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ABSTRACT

Recently, mobile traffic is growing rapidly and spectrum resources are becoming scarce in wireless
networks. Due to this, the wireless network capacity will not meet the traffic demand. To address this
problem, using cellular systems in an unlicensed spectrum emerged as an effective solution. In this case,
cellular systems need to coexist with Wi-Fi and other systems. For that, we propose an efficient channel
assignment method for Wi-Fi AP and cellular NB, based on the DRL method. To train the DDQN model,
we implement an emulator as an environment for spectrum sharing in densely deployed NB and APs in
wireless heterogeneous networks. Our proposed DDQN algorithm improves the average throughput from
25.5% to 48.7% in different user arrival rates compared to the conventional method. We evaluated the
generalization performance of the trained agent, to confirm channel allocation efficiency in terms of
average throughput under the different user arrival rates.
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1. INTRODUCTION

The amount of mobile data traffic is growing at an annual rate of around 54% in 2020-2030.
Furthermore, the global mobile traffic per month would then be estimated to reach 543EB in
2025 and 4394EB in 2030 [1]. Under these predictions, the wireless network capacity will not
meet the exponential growth of the mobile traffic demand.
To tackle this problem, extending LTE and 5G to unlicensed spectrum has emerged as a
promising and effective solution that can assist in exploiting the wireless spectrum more
efficiently and can also be a good neighbor with the other occupants [2], [3]. In principle, 5G
New Radio Unlicensed (NR-U) systems are allowed to operate in any unlicensed bands (from 1
to 100GHz) [4], but the initial industry focus is on the 5 GHz bands. Also, [5] expects both
License Assisted Access (LAA) and NR-U to coexist in 5GHz unlicensed bands in future years.
There are up to 500 MHz of spectrum in this band that is available on a global basis for

When different technologies operate on the same band without any coordination, however, it
causes a significant interference that reduces the average throughput per user. [8] showed that in
the absence of any cooperation technique in the LAA/Wi-Fi heterogeneous networks for the
same frequency band, the user throughput of Wi-Fi had a 96.63% of decrease, whereas user
throughput of LTE was slightly affected by 0.49%, compared to the case in which both
technologies operating alone. In this regard, several significant works have been proposed for
coexistence between LTE-U and Wi-Fi by Carrier Sensing Adaptive Transmission (CSAT)

unlicensed applications [6], [7].
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[3],[4], Listen Before Talk (LBT) [9], or Almost Blank Subframe (ABS) [8]. In common, they
allow LTE and Wi-Fi systems to share the unlicensed band by checking the availability of the
channel before transmission. Therefore, there is sufficient work to investigate the coexistence of
LTE and Wi-Fi technologies in unlicensed spectrum bands based on traditional methods.
[10] indicates many limitations for traditional optimization approaches in wireless resource
allocation problems. In other words, traditional methods are used to solve Radio Resource
Allocation and Management (RRAM) optimization problems that require complete or
quasi-complete knowledge (difficult/impossible to obtain this information in real-time) of the
wireless environment, such as accurate channel models and real-time channel state information.
Moreover, traditional methods are mostly computationally expensive and cause notable timing
overhead. This shows them inefficient for most emerging time-sensitive applications. To
overcome those limitations, Machine Learning (ML) based methods, especially Deep
Reinforcement Learning (DRL) can be an effective solution and take judicious control decisions
with only limited information about the network statistics [11]. There are three ways, including
supervised learning, objective-oriented unsupervised learning, and reinforcement learning
paradigms to incorporate DL in solving optimization problems. From these methods, we have
selected to use the DRL approach for the efficient channel assignment problem. Note that there
is no explicit output in our problem as a ground truth label for the training model. In this case,
we consider two unknown metrics which are channel assignment pattern and average
throughput for each AP/NBs in our assumed environment. For that, the reinforcement learning
method can be applied as an effective solution for these two unknown metrics, where action and
reward can represent channel allocation information and average throughput, respectively. The
obtained results indicate that our proposed method provides major improvements in average
throughput in the developed environment compared to traditional methods.
In this work, we propose to maximize the average throughput by assigning suitable channels to
Wi-Fi Access Points (APs) and cellular BSs. Specifically, we developed an emulator for training
a DQN agent which includes densely deployed APs and eNodeBs (eNBs) in a rectangular area.
First, in order to apply the DRL method, the state information of the assumed environment is
converted to the MDP framework. When training the DQN agent only one channel state of AP
or eNB is changed during each episode. For these generated states an action is tried step by step
according to the epsilon greedy algorithm. Hence, random actions in the first phase of training
DQN and the final phase of the training process greedy actions are offered for the observed
states. Accordingly, the trained agent is able to assign the optimal channel to each AP/eNB
based on the learned knowledge of the environment which includes information on the user's
variation and channel state. On the other hand, if they receive the highest reward based on
learned knowledge for each time step in an episode, the agent can select optimal action for each
state according to the rule of the epsilon greedy algorithm. In our case, it means that the optimal
channel is assigned to each AP/eNB based on the highest average throughput. Consequently, the
expected metrics such as average throughput is possible to enhance for each AP and eNB in our
assumed heterogeneous network. It can assist in the more efficient management of the wireless
spectrum for the ever-increasing wireless traffic.
The rest of this paper is organized as follows. We survey some related works in Section 2;
Section 3 presents the proposed method and the general system architecture of the assumed
environment. Section 4 presents the performance evaluation of the proposed method. Finally,
Section 5 concludes this paper and future work.

2. RELATED WORKS

A cellular system operating in unlicensed spectrum bands has emerged as a promising and
effective solution to meet the ever-increasing traffic growth that can assist in exploiting the
wireless spectrum in a more efficient way [3].
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Extending cellular systems such as LTE and 5G into unlicensed bands, currently dominated by
Wi-Fi (IEEE 802.11-based technologies), brings about challenges related to regulatory
requirements including spectrum sharing, a maximum channel occupancy time, a minimum
occupied channel bandwidth, and fair coexistence with incumbent systems [12]. Therefore, it is
not trivial for cellular and Wi-Fi to coexist as-is due to the differences in their Medium Access
Control (MAC) protocols. One MAC protocol cannot satisfy all the requirements of various
kinds of applications because the different kinds of protocols assume different hardware, and
applications [34]. A cellular system uses a centralized channel access mechanism based on
Orthogonal Frequency Division Multiple Access (OFDMA). In contrast, Wi-Fi uses a
distributed channel access mechanism based on Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA). In particular, LTE transmits according to predefined schedules,
whereas Wi-Fi is governed by a CSMA protocol, by which stations transmit only when sensing
the channel idle. Due to these fundamental differences between the two access systems, of
which LTE is more aggressive, i.e., LTE unlicensed will create harmful interference to Wi-Fi
[9].
To address this issue, a coexistence mechanism is required to manage the interference between
two different technologies. To this end, several coexistence mechanisms including LBT, CSAT
and ABS have been developed into the same channel-sharing methods in unlicensed bands, for
legacy (LAA and LTE-U) of eNR. Above all, LBT is the most popular coexistence mechanism
[14].

Figure 1. The basic LBT-based channel access mechanism

The main principle of LBT (as represented by the blue color, in figure 1) is defined as follows:
● A transmitter before starting a transmission, first waits for the channel to be idle for 16μs.
● The device performs Clear Channel Assessment (CCA) after each of the ‘m’ required

observation slots.
● For the back off-stage, the device selects a random integer N in {0, ..., CW}, where CW is

the contention window. CCA is performed for each observation slot and results either in
decrementing N by 1 or freezing the backoff procedure. Once N reaches 0, a transmission
may commence.

● The length of the transmission is upper bounded by the Maximum Channel Occupancy
Time (MCOT) up to 10ms.

● If the transmission is successful, the responding device may send an immediate
acknowledgment (without a CCA) and reset CW to CWmin. If the transmission fails, the CW
value is doubled (up to CWmax) before the next retransmission [15].

Furthermore, when different technologies share the same band in heterogeneous networks,
especially in densely deployment scenarios, there is a significant interference that reduces the
system performance including user’s throughput. To address this problem, a central controller is
introduced to manage both APs and eNBs in a centralized manner to improve the system
performance.
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spectrum-sharing and the coexistence of Wi-Fi and LTE-U/NR-U technologies from different
aspects. For example, [9] systematically explores the design of efficient spectrum-sharing
mechanisms for inter-technology coexistence in a system-level approach, by considering the
technical and non-technical aspects in different layers. Furthermore, [4] provides a
comprehensive survey on full spectrum sharing in cognitive radio networks including the new
spectrum utilization, spectrum sensing, spectrum allocation, spectrum access, and spectrum
hand-off towards 5G. [6] addresses coexistence issues between several important wireless
technologies such as LTE/Wi-Fi as well as radar operating in the 5GHz bands. [8] investigates
coexistence-related features of Wi-Fi and LTE-LAA technologies, such as LTE carrier
aggregation with the unlicensed band, LTE and Wi-Fi MAC protocols comparison, coexistence
challenges and enablers, the performance difference between LTE-LAA and Wi-Fi, as well as
co-channel interference. [14] investigates genetic algorithm-based channel assignment and
access system selection methods in densely deployed LTE/Wi-Fi integrated networks to improve
the user throughput and fairness issue. [15] evaluates the impact of LAA under its various QoS
settings on Wi-Fi performance in an experimental testbed. Various methods were proposed in
[17] to adapt the transmission and waiting times for LAA based on the activity statistics of the
existing Wi-Fi network which is exploited to tune the boundaries of the CW. This method
provides better total aggregated throughput for both coexisting networks compared to the 3GPP
cat4 LBT algorithm. [12] investigates the user level performance attainable over LTE/Wi-Fi
technologies when employing different settings, including LTE duty cycling patterns, Wi-Fi
offered loads, transmit power levels, modulation, and coding schemes, and packet sizes. The
interference impact of LAA-LTE on Wi-Fi is studied in [5] under various network conditions
using experimental analysis in an indoor environment. [7] presents a coexistence study of
LTE-U and Wi-Fi in the 5.8GHz unlicensed spectrum based on the experimental testing
platform which is deployed to model the realistic environment.
Analytical models are established in several studies [18-20] to evaluate the downlink
performance of coexisting LAA and Wi-Fi networks by using the Markov chain. Particularly,
[21] establishes a theoretical framework based on Markov chain models to calculate the
downlink throughput performance of LAA and Wi-Fi systems in different coexistence scenarios.
In recent years, the coexistence between Wi-Fi and LTE systems has been sufficiently studied
for the 5GHz unlicensed band. NR-U is a successor to 3GPP’s Release 13/14 LTE-LAA [16].
Therefore, initially, NR-U is expected to coexist with Wi-Fi and LTE-LAA technologies in the
5GHz unlicensed spectrum band. [22] proposes a fully blank subframe-based coexistence
mechanism and derives optimal air time allocations to cellular/IEEE 802.11 nodes in terms of
blank subframes for 5G NR-U operating in both the licensed and unlicensed mmW spectra for
in-building small cells. Furthermore, [23] presents a system-level evaluation of NR-U and Wi-Fi
coexistence in the 60GHz unlicensed spectrum bands based on a competition-based deployment
scenario.

2.3 Spectrum sharing between Wi-Fi and cellular with ML
So far, a large number of studies are addressed the coexistence between cellular and Wi-Fi
technologies without ML. During the last few years, ML and DL-based methods [11], [24], [25],
[26] are proposed for the communication systems problem, such as spectrum sensing, spectrum
allocation, spectrum access, etc. Particularly, [24] proposes a DRL-based channel allocation
scheme that enables the efficient use of experience in densely deployed wireless local area
networks. The existing works for the CSAT/CA mechanism in LTE-U/Wi-Fi heterogeneous
networks mostly focus on the power control, hidden node, and the number of coexisting Wi-Fi
APs [26] for optimizing the ON/OFF duty cycle based on the ML method. On the other hand,
hidden nodes and the number of coexisting Wi-Fi APs metrics are not so important for the LAA
LBT-based coexistence scenarios. Because the LAA LBT access technique is similar to
CSMA/CA of Wi-Fi, i.e the eNB must sense the availability of the medium before transmission.

Several survey and tutorial papers [6],[8],[13],[16] analyzed overall issues which are related to
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Moreover, [24] proposes an adaptive LTE LBT scheme based on the Q-learning technique that
is used for the autonomous selection of the appropriate combinations of Transmission
Opportunity (TXOP) and muting period that can provide coexistence between co-located
mLTE-U and Wi-Fi networks. Also, [27] addresses the selection of the appropriate mLTE-U
configuration method based on a Conventional Neural Network (CNN) that is trained to perform
the identification of LTE and Wi-Fi transmissions. In wireless resource allocation, high-quality
labeled data are difficult to generate due to, e.g., inherent problem hardness and computational
resource constraints [10]. Therefore, generating the dataset is one of the most important issues
in the LAA/Wi-Fi coexistence scenario for training DRL models.
Although there is sufficient work without using ML on the coexistence of LTE and Wi-Fi
technologies in unlicensed spectrum band, ML, and DL methods, particularly DRL based
efficient channel allocation method for the densely deployed heterogeneous networks is still
lacking. Moreover, there are no benchmark datasets available in densely deployed
heterogeneous wireless networks for training and comparison of the ML models.

Table 1. Summary of the RRAM of communication systems with ML

Ref. Issues addressed Learning
algorithm Network type

/Environment

Our
work Efficient channel assignment DDQN cellular/Wi-Fi wireless

HetNets

[27] Appropriate mLTE-U configuration CNN LTE/Wi-Fi HetNets

[30] Dynamic spectrum allocation DQN Small BSs cellular

[31] Dynamic multi-channel access DDPG LTE-WLAN HetNets

[32] Joint allocation of spectrum,
computing

DDPG MEC-based V2X

[33] Dynamic spectrum sharing DQN 4G LTE and 5G NR
systems

[11,24,
25,26]

Spectrum sensing, spectrum
allocation, and spectrum access, and
channel allocation

Q-learning,
DQN,
DDQN, A3C

Cellular, Satellite,
HomeNets and Emerging
networks

Most of the DRL-based works address the problems (as mentioned above) of RRAM in cellular,
satellite, HomNets, and IoT systems instead of heterogeneous networks based on Q-learning,
DQN, DDQN, and A3C algorithms. However [30-33] address the problem of heterogeneous
wireless networks, such as joint optimization of bandwidth, interference management, dynamic
spectrum allocation and sharing as well as power level to improve average data rate based on
DRL but they have not focused on channel optimization and generating datasets in densely
deployed scenarios. Table 1 summarizes these works.

3. Proposed Method
3.1 System model
We assume an environment [14] that has a rectangular shape and consists of multiple small

areas with a triangle shape as shown in figure 2.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.1, January 2023

127



Figure 2. Assumed environment

Each small area is covered by one or more APs. The LAA BS and Wi-Fi AP coverage area was
hexagonal (represented in red, blue, and green colors) and covered the same 54 triangle shapes.
There are two types of users considered; Wi-Fi-only users and LTE/Wi-Fi combined users. Note
that Wi-Fi-only users can use the Wi-Fi network only. The other can support the transmission
and reception of both LTE and Wi-Fi traffic. Both users arrived per minimum area with an
arrival rate λ following the Poisson arrival process. They had communication with a mean of
300 [s] following the exponential distribution and never moved until finishing their
communication and the arrival ratio of each user was the same. A saturated traffic model is
applied where all the nodes always have packets to transmit. As a typical scenario, we assume
LAA is a cellular system in the 5GHz unlicensed spectrum band with Cat 4 LBT as a
channel-sharing scheme. Here, system throughput is calculated in the case that multiple eNBs
and APs share the same channel by the LBT coexistence mechanism. The LBT mechanism is
modeled by the Markov chain [18] and the capacity of the LAA/Wi-Fi heterogeneous networks
is calculated according to (Eqs 1 to 3). SW and SL represent the system throughput when LAA
and Wi-Fi share the same channel by LBT, respectively.

(1)

(2)
SW’ is the system throughput when Wi-Fi APs share the same channel.

(3)𝑆
𝑊'

=
𝑃

𝑆
𝑊 𝐸(𝑃

𝑊
)

(1−𝑃
𝑏

)δ + 𝑃
𝑆
𝑊  𝑇

𝑆
𝑊 +𝑃

𝐶
𝑊 𝑇

𝐶
𝑊

Let W and L denote the Wi-Fi and LAA respectively. Considered parameters for calculating
system throughput are listed in table 2.

Table 2. Relevant parameters for system throughput

,𝐸(𝑃
𝑊

) 𝐸(𝑃
𝐿
) average packet size

𝑃
𝑆
𝑊,  𝑃

𝑆
𝐿 successful transmission probability

,𝑃
𝐶
𝑊, 𝑃

𝐶
𝐿 𝑃

𝐶
𝑊𝐿 collision probability

𝑇
𝑆
𝑊, 𝑇

𝑆
𝐿 average time that the channel is occupied due to a successful transmission

𝑇
𝐶
𝑊, 𝑇

𝐶
𝐿 average time that the channel is busy due to collision
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𝑃
𝑏

channel busy probability

δ time slot

Moreover, no retry limit is considered, i.e. all the packets are ultimately successfully transmitted
[18].

3.2. Structure of DRL based channel assignment
In this section, we propose an efficient channel assignment method for each Wi-Fi AP and
cellular eNB in unlicensed bands, based on DRL. In this work, the aim of RL is to improve the
decision-making ability of the central controller in wireless heterogeneous systems in the
process of channel allocation so as to improve user throughput and resource utilization. Where a
complex environment structure is proposed as a training environment including densely
deployed APs and eNBs. We considered that eNBs are established in an environment where APs
are already densely deployed. Wi-Fi APs should be managed coordinately and eNBs should
have cooperated with them. For that, the agent (broker) is introduced to manage both APs and
eNBs in a centralized way. Here, the state of the assumed environment is always changed due to
the variation of the user's arrival and their location area information as well as the channel state
in the episode. On the other hand, the learnable parameters of the agent are changing across all
the episodes i.e, the agent is learning suitable actions that fit the observation state each time
step. In this situation, implementing channel assignments optimally for each AP and eNB is
challenging.
Therefore, we propose DRL for channel assignment to improve the user’s throughput compared
with other conventional methods. In brief, the optimal channel assignment provides maximum
throughput for each user since it reduces channel interference and improves the capacity.
Therefore in our proposed method, when training the designed Deep Q Network (DQN) agent,
all possible channel assignment patterns are learned by the agent for all the explored observation
states of the environment. Finally, a trained agent will be able to find an efficient channel
assignment for the expected AP/eNB of the assumed environment in a short term.
Firstly the designed channel allocation problems are converted into the Markov Decision
Process (MDP) framework in order to apply the DRL method [11]. In general, the aim of MDP
is to define a policy to maximize the agent’s reward from the environment. Therefore, we model
the channel assignment problem for the proposed environment, as illustrated in figure 3, as an
MDP with a state space S, action space A, transition probability p(St+1|St, At), and reward
function Rt(St, At), where the agent is a central controller that serves as the decision maker of the
corresponding action-value function. This action-value function represents the expected return
after taking an action At in the state St.

Figure 3. Interaction process between an agent and the environment
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In our case for the decision-making problem, the agent/broker controls the channel to maximize
the throughput by assigning suitable channels to each AP and BS in the proposed environment.
In other words, the agent maps the effect of the action in a certain situation of the environment
with the performed action to maximize a numerical reward signal. This mapping between the
actions and rewards is called the policy rules which define the behavior of the learning agent
[29]. In this environment, a random number of users connect to AP/BS in different locations for
each episode. Moreover, because the broker will assign channels by avoiding the same channels
to adjacent AP/BS is key to the improvement of throughput. In this research, we developed a
simulator for spectrum sharing in Wi-Fi/LAA heterogeneous wireless networks based on Java as
the testbed of agents. When training a DDQN agent, the average throughput is obtained from the
simulator for calculating reward i.e., feedback values.
In other words, it will act as a supervisor, whose output will serve as the ground truth for
training the DQN. Furthermore, when training the model, in every possible state of the
environment it is learned by the agent to find optimal channel assignment patterns. Note that the
agent initially has no idea about the environment. The state information is observed from our
developed simulator which acts as a local server, as listed in table 3.

Table 3. State information (input data of DQN)

AP ID
Placeable
area of
AP/NB

Connected
users Capacity Max

capacity
User’s loc
area ID

Ass
channel

User’s
Throughput

1 115 1 4.333 40 56 3 4.333

2 34 2 13.5 40 111 0 6.75

3 46 0 2.5 40 103 3 0

4 100 4 13.5 40 84 2 3.375

5 82 3 11 75 107 1 3.666

… … … … … … … …

… … … … … … … …

… … … … … … … …

107 55 2 11 75 26 0 5.5

This information is used for the training Double Deep Q Networks (DDQN) agent as input data.
In this case, state space is discrete, defined by four elements such as AP/BS index (placeable
area the ID of AP/BS), the number of users who connected to the AP or BS, their location area
index (small area ID), and assigned channel states. The state information S is preprocessed (i.e.,
normalize, filter, etc) before feeding to the DDQN. In other words, we filtered the state
information to decrease duplication of the training data for input of DDQN, which can impact
generalization performance. Since fixed information such as AP ID, AP location ID, maximum
capacity, etc tend to be frequently detected in the DRL-based channel allocation problems, these
duplications must be avoided.

3.3. Training DDQN Agent
We propose a single-agent DDQN-based DRL scheme to address the problem of efficient
channel assignment in wireless heterogeneous networks. DDQN is a DQN-based method to
avoid overestimations by employing two different networks, i.e., Qθ and Qθ’., where 𝜃’ is the
parameter set of a target Q’ network, which is duplicated from the training Q network
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parameters set 𝜃 periodically and fixed for a couple of updates.

Figure 4. Flowchart of DDQN based channel assignment

Action. Action space is discrete, defined as the set of possible channels, At∈A={0,1,2,3}.
Generally from these actions, optimal channel assignment patterns will be generated according
to the epsilon greedy algorithm with 𝜀=1 random action, and 𝜀=0 greedy action for each AP and
BS in the environment. In short, an optimal policy is derived from the optimal values (i.e.,
highest throughput) by selecting the highest-valued action in each episode.
In this work, the proposed DRL-based channel allocation scheme consists of two main parts,
including a local server (environment) and a local client (DDQN agent). Between the server and
client, state, action, and reward information are transferred for training our expected model. The
training procedure of the proposed method is expressed in figures 4 and 5.
The input of the proposed models is the observed state from the environment where St, as shown
in table 3 and appendix 1. The training data was extracted from our developed simulator.
This dataset consists of AP ID, maximum capacity for each AP and BS, User’s
throughput, AP’s assigned channels, user’s location ID, and AP/BS’s location ID
information. At each time step, the agent builds its state using accumulated information from
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the assumed environment. Then, the agent performs an action according to the epsilon greedy
algorithm for each AP/BS in an episode. Based on this selected action and its effect on the
environment, a reward function Rt+1 (St, A) will be calculated, the higher the reward the higher
the probability of choosing this performed action [29]. The output of DDQN is an expected
action for channel allocation to the given AP/BS.

Initialization: experience replay memory D, state St, action At, reward Rt, experience et at
time step t and Q with random weights

for all training steps do
Initialize and preprocess: state S1 for the new episodes

repeat

Select action according to Epsilon Greedy Strategy: random action when ε =1
and greedy action with ε=0.01, At = argmaxA(Q(St, A, θ))
Transfer current At to emulator by TCP protocol, as a local server
Execute action At in a state St in emulator

then move to a new state St+1 observe Rt
Transfer Rt and St+1 to DDQN on local client
Store experience: et=(St, At, Rt, St+1) in D
Sample mini batch of N transitions ek from D
Calculate target Qk value:
if moved state St+1 is terminal state

end of the current episode𝑄
𝑘
' = 𝑅

𝑘
 

else
𝑄

𝑘
' = 𝑅

𝑘
+ γ 𝑚𝑎𝑥

𝐴
𝑡
∈𝐴

𝑄(𝑆
𝑡+1

,  𝐴
𝑡
)

Define loss function: 𝐿 = (𝑄
𝑘
' − 𝑄(𝑆

𝑡
, 𝐴

𝑡
))

2

Update neural network parameters by performing optimization algorithm Adam
w.r.t actual network parameters in order to minimize the loss
Every C steps reset 𝑄' = 𝑄

until episode terminates (reach a certain number of iterations or when all Q-values
have converged)

end for

Figure 5. Pseudo-Algorithm  of DDQN for channel assessment

The channel assignment procedure, based on DDQN
● First, the channel state (assigned channel) information is configured as zeros for each

AP/BS during the initial episodes. Note that, only one channel state of AP or BS is
changed during each episode. It means that the state information in our assumed
environment is able to provide p(St+1|St, At) transition probability (i.e., mapping from
states in S to probabilities of selecting each action in A) as an MDP. Additionally, the ID
of AP/BS and their placeable area ID as well as maximum capacity are fixed in each
AP/BS as listed in table 2. Hence the number of users who are connected to AP or BS and
their location area information as well as assigned channels are assumed as random
metrics in this environment.

● We defined the number of time steps for one episode as 107, relative to the number of
AP/BSs deployed in the rectangular area. Where action At is assigned according to the
epsilon greedy algorithm for each AP/BS in an episode. Then these actions (assigned
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channels) are transferred to the simulator, as a local server.
● On the simulator, the reward value is calculated for assigned actions in the current state

for an episode. Then this reward Rt and next state St+1 information are transferred to the
DDQN agent, as a local client. The differences between St and St+1 are differentiated by
the number of users, their location area information, and channel state for each time step.

● The training data (transition pairs) is stored in a replay buffer D, as et =(St, At, Rt, St+1) at
each time step. The replay memory accumulates experiences over many episodes of the
MDP. When the number of et is reached 5000 in D, the training process will start.

● Then, DDQN updates the parameters Qθ and Qθ’ as shown in figure 5, based on
mini-batches that are constructed according to the defined batch size, as 512 from the
replay buffer. The update happens only for one specific state, action pair, and for the
DDQN means the loss is calculated only for one specific output unit which corresponds to
a specific action. The error value of DDQN is calculated as follows:

(4)𝑌
𝑡
𝐷𝐷𝑄𝑁 = 𝑅

𝑡+1
+ γ𝑄

θ'
− (𝑆

𝑡+1
, 𝑎𝑟𝑔𝑚𝑎𝑥

𝐴
𝑄

θ
(𝑆

𝑡+1
, 𝐴))

● Finally, perform the optimization according to the Adaptive Movement Estimation
(Adam) algorithm with respect to actual network parameters in order to minimize this
loss.

● After performing a certain number of time steps, the target network weights θ’ are
updated periodically every C step according to the settings of the hyper-parameter to
current network weights θ. Repeat these steps for M number of episodes.

Reward. In this work, the reward function is modeled to optimize channel assignment for the
assumed environment. Here, we also used a discrete reward function which provides real reward
identical to average throughput, it is obtained from the assumed environment as an emulator.
The process of assigning channels from a given state St, transitioning to a new state St+1 with
transition probability p(St+1 ,Rt|St , At)=Pr{St=St+1, Rt=Rt+1|St-1=St, At-1=At}.
The channel assignment of the last AP will lead to the end of an episode and the average
throughput (to calculate the reward) will be reset to a new value for the new channel assignment
trial. Due to the arrival rate, the location of the user, and the channel state, the target of the
agent/broker changes during a channel assignment trial upon reaching a previously learned
target. A DDQN agent learns these targets by simulating actions, interacting with the
environment, and incurring rewards. Therefore, being able to explore new targets in an adaptive
way is significant for the agents to assign the optimal channel for each AP/BS. Consequently,
the trained agent is able to assign efficient channels depending on the number of users and their
location (small area ID) information.

4. Performance Evaluation
4.1 Simulation model
As a simulation model, we assumed a rectangular area divided into 288 triangle areas as shown
in figure 6.
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Figure 6. Simulation model

We call this triangle area, the minimum area. We assumed each cover area for LAA BS and
Wi-Fi AP was a hexagonal shape (represented in red, blue, and green colors) and covered the
same 54 minimum areas. The evaluation model had 136 placeable areas of LAA BSs and Wi-Fi
APs. Seven LAA BSs were deployed in the center (i.e., numbered 26, 29, 32, 93, 101, 104, 107)
of the hexagonal-shaped coverage area (without overlapping) as shown by black boxes. Wi-Fi
APs were randomly deployed in other placeable areas. All minimum areas were covered by one
or more Wi-Fi APs. The number of available channels was 4, and channels were initially
assigned to Wi-Fi APs randomly. LTE BSs were assigned by using three channels so that
adjacent BSs did not use the same channel and the assignments of LAA BSs were not changed
during the simulations. Both Wi-Fi users and LTE/Wi-Fi combined users arrived per minimum
area with an arrival rate λ, following the Poisson arrival process. They had communications with
a mean of 300 [s] following the exponential distribution and never moved until finishing their
communication. In addition, the arrival ratio of Wi-Fi users and LTE/Wi-Fi combined users
were 1:1.
To evaluate the performance of NR-U/Wi-Fi heterogeneous networks in terms of average
throughput, we considered an NR-U operates according to Scenario D in [28], i.e., a licensed
carrier is used for uplink transmission and an unlicensed carrier is used for downlink.

Table 4. Simulation parameters of Wi-Fi and LTE for the developed simulator

Packet size bits 12800

MAC header bits 272

PHY header bits 128

ACK bits 112 + PHY header

Wi-Fi Bit Rate Mbps 40

NR-U Bit Rate Mbps 75

Slot Time μs 9

SIFS μs 16

DIFS μs 34

Furthermore, the heterogeneous system performance is evaluated according to [18] with the
parameter as shown in table 4.

4.2 Network architecture
When building DDQN to assign channels, we tried different settings (i.e., from minimum to the
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maximum value of hyperparameters) in order to find a good hyperparameter that performs well.
We trained our model according to the DDQN algorithm as shown in Figure 4,5 with the
settings of hyperparameters, as listed in table 5.

Table 5. Simulation parameters of DDQN

Parameter min value max value selected value
Reward R Average throughput from simulator
Number of steps per episode n 107
Number of Episodes 300 4500 2400
Update period 𝑄

θ'
5 50 20

Discount rate 𝛾 0.9 0.999 0.99
Batch size 𝑒

𝑘
32 1024 512

Optimizer Adam/SGD/GD Adam
Learning rate α 0.0001 0.001 0.00025
Loss function Huber/MSE/Hinge MSE
Epsilon decay 𝜀 0.9 0.99999 0.9999
Minimum Epsilon 𝜀

𝑚𝑖𝑛
0.001 0.1 0.01

Replay buffer size (max) Dmax 10000 1000000 100000
Replay buffer size (min) Dmin 500 10000 5000

From the experiment, we selected the discount γ= 0.99, and the learning rate to α=0.00025. The
size of the experience replay memory was 100000. The memory was sampled to update the
network every 20 steps with mini-batches of size 512. The exploration policy used was a greedy
policy with the decreasing linearly from 1 to 0.01 over for each episode.
When performing the experiments, candidate channels are tried to each AP/BS step by step for
each time step. Also, the reward is calculated for each selected action A in the state S for each
time step. During training, the current state information of our assumed environment is given to
the network’s input layer as training data. Furthermore, the optimal action is selected from the
actions according to the Bellman equation in the output layer which has a maximum Q value.
Additionally, the experiments were performed to investigate the impact of different network
architectures, optimizers, and loss functions. In our network architecture, there are two dense
layers (varying the number of nodes from 8 to 288 for a layer and the number of layers from 2
to 5) as a hidden layer between the input and output layers as represented in table 6.

Table 6. List of parameters

Layer (type) Output Shape Total
Params

Trainable
params

Non-trainable
params

dense (Dense) (None, 60) 6540

8494 0dense_1 (Dense) (None, 30) 1830

dense_2 (Dense) (None, 4) 124

The general artificial neural network model used in the experiments has three fully connected
layers and there are a total 8494 of trainable parameters, 6540 for the first hidden layer, 1830 for
the second hidden layer, and 124 for the output layer. All these layers are used by activation
functions as Rectifier Linear Units (ReLu).
The output layers are also fully connected layers that output four actions corresponding to the
predicted channel for each AP/NB according to trained DDQN agents. Thus, the output of our
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DDQN for the current state St is .𝑄(𝑆
𝑡
) ∈ ℝ4

4.3 Simulation results
We compared the performance of the ten models which have the highest reward, from which
one best model is selected. Performance of the obtained DDQN model in terms of average
throughput, shown in figure 7, the horizontal axis is the number of episodes and the vertical axis
is the average reward.

Figure 7.  Performance of the obtained DDQN model in terms of average throughput

When the average reward (system throughput) converges, the agent has learned the assumed
environment and can choose the optimal actions (channel assignment) in any state.
It can be observed that in about the first 100 episodes of the learning process, the average
reward is almost random. This occurs as initially due to a large amount of exploration, the agent
tries many different states of the assumed environment. Most of these states can not provide the
desired outcome. Hence, the agent obtains small and random rewards. During the learning
process, the agent locates the states that can provide optimal channel assignment for the
heterogeneous network, improving the received reward. It means that the reward is converged
when each user can receive the highest throughput from the available AP or eNBs in the
assumed environment. After a certain number of episodes, we can observe that the learned agent
can provide the desired outcome, and the average reward starts converging. The training was
done over 258726-time steps. It took around 12 hours to train on 15.5 GiB of memory and
Intel® Xeon(R) CPU E5-1630 v4 @ 3.70GHz × 8 of the processor. Eventually, the trained agent
(broker) can assign suitable channels for each AP/gNBs in the proposed environment.
Then the training stability of our obtained model is compared with the other eight selected
models, as shown in figure 8.
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Figure 8. The average reward of compared models

These eight models are also trained on the same settings of hyperparameters and network
architecture as the obtained model. Note that the first one is our selected model on the horizontal
axis and the vertical axis is the average reward of the models.
The comparison of the obtained model's stability provided similar performance with the other
selected models in terms of average reward (i.e., from 655 to 668). It means our obtained model
can produce consistent predictions (channel assignment) concerning little changes in the
environment.
We compared the coexistence performance of our proposed DRL-based channel assignment
method with the random method (when disabled training section, ε=1) in the same settings of
the simulator as mentioned in section 4.2. The numerical results show that our proposed DDQN
algorithm improves the average throughput from 25.5% to 48.7% in different user arrival rates
compared to the random channel assignment approaches. We considered five different user
arrival rates, as λ={0.00025, 0.0005, 0.00075, 0.001, 0.00125}. It means the number of users
varies from 21.6 to 108 in the rectangular area for 300 msec of intervals. Therefore, when
increasing the number of users in the environment, the average throughput is decreasing, as
shown in figure 9.

Figure 9. Comparison of average throughput in different arrival rates

We can also observe that when λ is less than 0.0005, the average throughput is comparatively
higher than the random method.
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Figure 10. Comparison of the proposed method and the existing methods

In addition, we compared the average throughput of our proposed method and other
existing methods, (dynamic and random) when the user arrival rate is 0.00025, as shown
in figure 10. From the result, it can be observed that the proposed method can
outperform the other two methods.

4.4 Validation
The generalization performance of the designed DDQN has been validated for the online
simulator in the same manner as the training part. We evaluated the performance of the trained
agent, to confirm how well it has generalized to assign channels to the selected time steps for
the episode in the proposed environment under the different user arrival rates, as represented in
figure 11.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.1, January 2023

138



Figure 11. Validation results in different user arrival rates

Consequently, we can observe that the designed agent is trained enough to choose near optimal
action with high reward for any inputs in the short term. Furthermore, we can see that from the
validation result, the performance of the DDQN is impacted in terms of the user arrival rates and
their location area index.
We also evaluated the stability of the obtained models (when λ=0.0005) which is compared with
the other eight models as mentioned in figure 8.

Figure 12. Comparison of stability for the obtained models

In figure 12, the horizontal axis is the number of time steps and the vertical axis is the average
reward for different models. From the comparison of the models' stability, we can observe that
all of the compared models provided similar performance with the selected model in terms of
average reward. Moreover, the validation result of the models’ stability, can provide consistent
predictions for each compared model.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed to improve the average throughput in the cellular/Wi-Fi
heterogeneous networks by DRL-based channel assignment method. For that, we have
implemented an emulator as an environment (which was used for training models) for spectrum
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sharing in densely deployed eNB and APs in wireless heterogeneous networks to train the DQN
model. Additionally, based on the developed environment, the training data was generated
which also can be used for training DRL-based models in an offline manner.
Regarding the obtained model, the numerical results show that our proposed DDQN algorithm
improves the average throughput from 25.5% to 48.7% compared to the random channel
assignment approaches. We evaluated the generalization performance of the trained agent, to
confirm channel allocation efficiency in terms of average throughput (average reward) in the
proposed environment under the different user arrival rates. From the evaluation results, we can
observe that the trained agent can choose near optimal action with high reward for any inputs in
the short term. Note that, in the performance evaluation, we assumed LTE as a cellular system
since the numerical analysis of LAA throughput is available. But, the proposed method itself
can be easily applied to 5G NR-U.
In the future, we will try to extend this work by modifying our environment for user mobility.
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