIFO FA (Baseline 

Approach) achieved the worst performance among all traffic models as this algorithm doesn’t 

employ an adaptive aggreging strategy to maximize the throughput. For instance, 437Mbps is the 
least performance achieved by fBM traffic model when the frame size is 0.93Mbyte.  
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c) fBM Traffic Model  

 
Figure 5. Performance of system throughput versus optimal System frame size when NumSTAs = 4 and SNR 

=10dB for the Weibull, Pareto, and fBM traffic models. 

 

In general, the proposed ML approach provides a significant performance in optimizing the 
system frame size of WLAN to maximize the system throughput performance with a minimum 

cost of delay. This is achieved by employing an adaptive aggregation approach by considering 

channel conditions, traffic patterns, and a number of stations than the baseline FIFO FA (Baseline 
Approach). Moreover, the proposed approach achieved the closest performance to that of the 

Adaptive FA Conv. Approach 1 and Adaptive FA Conv. Approach 2 only considers maximizing 

the throughput without considering the issue of delay.  

 

5. CONCLUSIONS 
 

The one of key enhancements is MAC layer frame aggregation introduced by the IEEE 

802.11n/ac to accommodate the growing traffic demand in the network by allowing multiple 
packets aggregated at once in a single transmission. By adopting frame aggregation, the overhead 

in the MAC layer is controlled and a tremendous throughput enhancement is achieved. However, 

due to the heterogeneous traffic demand among streams in the WLAN downlink MU-MIMO 
channel, it is challenging to efficiently utilize the benefits of frame aggregation. Because when 

shorter and longer streams are grouped in downlink MU-MIMO transmission, wasted space 

channel time will occur which is a time duration where a part of spatial streams carries data 
frames whereas the others do not thus it would degrade the transmission efficacy. Thus, the trade-

off between maximizing frame size and minimizing overhead frames should be addressed by 

adopting an adaptive frame aggregation technique to derive the optimal frame size that would 

maximize the throughput performance of WLAN. Delay is another critical issue that needs to be 
taken into account when frame aggregation is employed because frame aggregation experiences 

more frames waiting in a buffer before transmission which degraded the performance of WLAN. 

The main contribution of this paper is to propose a machine learning-based frame size 
optimization algorithm to improve the throughput performance of WLAN in downlink Mu-

MIMO channel by extending our earlier approach in considering the cost of delay. In this 

approach, the optimal frame size setting in the WLAN downlink MU-MIMO channel is achieved 

by adopting an adaptive aggregation approach that considers the dynamic effects of traffic 
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patterns and channel conditions. The effectiveness of the proposed approach is evaluated over the 
FIFO Baseline Approach and earlier conventional approaches under various traffic patterns, 

channel conditions, and a number of STAs for WLAN downlink MU-MIMO channels. Future 

work will extend our approach by considering real traffic data. Study the effects of other delay 

factors such as processing delay and queuing delay in considering both uplink and downlink 
transmission channels of WLAN. 
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