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ABSTRACT

Protecting information systems is a difficult and long-term task. The size and traffic intensity of computer
networks are diverse and no one protection solution is universal for all cases. A certain solution protects
well in the campus network, but it is unlikely to protect well in the service provider's network. A key
component of a cyber defence system is a network attack detector. This component needs to be designed to
have a good way to scale detection capabilities with network size and traffic intensity beyond the size and
intensity of a campus network. From this point of view, this paper aims to build a network attack detection
method suitable for the scale of large and high-traffic networks based on machine learning models using
clustering techniques and our proposed detection technique. The detection technique is different from
outlier detection commonly used in clustering-based anomaly detection applications. The method was
evaluated in cases using different feature extraction methods and different clustering algorithms.
Experimental results on the NSL-KDD data set are positive with a detection accuracy of over 97%.
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1. INTRODUCTION

The effectiveness of defence systems against cyberattacks depends on the capabilities of the
network attack detection component. In industrial networks, the detection component is built into
Intrusion Detection Systems (IDS) or Intrusion Detection and Prevention System (IDP). Once an
attack is detected, stopping it is not too difficult. The ability of the network attack detection
component is reflected in the accurate warning when the attack takes place and the immediate
warning when the first signs of the attack appear, often in short, early warning. However, the
early warning and error-free capabilities of today's detection solutions are still to be desired. The
reason is that attacks are diverse, and constantly changing and information system infrastructures
also have their characteristics, making it difficult to track and detect attacks. Thereare no single
IDS that can monitor and alert the entire information system, so depending on the scope of
responsibility, IDS is divided into two types: Host Intrusion Detection System (HIDS) and
Network Intrusion Detection System (NIDS). HIDSs can only detect attacks on end systems and
NIDSs can only detect attacks on the network.

In a general perspective, regardless of the theory or technology used, attack detection methods
fall into one of the following three main categories:
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(i) Based on known attack behaviours, each attack is identified by a unique signature, also
referred to as the signature-based detection method.

(i) Based on known normal valid behaviours, also referred to as anomaly-based detection
method.

(iif) Based on a predetermined threshold of a measurement parameter selected in the design of
the method, also referred to as the statistical-based detection method.

In the methods using the form (i), the detection unit continuously monitors the activities on the
information system and looks for signs that match the known attack signs, if any, it will emit a
warning [1-4]. The effectiveness of these methods depends on the knowledge of the known attack
signature and the processing power of the hardware infrastructure running the detection module.
This method cannot detect unknown attacks. In methods using form (ii) the detector also
continuously monitors and checks the activities taking place on the information system and issues
an alert when there is an activity that is different from the normal known activities [5-7]. Thus,
the effectiveness of methods of this type depends on knowledge of the normal operations and
processing power of the hardware infrastructure running the detection module. This approach can
detect unknown attacks but can still be mistaken without full knowledge of the normal behaviour.
Methods using form (iii) creatively define anomaly measurement parameters on the information
systems, when the value exceeds the specified threshold, it will issue an intrusion alarm [8-11].
The effectiveness of methods of this type depends on the reliability and suitability of the
parameters established for various types of attacks and the threshold value chosen.

In recent years many attack detection methods use machine learning and deep learning techniques
to improve the accuracy of the method [12-15]. The main job is to build an attack detection
model according to two learning methods: supervised learning and unsupervised learning.
Supervised learning requires a labelled data set to train the model. The trained model acts as a
classifier between the normal data and the attack data, which is equivalent to the form (i)
mentioned above. Meanwhile, attack detection models are built based on unsupervised learning
methods using unlabeled data sets to train the model and the trained model acts as a cluster. Once
the data is fed into the model, the normal data is distributed into clusters and the attack data
becomes outliers that are the basis for attack detection. The way to build such an unsupervised
learning-based detection model is equivalent to the form (ii) mentioned above. Thus, the attack
detection model based on unsupervised learning can detect unknown attacks. This is very
important in practice because it is not easy to have all the data labelled and new types of attacks
are constantly emerging. However, the limitation of current unsupervised models to detect attacks
based on outliers is low accuracy [16-17]. Attack detection models using supervised or
unsupervised learning both operate on the principle of data point detection, which has two
shortcomings: The first shortcoming is that the manifestation of an attack is not only contained in
a certain data point but can include many data points. Therefore, efforts to use classification
methods are difficult to achieve high accuracy in the case of complex attacks. The second
shortcoming is the fact that live streaming data goes into the model and when the traffic
increases, the models are very difficult to handle.

In this paper, we propose an attack detection method in the form (i) but using clustering
techniques can overcome the above limitations. As a result, the model can be applied
appropriately to high-traffic infrastructures. The main contributions of the paper include:

- The method of determining the full manifestation of an attack is based on clustering
techniques, whereby actual attacks that take place in complex steps can be controlled.

- The attack detection method can be implemented in a distributed parallelism model suitable
for large networks with high traffic.
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Here we do not create a classifier to test each data point for attack or not but create a cluster,
which processes the data in batches depending on the sampling period to detect the attack. Model
training is also not about isolating data into clusters and separating attack data points into
outliers. Instead, we cluster all the data points and accurately determine the characteristic
expression of the anomalous clusters as a basis for detection according to the form (i) mentioned
above. We call the characteristic manifestations of the cluster the cluster feature vector. Based on
batch data processing, detected attack activities based on cluster feature vectors are matched with
known anomalous feature vectors in the trained model.

To increase the accuracy of clustering, we preprocess the data and use the appropriate feature
extraction method. In this paper, we will use two different feature extraction methods and
different clustering algorithms, in turn, to see how the performance of different cases is.
Specifically, we apply Risk-based Acquisition [18] and Attribute Ratio [19] feature extraction
methods, respectively, and also use two clustering algorithms K-means and DBSCAN
respectively. Experiments were conducted with the NSL-KDD dataset [20]. The authors in [20]
argue that the size of the NSL-KDD dataset is reasonable, and can be used as a complete data set
without the need for random sampling.

The rest of the paper is organized as follows: Section 2 presents some typical attack detection
methods in recent years that have similarities with one aspect of our method. Section 3
summarizes the theoretical topics used in the proposed method. Details of the proposed detection
method and model building are presented in Section 4. Section 5 presents method testing and
evaluation, including use cases of different preprocessing methods and clustering algorithms. The
paper ends with the conclusions in Section 6.

2. RELATED WORKS

Intrusion detection systems (IDS) are developed based on methods of distinguishing normal and
abnormal activities on computer networks. Many differentiating methods have been introduced
and applied in practice, each with its advantages and disadvantages. Which, the group of methods
using clustering techniques has also attracted the attention of many researchers [21]. Recently,
the authors in [22] have proposed an intrusion detection method that combines the K-means
clustering algorithm and Isolation Forest. This method is also intended for attack detection in big
data systems in industrial environments. Thereby also shows that using the clustering technique
creates favourable conditions for implementing detection solutions in large-scale data cases.
Experimental results on the KDD 99 dataset achieved an AUC of 0.96 and an AUC of 0.98 on the
Breast dataset. Regarding the security of the cloud computing system, [23] also proposes a
solution to detect DDoS attacks on cloud computing based on network data clustering. The
authors in [23] used the PCA algorithm for feature extraction to increase the efficiency of
clustering. Experimental cases applied with K-means, DBSCAN, and Agglomerative algorithms
are also evaluated, the Adjusted Rand Index metric is above 0.8989 and other metrics are also
positive.

Anomaly detection based on clustering techniques is also applied in error detection of the system,
as the authors in [24] have proposed a solution for anomaly detection on machine tools. Which,
the Mean Shift clustering algorithm is used to identify repeating patterns in combination with the
self-organizing map to provide information about the machine state to help detect anomalies with
high efficiency.

Anomaly detection methods should all be based on a deep understanding of the monitored data.

How the data features are exploited depends on the design of the method. In [25] shows that each
type of attack has a different set of important features. On that basis, if the feature extraction is
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correct, the classifier will work very well. Also related to detection based on its own set of
features of each type of attack, in [26-27] the authors propose a DDoS low-rate attack detection
method. This method will let the system learn to represent knowledge about low-rate DDoS
attacks in the form of a set of feature vectors, labeling these feature vectors corresponding to the
types of low-rate DDoS attacks. Feature vectors are built based on the botnet's features and the
self-similarity of the traffic. In the detection stage, the semi-supervised fuzzy c-mean clustering
algorithm is applied and assigns a feature vector to each cluster. As a result, low-rate DDoS can
be detected with an accuracy of 97.46%.

3. BACKGROUNDS

3.1. K-Means Algorithm

K-Means clustering algorithm is proposed in [28]. K-Means is a commonly used algorithm in
data clustering applications. The main idea of the K-Means algorithm is to find away to group the
objects in a given data set into k clusters {C, Co, ..., Ci}. The data set consisting of n objects in
d-dimensional space Xi = (Xi1, Xiz, ..., Xid) (i = 1... n)is clustered so that the standard function
E =YK .3 cci D? (x —m;) reaches the minimum value, where: m; is the centroid of the cluster
Ciand D is the distance between the two objects.

3.2. DBSCAN Algorithm

DBSCAN clustering algorithm was introduced in [29] when the authors studied spatial data
clustering algorithms based on the definition of a cluster as the maximum set of connected points
in terms of density. The main idea of DBSCAN-based detection is that there is always a higher
density inside each cluster than outside the cluster. Furthermore, the density in noisy regions is
lower than the inner density of any cluster. DBSCAN uses Eps and MinPts parameters in the
algorithm to control the density of clusters. Each cluster must determine the neighborhood radius
(Eps) and the minimum number of points in the vicinity of a point in the cluster (MinPts). The
neighbourhood of a point is determined based on the distance function between two points p and
g, denoted dist(p,q).

3.3. Risk-based Acquisition method
Risk-based Acquisition is a feature extraction method proposed in [18]. The authors have shown

how to calculate the risk value for the service attribute and the flag attribute in the network attack
dataset. The risk value is calculated by the formula (1)

W; =1-P(normal|x;) vi=1,...,C )

Where Wi is the risk value, normal is the normal connection type (normal) and C is the number of
attack types.

Replacing the corresponding risk values with each value of the service attribute and the flag

attribute effectively improved the F-Score and other metrics, and reduced runtime when
compared to the One Hot Encoding method.
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3.4. Attribute Ratio Method
Attribute Ratio is a feature extraction method proposed in [19]. The authors use the average value

of numeric attributes and the frequency of occurrence of binary attributes corresponding to each
type of attack in the data set. Attribute Ratio is calculated by the formula (2):

AR(I))=MAX(CR(j)) 2
Where CR is a scale attribute of the class representing the ith attribute.

CR is calculated using two expressions corresponding to each attribute type. For attributes of
numeric type, CR is calculated by expression (3):

L AVG(C())
CRU) = Ve cotal) ®
For an attribute of binary type CR calculated using expression (4):
~ _ Frequency(1)
CR() = Frequency(0) )

4. PROPOSED DETECTION METHOD

4.1. Working Principle of the Proposed Network Attack Detection System

Our proposed network attack detection application has the operating principle described in Figure
1. Traffic from protected network partitions is continuously collected and stored on temporary
storage. The network traffic data is kept in its raw form and is passed batch by batch by the
loader into a trained model for detection. At the input of the model, the raw data batch is
preprocessed and features are extracted. Next, the data with the extracted features are fed into the
clustering algorithm. All clusters formed at the output of the clustering algorithm will be
calculated to determine the cluster feature vector and checked by comparing it with the vectors in
the set of known attack feature vectors in the trained model. If the feature vector of a new cluster
is similar to an anomalous feature vector, the notifier will issue an attack alert.

I Trained model |
Collecting data Loading raw I Dat Data Checking the Alertifan |
from network data batch 1’ ata = clusterin ] signatures of [P attack cluster
traffic by batch I preprocessing J clusters is detected ]
L e e - -
Raw data

Figure 1. Overview of operation of the proposed cyberattack detection system

Our proposed detection system can fully apply parallelism to increase speed and thus be able to
accommodate high-traffic infrastructure. The architecture of the detection system that allows
parallel processing is shown in Figure 2. First of all, input batch data loading and processing can
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be done in parallel by running multiple detection processes at the same time, each responsible for
different batches, batch i different from batch j, as shown in Figure 2. There are many clusters
formed after the clustering process and need to check each cluster to detect. This is great for
opening multiple cluster test processes running in parallel, like worker 1, worker 2, worker 3, and
worker 4 in Figure 2. Each worker checks a different number of clusters, a total of n and m
clusters, one worker checks n clusters, and the other worker checks m clusters. The number n
may or may not be equal to m depending on the load generated by the clusters and the worker's
capacity. The number of attack detection processes as well as the number of parallel workers can
scale depending on how much traffic needs to be handled on the high-traffic network
infrastructure.

4.2. The Proposed Attack Detection Model
4.2.1. The Process of Developing the Model

Model building work is carried out through model design, model training, and model evaluation.
The architecture of the model is shown in Figure 3, including the preprocessor, clustering unit,
cluster signature computation unit, and attack cluster signature storage unit.

Regarding model training, we do not aim to build the model as a classifier like conventional
supervised learning models. We also do not rely on unsupervised clustering techniques to detect
anomalies based on outliers. Instead, we use clustering techniques to isolate attack data into
clusters and find their signature. To do this, we conduct the training process as shown in Figure 3.
The input training dataset is fed to the preprocessor and feature extraction, using one of two
methods: Risk-based Acquisition (RA) and Attribute Ratio (AR). All pre-processed data is fed
into the clustering algorithm to convert into clusters, here we use one of two clustering
algorithms in turn: K-means and DBSCAN. Next, all clusters go through a computational process
to determine the characteristic signatures of each cluster. The final result of the training process is
a model with a stored set of signatures of attack clusters. We call the signatures the attack cluster
feature vectors. Thus, the set of attack cluster feature vectors is also the result of the training
process. The model is trained according to Algorithm 1.

40



International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.1, January 2023

n+m clusters

i e i, o R __ BB |
I Trained model Worker 1 I
Collecting data rl;\(\)/\e:(:ilztga batchil Data Data Checking the Alert if an attack |
from network batch b reprocessin - clusterin Pl signatures of n cluster is
traffic batchy : prep g g clusters detected |
I— —_— _— —_— — _— — — — — _— —_— — _— _— —_— —_— — J
Checking the Alert if an attack
Raw data - signatures of m cluster is
clusters detected
Worker 2
- e e e e
I Trained model Worker 3 I
| Checking the Alertifan attack i |
Data Data .
. g t f » i
II preprocessing > clustering 2 5|gna: u;eso n cluster is |
batch j I clusters detected
L e o o e Eereaesemsmmsmrew
1
)
i
Checking the Alert if an attack !
- signatures of m [l cluster is i
clusters detected !
i
1
Worker 4 !
1
Figure 2. Parallel-enabled cyberattack detection system.
e i e e e R e e e
I Training model I
o Saving the I
i Data Clustering Determining signatures |
Train Data _> # i *
(NSL-KDD) preprocessing Algorithm signatures of of anomaly
clusters clusters |

e o o e e e e e e e e e e e e e e e e =

Figure 3. The model training process.

Attack detection is done according to Algorithm 2. The model is evaluated against the test data
set following the steps described in Figure 4. The test data set is entered into the trained model,
and the output of the model is the attack prediction result. The results will be matched with the
ground truth in the test dataset to evaluate. The evaluation uses a confusion matrix with
parameters ACC (Accuracy), True Positive Rate (TPR), False Positive Rate (FTP), PR (Precision

Rate), and F1 Score.
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Figure 4. The model testing process.

Let k be the number of clusters formed after the clustering process, the clusters are Ci,...,Cx, and
the corresponding data set of the cluster is D;,...,Dx. Let V; be the feature vector of the cluster C;:
VFf(Di)

where f() is the function that computes the n most important features in the cluster, hence:
Vi=[Xi1,. ..,Xin]
where Xin is the nth most important feature in cluster C;.

Input: train_data
A training model
Output: A set of feature vectors of anomaly clusters: S,
1:D=train_data
2:S={}
3:(Di,.., Dx)=clustering(D)
4:for (i=1; i<=k; i++) {
5: VFf(Di)
6: if is_anomaly(Ci) then S;=S,+ Vi
7.}
8: return S,

Input: test_data
The trained model with S,
Output: number of anomaly clusters, detect
1:detect=0
2:5={}
3:(Di,..., Dx)=clustering(D)
4:for (i=1; i<=k; i++) {

5:Vi:f(Di)
6: if inside_Sa(Vi) then detect++
7}

8: return detect
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4.2.2. NSL-KDD Dataset

The NSL-KDD dataset [20] contains Internet traffic logs observed by a simple intrusion detection
system and is likely to be encountered by an IDS. The dataset consists of 43 attributes in each
record, with 41 related to the traffic itself, the last 2 being the label (attack or not) and the
severity score of the input traffic. The training dataset consists of 125,973 records and the test
dataset consists of 22,544 records. The training dataset contains 22 attack types and 17 more in
the test dataset, classified into four groups DoS (Denial of Service), R2L (Remote to Local), U2R
(User to Root), and Probe.

4.2.3. Data Preprocessing and Feature Extraction

In the 41 attributes of the input data set, there are 3 attributes of the categorical data type:
protocol_type, service, and flag. The remaining attributes are numeric properties. The input data
of the clustering algorithms in the model only includes numeric values, so to use the categorical
attributes we transform the categorical attributes into numeric attributes by the One Hot Encoding
technique.

The extracted data consists of many features and each feature has different units and magnitudes.
This affects the efficiency of many algorithms, so it is necessary to adjust so that the features
have the same data scaling. In the paper, MinMaxScaler and StandardScalar techniques are used
to normalize data.

For the feature extraction method, Attribute Ratio [19] uses the OHE technique to convert
attributes of categorical data types to numeric data. The Risk-based Acquisition feature extraction
method [18] only uses the OHE technique to convert the protocol_type attribute to numeric data.
The normalized and feature-extracted data set is divided into two parts: 80% of the dataset is used
to train the model and the remaining 20% is a test dataset for model evaluation.

4.2.4,. Model Training

We train the model in four cases using different feature extraction methods and clustering
algorithms: RA with K-means (RA_K-means), RA with DBSCAN (RA_DBSCAN), AR with K-
means (AR_K-means), and AR with DBSCAN (AR_DBSCAN). In each case, the training
process analyzes and calculates the set of five important attributes with the highest rank based on
the mean value in each data cluster. The training results identify sets of five attributes that are
feature vectors of attack clusters used to detect attacks when applying the model. The set of five
attributes with the highest rank in each cluster is the cluster feature vector mentioned above.

In the case of RA_K-means:
Applying the Elbow technique to select the optimal number of clusters k for the K-means
algorithm, k=8 is determined. There are 8 clusters formed after the clustering process and the

importance of the attributes in each cluster is shown in Figure 5. Table 1 lists the five most
important attributes in each cluster.
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the case of RA_K-means.

Figure 5. Graphs of the importance of attributes in clusters in
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Table 1. Set of the five most important attributes of each cluster in case of RA_K-means.

Cluster0 Clusterl
Rank Feature Type Rank Feature type
1 Protocol_type_icmp Nominal 1 Protocol_type_icmp Nominal
2 same_srv_rate Numeric 2 flag Nominal
3 logged_in Binary 3 srv_serror_rate Numeric
4 dst_host_same_srv_rate Numeric 4 serror_rate Numeric
5 dst_host_srv_count Numeric 5 dst_host_srv_serror_rate Numeric
Cluster2 Cluster3
Rank Feature Type Rank Feature Type
1 Protocol_type_icmp Nominal 1 duration Numeric
2 srv_rerror_rate Numeric 2 same_srv_rate Numeric
3 dst_host_srv_rerror_rate Numeric 3 dst_host_same_src_port_rat | Numeric
4 rerror_rate Numeric 4 dst_host_same_srv_rate Numeric
5 dst_host_count Numeric 5 service Nominal
Clusterd Cluster5
Rank Feature Type Rank Feature Type
1 Protocol_type_tcp Nominal 1 Protocol_type_icmp Nominal
2 dst_host_count Numeric 2 same_srv_rate Numeric
3 same_srv_rate Numeric 3 rerror_rate Numeric
4 dst_host_same_src_port_rate Numeric 4 srv_rerror_rate Numeric
5 service Nominal 5 dst_host_same_srv_rate Numeric
Cluster6 Cluster7
Rank Feature Type Rank Feature Type
1 Protocol_type_tcp Nominal 1 Protocol_type_icmp Nominal
2 same_srv_rate Numeric 2 same_srv_rate Numeric
3 dst_host_same_srv_rate Numeric 3 logged_in Binary
4 dst_host_count Numeric 4 dst_host_count Numeric
5 dst_host_srv_count Numeric 5 dst_host_same_srv_rate Numeric

The crosstab method is used to calculate the probability of occurrence of normal data points or
attack data points in clusters. The experiments use the pandas library to analyze the data of the
samples in the cluster. The normal data type is labeled "0" and the attack data type is labeled "1",
as shown in Figure 6.

clutering ] 1 P 3 4 5 6 7
labels

8 218¢ & 5221 45¢ 28 1586 66l 67
1 238 5B26 118 1% 28e2 2 432 1145

Figure 6. Crosstab values in case of RA_K-Means

Based on the results of the crosstab analysis, we label each cluster by determining the distribution
of data points and choosing the data type with the most frequency. Thereby identifying clusters
0.2,3,5 and 6 are normal clusters, and clusters 1, 4, and 7 are attack clusters. The corresponding
sets of five attributes of the clusters are presented in Table 1. These attribute sets are the cluster
feature vectors that the model relies on to detect attacks if they occur.

In the case of RA_DBSCAN:

The experimental parameters selected in the model applying the DBSCAN algorithm are eps=0.8,
min_samples=850. There are 10 clusters formed after the clustering process and the importance
of the attributes in each cluster is shown in Figure 7. Table 2 lists the five most important
attributes in each cluster.
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the case of RA_DBSCAN.

Figure 7. Graphs of the importance of attributes in clusters in
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Table 2. Set of the five most important attributes of each cluster in the case of RA_DBSCAN.

Cluster0 Clusterl
Rank Feature Type Rank Feature Type
1 Protocol_type_icmp Nominal 1 Protocol_type_icmp Nominal
2 same_srv_rate Numeric 2 serror_rate Numeric
3 dst_host_count Numeric 3 srv_serror_rate Numeric
4 dst_host_same_srv_rate Numeric 4 dst_host_serror_rate Numeric
5 dst_host_same_src_port_rate Numeric 5 flag Nominal
Cluster2 Cluster3
Rank Feature Type Rank Feature Type
1 Protocol_type_icmp Nominal 1 Protocol_type_icmp Nominal
2 logged_in Binary 2 srv_rerror_rate Binary
3 same_srv_rate Numeric 3 dst_host_srv_rerror_rate Numeric
4 dst_host_same_srv_rate Numeric 4 rerror_rate Numeric
5 dst_host_srv_count Nominal 5 dst_host_count Nominal
Clusterd Cluster5
Rank Feature Type Rank Feature Type
1 Protocol_type_tcp Nominal 1 duration Numeric
2 same_srv_rate Numeric 2 same_srv_rate Numeric
3 dst_host_count Numeric 3 dst_host_same_src_port_rate Numeric
4 dst_host_same_srv_rate Numeric 4 dst_host_same_srv_rate Numeric
5 dst_host_srv_count Numeric 5 service Nominal
Cluster6 Cluster7
Rank Feature Type Rank Feature Type
1 dst_host_srv_rerror_rate Numeric 1 Protocol_type_icmp Nominal
2 Protocol_type_icmp Nominal 2 same_srv_rate Numeric
3 rerror_rate Numeric 3 dst_host_same_srv_rate Numeric
4 srv_rerror_rate Numeric 4 rerror_rate Numeric
5 same_srv_rate Numeric 5 srv_rerror_rate Numeric
Cluster8 Cluster9
Rank Feature Type Rank Feature Type
1 logged_in Nominal 1 Protocol_type_icmp Nominal
2 same_srv_rate Numeric 2 dst_host_count Numeric
3 is_guest_login Numeric 3 srv_rerror_rate Numeric
4 Protocol_type_icmp Numeric 4 dst_host_srv_rerror_rate Numeric
5 dst_host_count Numeric 5 diff_srv_rate Numeric

Each cluster is also labeled as normal or attacked using the crosstab method as in the case of AR
with K means above. Thereby identifying clusters 0,2,4,7,8 are normal clusters and clusters 1, 3,
5, and 6 are attack clusters. The corresponding sets of five attributes of these clusters are
presented in Table 2. The corresponding attribute sets of the attack cluster are the attack cluster
feature vectors, which are the signatures against which the model detects attacks.

The training process is similar for the other two cases AR_K-means, and AR_DBSCAN. In
which we apply the Attribute Ratio feature extraction method. The results of the training also
identify sets of five attributes that are indicative of attack activities so that the model can detect
attacks if it does.

5. EXPERIMENTS
To evaluate the proposed attack detection method, we test four model cases in turn: RA_K-

means, RA_DBSCAN, AR_K-means, and AR_DBSCAN. In each case, the test dataset is fed into
the model for clustering. The feature vector of each cluster is determined and compared with the
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known attack feature vectors in the trained model. If there is a similarity between the feature
vector of the cluster under test and an attack feature vector, it is an indicator of an attack to warn.
We proceed to label the predictions for the data points on the clusters, and the prediction label of
each data point coincides with the predicted cluster label. Thereby the following parameters of
the confusion matrix are calculated: TP (True Positive), TN (True Negative), FP (False
Negative), and FN (False Negative). The model is evaluated based on the metrics: ACC
(Accuracy), Sensitive or TPR (True Positive Rate), Precision or PPV (Positive Predictive Value),
FPR (False Positive Rate), and F1 score. These metrics are calculated according to the formulas
(5), (6), (7), (8), and (9) respectively.

2 _ TP+ TN s
A = TP ¥ TN + FP + FN ®)
Sensitivity = e 6
ensi lmy_TP+FN (6)
Precision = —— 7
recision = 5 TP (7
False Positive Rate = ki 8
alse Positive ae_FP+TN (8)
F1S§ = 2TP 9
COT¢ = TP+ FP+ FN ©)

We implement the program and run it on a computer configured with Intel® Core™ i-3740
CPU@ 3.20 GHz, RAM: 16 GB. System type: 64-bit operating system, x64-based processor.
Operating system: Windows 10 Pro 64-bit. IDE: Pycharm-JetBrains 2019.2.4 (Professional
Edition) with Python 3. The program uses several libraries such as scikit-learn, scipy, humpy,
joblib, pandas, and pyspark. The pandas is used to compute the mean values of the attributes in
cluster 0 in the case of RA_K-means, as shown in Figure 8.

count MEEN ... 75% max
Protocol_type_icmp 3@762.8 1.@c0080e+00 1.aepea0e+00 1.000008
same_srv_rate 3@7e62.8 9.983986e-81 1.epRBeR+2@ 1.000008
Llogged _in 3@7e2.8 9.924987e-81 1.eepaeEc+88 1.000008
dst_host_same_srv_rate 3@7e2.8 9.8@862le-81 1.@Geeaee+ae 1.006000
dst_host_srv_count 3@8762.8 9.586298e-81 1.aepea0e+00 1.000008
dst_host_count 3@7e62.8 5.297252e-81 1.e@ReeR+EE 1.0008008
srv_diff_host_rate 3@762.8 1.373441e-81 1.7epeeRe-21 1.000008
dst_host_same_src_port_rate 38762.8 5.418214e-82 3.beeaeRe-82 1.000808
srv_count 3@8762.8 2.335@892e-82 3.326810e-82 B.215264
dst_hest_srv_diff_hest_rate 38762.8 2.837826e-82 3.b@peaee-B2 B, 200008

Figure 8. The mean value of the attributes in the cluster 0 in the RA_K-means model.

The experimental process on the test dataset with the use of different feature extraction methods
and different clustering algorithms has the following results:

-In the case of the RA withK-means model, three clusters are detected as anomalies.
-In the case of the RA with DBSCAN model detected four clusters as anomalies.
-In the case of AR with K-means model, three clusters are detected as anomalies
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-In the case of RA with DBSCAN model detected four clusters as anomalies.

Setting up the confusion matrix for each case and calculating the evaluation metrics. The metrics
including (ACC), Positive Predictive Value (PPV), true positive rate (TPR), false positive rate
(FPR), and F1 score are presented in Table 3.

Table 3. Test results of four cases

Cluster Feature ACC (%) | PPV (%) | TPR (%) | FPR (%) F1 (%)

algorithm extraction
method

K-means Risk-based | 0.9742 0.9611 0.9917 0.0456 0.9762
Acquisition

DBSCAN | Risk-based | 0.9304 0.9830 0.8852 0.0176 0.9315
Acquisition

K-means Attribute 0.9467 0.9999 0.9001 0.0001 0.9474
Ratio

DBSCAN | Attribute 0.9626 0.9998 0.9296 0.0003 0.9634
Ratio

The results in Table 3 show that when using RA, the results are good with K-means but not with
DBSCAN. Whereas using AR is the opposite, the results are positive with DBSCAN but not
good with K-means. In case AR-DBSCAN has accuracy over 96% and precision over 99%, F1
also achieves over 96%. In the four tested cases, the model using RA with K-means gives the best
results, with an accuracy of more than 97% and other measures are all at a positive level, such as
a high true positive rate, F1 Score also over 97%.

6. CONCLUSIONS AND FUTURE WORK

A lightweight method for detecting network attacks in large-scale traffic systems has been
presented. The method exploits the utility of clustering techniques and detects attacks based on
the feature vectors of the attack clusters. Thereby, the full manifestation of the attacks is
determined and the actual attacks taking place in complex steps are controlled. Clustering quality
is enhanced by data pre-processing and reasonable feature extraction methods. By using the
proposed method, it is possible to implement a parallel-enabled detection system suitable for
large-sized and high-traffic networks. How to implement such a parallel processing detection
system has also been shown. Experiments give positive results, especially when using the model
with the RA feature extraction method and the K-means clustering algorithm, the evaluation
metrics all reach state-of-the-art. In the future, we will continue evaluating the method on other
datasets, using new preprocessing methods along with other advanced clustering algorithms.
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