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ABSTRACT 
 
Peer-to-Peer (P2P) botnets are significant threats to the Internet. The botnet traffic is increasing rapidly 

every year and impacts the entire Internet. A P2P botnet is responsible for launching various malicious 

activities such as DDoS attacks, click fraud attacks, stealing confidential information from bank and 

government websites, etc. It is challenging to detect P2P botnets because of their high resiliency against 

detection. This paper proposes a method that uses a network communication graph from network flow data 

to detect botnets. Three graph-mining techniques are used to detect bot nodes individually. The method's 
final result is obtained by applying an ensemble algorithm to the results of the three graph-mining 

techniques. A synthetic dataset from a testbed is used to assess the method's performance. In addition, the 

method is evaluated using a publicly available dataset. Experimental results show that the method 

performs with an accuracy of 99.99%, a precision of 94.29% ,and a recall of 98.02%, which is better than 

existing methods. 
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1. INTRODUCTION 
 

As the Internet becomes an integral part of our everyday life, protection against malicious 

activities on the Internet has become important. According to Bailey et al. [1], bad bots are 
software agents developed by attackers that are propagated through the Internet to gain entry into 

vulnerable computers, using various methodologies, including social engineering, exploiting 

operating systems vulnerabilities, etc. These bots communicate among themselves and establish 
their own network known as a botnet. After entering vulnerable computers, this software installs 

itself without informing the user of the computers. The attackers, also known as botmaster, sends 

commands to the bots to perform attacks on computers. The bots after receiving the commands 

from the botmaster, execute them to perform attacks like Distributed Denial of Service (DDoS) 
attacks, click fraud attacks, key-logging attacks, password cracking attacks ,and stealing credit 

card information, etc. Atefeh Zareh and Hamid Reza Shahriari in  [2] says that, the botmaster can 

use a botnet to perform malicious mining activities in popular cryptocurrencies, like bitcoin. 
According to the report of IMPERVA, 2019 [3] concerning global bot traffic, the bad bot has 

generated 20.4% of all website traffic. On the other hand, human-generated traffic is 62.1%, and 

good bots have generated 17.5% of traffic. 
 

Based on the command-and-control (C&C) topologies used by the botmasters to communicate 

with their bots, botnets can be classified into two categories:  
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Centralized topology: In this topology, botmasters use one dedicated command-and-control 
(C&C) server for communicating with their bots. Bot computers try to communicate with this 

centralized C&C server to get any instructions from the botmasters. Although these types of 

botnets are convenient to use because of their simplicity, it suffers from the fact that it has a 

single point of failure. If the central C&C server is brought down, the entire network will go 
down. 

 

Peer-to-Peer or Multi-Server topology: This type of botnet uses a Peer-to-Peer(P2P) 
communication method to communicate among the bots. There is no central server, as such, there 

is no single point of failure. The botmaster can use any of them as C&C server to give commands 

to other bots. If the  a C&C server is detected, the botmaster can switch the C&C server to 
another computer(s). Bringing down one bot does not affect the performance of the network. That 

is why this type of botnet is challenging to detect and bring down. So, the attackers prefer using 

Peer-to-Peer (P2P) botnets. 

 
Based on the structure of the P2P botnets, they can be divided into three categories: leeching, 

parasite ,and bot-only botnet. In the parasite botnet, all the bot nodes are chosen from an existing 

P2P network to form the botnet. The botmaster does not worry about the communication 
structure of the network. On the other hand, in leeching P2P botnets, the botmaster selects bot 

nodes throughout the Internet, but the nodes use an existing P2P network to communicate among 

themselves, as reported in [4]. Finally, in bot-only botnets, botmasters develop their private 
networks. These types of botnets do not include benign peers. According to many researchers, 

MIRAI botnet, Nugache, Storm, SubSeven Bot, Bionet Bot, Attack Bot, GTBot, EvilBot,  

Slackbot, MTK botnet ,and Opfake are some examples of P2P  botnets that cause significant loss 

in terms of money every year around the world [5,6,7].  
 

The rest of the paper is organised as follows. In section 2, some previous P2P botnet detection 

methods are discussed. In the section 3, we discuss the proposed method to detect P2P botnets. In 
section 4, experimental results of the proposed method is discussed. Then we compare the result 

with other methods in section 5. In section 6, parameters which were tuned at the time of 

performing experiments are discussed. In section 7, the robustness of the proposed method is 

discussed. Finally, we conclude with the section 8. 
 

2. RELATED WORK 
 

Researchers have developed different P2P botnet detection methods. Many researchers employ 
machine-learning algorithms to detect P2P botnets[8,9,10,11,12,13, 44]. One such algorithm is 

used in [8], where the J48 decision-tree model and K-means algorithm are used to detect P2P bot 

nodes. The method uses six steps to detect P2P bot nodes. Non-P2P traffic is filtered out in the 

first step. The computers that are running P2P applications are identified in the second step. The 
size of the P2P application's traffic flows is determined in the third step. In the fourth step, the 

J48 decision-tree model is used to classify traffic flows from various P2P applications. Four 

common P2P applications, BitTorrent, eDonkey, Foxy, and GoGoBox, as well as one known P2P 
botnet flow, Waledac flows, are used to train the decision tree model in this step. If the model 

gets any flows of Waledac in the testing phase, it will detect the computer relating to Waledac 

flow as bot node flow. In the next step, the model checks whether the remaining flows contain 
unknown botnet traffic flows. In this stage, the authors carry out this using the K-means 

algorithm. However, the experiment was performed using six computers running different P2P 

and non-P2P applications. On the other hand, the mechanism examines every packet's payload to 

identify the P2P traffic, which is not feasible in a large network environment. Therefore, this 
mechanism is unsuitable for botnet detection in a real network. 
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Matija Stevanovic and Jens Myrup Pedersen [9] use a supervised machine learning algorithm to 
detect botnets. The method extracts 39 statistical features from each flow record in this case. 

These features are fed into eight supervised machine learning algorithms: the Naive Bayesian 

classifier, the Bayesian Network classifier, the Logistic Regression classifier, the Artificial 

Neural Networks, the Support Vector Machines with the linear kernel, the C4.5 decision tree, the 
Random Tree classifier, and the Random Forest classifier. The ISOP dataset is used to test the 

model. The Random Forest classifier outperforms all other machine learning algorithms, 

achieving 96.20% precision, 95.73% recall, and 95.96% F1. 
 

Some researchers use the graph-based approach to detect bot nodes[14,15,16]. One such 

approach is used by Jing Wang and Ioannis Ch. Paschalidis in [14]. Their method consists of two 
stages. A social interaction graph(SIG) is created in the first stage. They group the network 

packets into some time window Wk, where k is a timestamp ,and create a SIG graph for 

timestamp k. With the help of some reference models, they try to detect abnormal SIG graphs and 

store them in a pool. If the pool reaches a threshold p, then the pool is used for the second stage. 
In the second stage, the key nodes are identified. The key nodes are defined as the nodes having 

high interaction with other nodes. Then a social correlation graph (SCG) is created. The SCGs 

identify the correlation of other nodes with the key nodes. These SCGs are parsed to a refined 
modularity-based community detection algorithm to detect bot nodes' communities. The whole 

approach uses network packets as input. Inspecting every network packet passing through a 

network is not feasible. On the other hand, the authors have used a small dataset that contains 396 
nodes, including 136 bot nodes and 260 normal nodes. In a realistic scenario, the percentage of 

bot nodes will be much smaller. Finally, the authors do not evaluate the method's performance 

using standard metrics like accuracy, precision, and recall. 

 
Another graph-based approach is used in [15]. According to the authors, the entire bot 

communication graph is required to detect all the bot nodes in a botnet, which is unrealistic. 

Therefore they develop a model based on modularity-based community detection algorithms and 
try to detect part of the botnet when partial information about it is available. They create samples 

of bot communication graphs by incrementing edges in the graph from 20% to 100%, increasing 

every time by 20%. The model tries to detect bot nodes using Newman's Leading Eigenvector 

and Fast Modularity methods. The experiments have been performed with different botnet 
topologies, botnet sizes ,and background network sizes. The authors say that the Fast Modularity 

algorithm-based detection model performs better than Newman's leading eigenvector-based 

detection model in all sample proportions and botnet topologies. The FP and FN increase when 
the bot nodes decrease. Furthermore, the False Positive rate increases as the sampling proportion 

decrease. However, the FP and FN remain below 5%. At the end of the paper, the authors 

conclude that the FP is small when the botnet graph is small and the background graph is large. 
The FP and FN increase as the size of the botnet graph increases. However, the authors 

conducted all their experiments in a small environment with a total network size of 7500 nodes. 

Furthermore, no dataset containing real-world bot nodes has been used to test the method. 

Finally, the authors do not use standard metrics like accuracy, precision, and recall to assess 
performance.  

 

Afnan Alharbi and Khalid Alsubhi also use the graph-based machine learning approach [16]. 
They generate a directed graph from the input flow dataset in the first step. For each node in the 

graph, various features including in-degree, out-degree, in-degree weight, out-degree weight, in-

degree centrality, out-degree centrality, betweenness centrality, closeness centrality, Eigen 
centrality, Katz centrality, PageRank centrality, hub and authority, and local clustering coefficient 

are calculated. They use several feature selection algorithms including Information Measure, Gini 

Impurity, Correlation Measure, Pearson's Correlation, and Consistency Measure to extract the 

best features. The model employs six machine learning algorithms, Naive Bayes, Decision Tree, 
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Random Forests, AdaBoost, ExtraTrees Classifier, and K-Nearest Neighbours to classify the bot 
nodes. They test the model's performance using the CTU-13 and IOT-23 datasets. According to 

the author, the ExtraTrees classifier with Pearson's correlation feature set produces the best 

results in both datasets. This model claims to achieve 100% accuracy, precision, and recall. 

However, the model was tested with CTU-13 scenario 9, which does not contain any P2P bot 
nodes.  

 

Flow-based approaches are also popular in detecting bot nodes among researchers[17,18,19]. 
Jianbing Liang et al. detect bot nodes using the flow similarity metric [17]. The traffic flows are 

divided into time windows in the method. Then, a vector containing the packet length sequence is 

calculated for each flow. The Levenshtein algorithm is then used to calculate the similarity of 
these vectors. If the similarity score of two vectors exceeds a certain threshold, the flows 

associated with the vectors are considered bot flows. A port partitioning algorithm is then used to 

identify the bot nodes. In the ISCX testing dataset, the method claims 1.0 TPR and 0.00706 FPR. 

However, the method only employs TCP flows. According to the authors, bot node 
communication is based on TCP. In reality, the communication among bot nodes is not restricted 

to TCP protocol only. Because of its connectionless behavior, bot nodes sometimes prefer UDP 

over TCP. As a result, using only TCP for botnet detection leads to a high number of false 
negatives. On the other hand, the authors do not demonstrate the method's performance using 

standard metrics like accuracy, precision, and recall. 

 
Some researchers use heuristic threshold-based algorithms, where some threshold values are used 

to differentiate various characteristics between bot nodes and benign nodes [20,21]. C. Dillon 

proposes a mechanism to detect Zeus P2P bot nodes in [20], where he uses live netflow data. The 

detection model tries to detect the Zeus P2P bot nodes' flow. Here the author generates Zeus P2P 
bot traffic in a testbed. The Zeus P2P software was collected from the public sandbox 

malwr.com. The bot traffic is collected in a Netflow collector and then merged with benign 

network traffic. The detection module starts with filtering out non-P2P traffic flow. In the 
resultant traffic flow, the Zeus P2P bot traffic is detected using either packet ratio anomaly or the 

unique traffic pattern of the Zeus bot. The packet ratio is the ratio of the outgoing packets to the 

incoming packets of P2P applications. According to the author, the packet ratio of standard P2P 

applications is between 1.4 and 1.8. If the packet ratio is less than 0.4, then the flow will be 
considered as Zeus bot flow. On the other hand, the model also detects the Zeus bot using its 

unique traffic pattern. He says the Zeus bot nodes communicate after every 20 minutes with other 

peers to get configuration updates of the latest bot software. However, the benign P2P application 
has no periodic communication properties. So this property is exploited to detect the Zeus bot. 

The author claims that the model performs with 100% true positive and 0% false positive. 

However, Zeus traffic is relatively low, and as such, it is not supposed to affect the incoming and 
outgoing traffic ratio significantly, especially in cases where benign traffic in a computer is high. 

Therefore, the packet ratio cannot be a good way to identify the bot nodes in a dataset. 

Furthermore, the author experimented with a small testbed containing only three Zeus bot nodes. 

One cannot say whether the model performs well in a real dataset. 
 

Some researchers use the anomaly-based approach to detect bot nodes [5,22,23]. Himanshi 

Dhayal and Jitender Kumar in [5] develop a mechanism to detect botnets by classifying network 
traffic in the waiting stage of the bot nodes. To detect bots, they have considered three features of 

the bot traffic, the bot's lifetime, search request intensities ,and the time-correlated behavior of 

the bot nodes. According to the authors, the bot nodes remain active in a network for getting 
commands from the botmaster for a longer duration of time than the benign peers of normal P2P 

applications. Furthermore, to get commands from the botmaster, the bot nodes send abnormally 

higher search requests than the benign peers of the normal P2P applications. Finally, the bot 

nodes sending higher search requests show similar behavior. So, this temporal correlation 
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between search request packets can be used to detect bot nodes in a network. The authors claim 
99% accuracy of the model. However, the model inspects every network packet to detect bot 

nodes. Therefore the model is not feasible in a large network. Furthermore, the model was tested 

on a dataset with a higher proportion of malicious P2P packets than benign packets. So, it is 

unclear whether the model performs well in a real-world scenario where bot traffic is much lower 
than normal traffic.  
 

Some researchers use deep neural networks to detect bot nodes [24,25,26]. In [24], the author 
extracts statistical flow features based on TCP, UDP, and ICMP from the input flow graph. These 

features are then fed into a deep neural network model as input. The author builds the deep neural 

model using embedding, convolution, LSTM, and fully connected network layers. The model is 
tested using the CTU-13 and ISOT datasets, claiming 99.2% and 99% accuracy for ISOT and 

CTU-13, respectively. The model also delivers 97.3% and 99.1% F1 for ISOT and CTU-13.  

 

In [26], the authors try to detect botnets using Multi-Layer Perceptron (MLP). They combine the 
CTU-13 P2P bot traffic dataset with the HIKARI benign dataset to create a botnet dataset. The 

four best features relevant to botnet detection are then extracted using a combination of two 

feature engineering techniques: CFS subset evaluation and consistency subset evaluation. The 
input is then fed into MLP to detect bot nodes. According to the author, the method achieves 

99.9% accuracy with 100% precision, recall, and F1 results. The method, however, is a packet-

based inspection method that extracts 30 features from each packet in a dataset. As a result, the 
method requires a significant amount of memory and CPU time to detect bot nodes in a real-

world dataset containing billions of packets. 

 

Some of the above works are host-based, and as such, one such system can detect one node of a 
botnet only. Botnets consist of a significant number of nodes. It is not unusual to have a million 

nodes in a botnet. It is unrealistic to bring down a whole botnet by bringing down a single bot 

scattered globally. Many of the above works use a network-based approach where data is 
collected from across a large network to detect a large number of bots of a botnet. However, most 

of them use network packet information. The volume of such traffic data is large, and it is not 

practicable to store and process such a large volume of data. Many researchers used data where 

the ratio of bot nodes to non-bot nodes is not realistic. In real botnet data, the number of bot 
nodes is much less than that of non-bot nodes. Consolidation of communicated data among the 

hosts is available in the form of network flow data. This network flow data volume is much 

smaller. Some earlier works used network flow data. However, either they do not test their 
methods in a publicly available dataset, or their results are not satisfactory.   

 

3. PROPOSED METHOD TO DETECT P2P BOTNETS 
 

To overcome the limitations of previous works, we propose a method for detecting a whole 
botnet or a significant portion of it. Only the source and destination IP addresses of each flow are 

retrained from network flow data collected from routers across a network. In earlier works, 

header data or other flow information were used to detect bot nodes in addition to IP addresses. 
Because we only use the source and destination IP addresses of flows in our method, the data 

volume is drastically reduced. 

 
On the Internet, there exist publicly accessible both datasets. However, only one such publicly 

available bot dataset contains more than one P2P bot node where the bot nodes communicate 

among themselves, thereby preserving the P2P communication structure. This is the CTU-13 

botnet dataset. Our method uses  a P2P communication structure to detect bot nodes. We use this 
dataset to validate our method. However, this dataset also contains only three P2P bot nodes. So 

we develop a testbed simulating a notorious P2P botnet, namely Zeus GameOver. We mix the 
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traffic obtained from this testbed with real - world non-bot traffic to create a dataset. We also 
validate our method using this synthetic dataset. 
 

3.1. The Proposed Method 
 

In the proposed method, network flow data is collected from multiple routers. From the network 

flow, it constructs a communication graph. The communication graph is fed into three graph-
mining algorithms. Each algorithm is aimed at identifying bot nodes. Then the result of the three 

algorithms is consolidated using the ensemble technique to further improve the result.  

 

3.1.1. Transformation of Input Dataset into Communication Graph 
 

In the first stage, flow records are collected from different routers. From the flow records, only 

the source IP address and destination IP address fields are retained. Then using these, a 
communication sub-graph is created. For each IP address, a node is created in the graph if it does 

not already exist. An edge from the node corresponding to the source IP address to the node 

corresponding to the destination IP address is added if it does not already exist.  This process is 
repeated for each flow. Algorithm 1 shows the steps to transform the network flow records into 

sub-graph. 

 

 Algorithm 1: Transformation of network flow dataset into host communication sub-

graph 
 

 Input: Flow information  

 Output: Communication sub-graph G  
 1: while there exists a flow do  

 2:  Read a flow into f  

 3:  Extract the source IP address src_IP and the destination IP address dst_IP of the 

flow f 

 

 4:  if n_src corresponding to src_IP is not in G then  

5:   Add a node n_src to G 

 6:  end if  

 7:  if n_dst corresponding to dst_IP is not in G then  

 8:   Add a node n_dst to G  

 9:  end if  

 10:  if an edge from n_src to n_dst does not already exist in G then  
 11:   Add edge from n_src to n_dst  

 12:  end if  

 13: end while   

 

All the sub-graphs are collected and merged in the second stage to form the final communication 

graph. 

 

3.1.2. Detection of Botnets from the Graph 
 

After creating the communication graph, the nodes of the communication graph are clustered 
using graph-mining algorithms into some clusters. These algorithms cluster the nodes so that all 

the bot nodes are included in one cluster. The cluster containing at least one bot node is 

considered a bot cluster, and all the nodes in that cluster are considered  bot nodes. For this, we 
use prior information obtained from host-based intrusion detection systems, like the honeynet 

project. 
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Our detection method consists of three different approaches. In the first approach, we use the 
Markov Cluster algorithm (MCL)[27,28] to detect the bot nodes. The Infomap algorithm  [29] is 

used in the second approach and the combination of the PageRank algorithm[30] and HDBSCAN 

algorithm[31] is used in the third approach. To the best of our knowledge, the first two 

approaches, namely MCL-based and info map-based approaches, had not previously been used 
for botnet detection. Though PageRank has been used in previous works for botnet detection, the 

combination of PageRank and HDBSCAN has never been used.  

 
All the three approaches give us three sets of independent results. Then majority voting ensemble 

method is used on the results of these three approaches. The result of this voting ensemble will be 

our final result. Fig. 1 shows the diagram of the proposed method. 
 

 
 

Figure 1. Diagram of the proposed method 

 

3.1.2.1. Approach I: MCL based P2P Botnet Detection Approach 
 

In the first approach, we use the MCL algorithm [27,28], which is mainly used in biological 

networks[32,33,34]. It is an unsupervised clustering algorithm for graphs. Here, a column 

stochastic matrix is created from the input graph, where the sum of each column is 1. Fig. 2 
shows a column stochastic matrix for a sample input graph.  

 

 
 

Figure 2. A sample graph and its corresponding column stochastic matrix 
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The algorithm simulates random walks to get the graph's cluster structure by altering two 
algebraic operations: expansion and inflation. The expansion operator uses matrix multiplication 

(matrix squaring) to expand the matrix. The inflation operator is responsible for strengthening 

and weakening the current value of each entry in the graph. This operation is performed by 

raising the column values to non-negative power and then re-normalizing them. These two 
operations are repeatedly applied until a stable state of the column stochastic matrix is reached. 

The stable state is the state from which the column stochastic matrix does not change its state. 

Then retrieve the clusters of nodes from the resultant matrix so that nodes flowing into the same 
sink nodes are assigned to the same cluster. Finally, by using prior knowledge of some bot nodes, 

we identify the clusters of bot nodes present in the input graph. 

 

3.1.2.2. Approach II: Infomap Algorithm based P2P Botnet Detection Approach 
 

In the second approach, we use the info map algorithm [29] to detect bot nodes. This algorithm is 

mainly used for community detection in a network [35,36,37].  
 

The info map algorithm is based on the map equation[38]. The map equation is used to represent 

the structures and their relationships of directed, weighted complex networks in a simplified 
fashion. Here the local interactions among groups of nodes are emphasized, which causes system-

wide information flow of the entire system. Therefore, a network's modules or clusters can be 

identified by finding the coarse-grained description of the network's information flow. So finding 
the information flow and communities is performed by using coding or compression. A Random 

Walker (RW) is used to describe the information flow in the network. Therefore for a given 

modular partition of a network, there is an associated information cost of the RW. The partition 

with the shortest description length of the RW is regarded as the best capture of the network's 
community structure. 

 

The info map runs some sub-routines iteratively and some recursively for identifying the module 
partition with the shortest description length of the map equation. The clusters of the nodes are 

identified from this shortest module partition.  

 

3.1.2.3. Approach III: Botnet Detection using PageRank and HDBScan Algorithm 
 

We use the PageRank algorithm[30] in the communication graph in the third approach. PageRank 

is a link analysis algorithm. The Google search engine first used the PageRank algorithm to rank 
the website in their search engine result. The PageRank algorithm is based on the premise that a 

web page is valuable if it has several incoming web pages or an important web page points to it. 

For example, if many web pages point to a webpage, then the page rank value of this page is 
good. On the other hand, if a web page is pointed by only one web page, which is Facebook, then 

the PageRank value of this page is also good.  

 

A suspected bot node cluster includes nodes with higher PageRank values than a threshold value. 
However, this cluster contains many false positives. On the other hand, threshold values may also 

be different for other datasets. Therefore, another communication graph is created among the 

nodes of the suspected bot-node cluster. It will reduce the size of the input dataset. In the 
resultant communication graph, we use the hierarchical density-based spatial clustering of 

applications with noise (HDBSCAN) to isolate the bot nodes.  

 
HDBSCAN[31] is a hierarchical density-based clustering algorithm. It extends the DBSCAN 

algorithm by performing DBSCAN on different epsilons values and delivering the clusters that 

persist over the epsilon. This allows us to find the cluster with different densities. 
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3.2. Simple Majority Voting Ensemble Technique 
 

An ensemble of methods consists of independent classification methods whose results are 

combined using some rules to enhance more accurate results. Carlos Orrite et al. [39] state that 
the ensemble technique outperforms the best result produced by any individual classifiers. There 

are various types of ensemble techniques available. Among them, we have used the simple 

majority voting technique to perform an ensemble on the results of the above three approaches. 
We have chosen this technique because of its simplicity and high level of accuracy. According to 

A.F.R. Rahman et al.[40], the simple majority voting technique can be defined  as follows: 

 

If there are n classification methods with their independent solutions, then the final decision for a 
sample can be made by assigning the sample to a class if at least k methods agree to vote. The  

value of k is calculated as follows: 
 
 

                         
              K=   (1)          
 

 

 
 

Since we use three approaches to perform ensemble operation, the value of n is 3, so K is 2. 
 

4. EXPERIMENTS AND RESULTS 
 
To evaluate the performance of the proposed method, we have used two datasets. We generated a 

synthetic dataset in a testbed. We also tested the performance of the method by using CTU-

13[41] dataset. 
 

4.1. Details of the Testbed Setup and Data Generation 
 
The details of the testbed dataset is described below: 

 

4.1.1. Motivation of the Testbed Dataset 
 

The communication structure of a P2P botnet can be used to detect multiple bots. Researchers use 

lots of botnet datasets to validate their methods. However, the datasets have some deficiencies. 
Some datasets contain traffic of a single P2P bot node. Some datasets contain a few P2P bot 

nodes. In other cases, communications among most of the bots are unavailable and as such, the 

P2P communication structure of the botnet is not available. There are other datasets that are not 

publicly available. Therefore, we generate a synthetic dataset to remove these limitations. The 
CTU-13 dataset contains only three P2P bot nodes, though they contain other non-P2P bot nodes. 

We us e this dataset to compare our synthesized result with this real-world dataset. 

 

4.1.2. Generation of the Testbed Dataset 
 

To create a synthetic dataset, we have developed a bot software simulating the behavior of the 

Zeus P2P bot also known as Zeus GameOver. This bot is different from the original Zeus bot 
which was a non-p2p bot. To simulate Zeus GameOver, we use two technical reports, one by 

CERT Polska[42] and the other by Dennis Andriesse et al. [43]. The behaviour of this P2P botnet 

has been studied thoroughly from these technical reports. Then we developed the bot and its 

{ 

 

(n/2)+ 1, if n is even, 

(n+1)/2, if n is odd, 
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control software by implementing the core functionality of this botnet  to obtain the same 
communication graph from this simulation as would have been obtained from the actual Zeus 

P2P botnet. Other details, like encryption of data, are not considered. 
 

4.1.2.1. Simulation of the Zeus Bot Behaviour 
 

In this section, we discuss the properties of the Zeus P2P botnet for ready reference.  The Zeus 

network has a three-layered architecture consisting of a C2 layer, a C2 proxy layer, and a P2P 
layer. The P2P layer includes all bot nodes. The Zeus P2P botnet establishes a p2p 

communication network in its P2P layer. For that, each node maintains a peer list. This peer list is 

updated periodically. The bots in the P2P layer are called harvester nodes. They harvest data to 
communicate with the botmaster. These nodes take commands from the botmaster to perform 

tasks such as stealing confidential information from their hosts or performing DDOS attacks on a 

specific computer.  

 
Initially, a peer list is hardcoded in each bot. The bots periodically send a version request 

message to the nodes in their peer list. If it does not receive a reply after sending such a message 

up to five times, it deletes that node from its peer list. On the other hand, if a node receives a 
version request message from a bot that is not in its peer list, it adds that node to the peer list. 

When the number of nodes in the peer list falls below a threshold, then the bots send a peer list 

request to all the bots in its peer list. The threshold below which a peer list request is sent is 25. 
The bots receiving these messages send a list of 10 peers in reply. These ten peers are selected 

based on how close the ID of the peers is to the ID of the requesting peer. The size of the peer list 

is limited to 50. The version request message is used to keep track of the bot's binary and 

configuration version number and update itself to a newer version if necessary. 
 

Each bot communicates to the upper layer through a bot in the P2P layer, which is designated as a 

proxy bot. The botmaster designates one or more P2P bots as proxy bots by sending commands. 
The bots receiving such a command announce that information by sending a proxy announcement 

message to the bots in its peer list. The receiving bots send these messages to their peers and so 

on. The TTL field limits the life of this message. Apart from the above, bots communicate with 

the C2 proxy layer through the proxy bots to receive commands and send data. 
 

The bots use different messages to perform all of the above tasks. Each bot is given an 

identification number(ID). Each packet contains a packet header and payload. The format of the 
packet header is given in fig. 3. 

 

 
 

Figure 3. Zeus P2P packet header 

 

The red field in the packet header is used for encryption. The TTL field is used to limit the 

number of hopes a message can be re-transmitted. LOP is the padding's length. The type field 
indicates the message type. The session ID identifies the specific session. The source ID field 

contains the ID of the sending bot. Not all messages require a payload field. The messages not 
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having a payload field are identified by their type field. The format of the different payload field 
is given below: 

 

The value 0x00 in the type field indicates the version request message. Generally, this message 

contains no payload. However, if the requesting node's proxy list is too short, it sends a little-
endian integer 1 followed by four random bytes as payload. This is an indication to the receiving 

bot to send its proxy list. The receiving bot sends a version reply message. The binary version 

number, configuration file version number, and TCP port number are followed by 12 random 
bytes in the payload of the version reply message. The TCP port is used by the receiver of the 

message to communicate back the new version of the bot. The payload format of the version 

reply format is given in  fig. 4. 
 

 
 

Figure 4. Format of Zeus P2P version reply message payload 

 
If the version request message includes a proxy list request indication, the receiving bot will 

additionally send a separate proxy reply message. Fig. 5 depicts the structure of each proxy node 

in the proxy reply message payload. The proxy reply message contains up to 4 proxies, each of 
which is RSA-2048 signed. The size of each proxy entry is 304 bytes. 

 

 
 

Figure 5. Format of proxy reply payload for one proxy node 

 
Zeus bot uses UDP data request messages to request binary or configuration updates via UDP. 

The payload of a UDP data request message includes three fields; type, offset , and size. The size 

of the type field is 1 byte. It is set to 1 for configuration file download and 2 for binary file 
download. The offset field is 2 bytes, indicating the word from which the responding peer starts 

transmitting data. The size field is 1360 bytes long, indicating the number of bytes that should be 

transmitted in response. The data request message via TCP can be identified using the type field 
in the message header. Type 0x68 is used for binary requests and 0x6A for configuration 

requests. 
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UDP data reply messages are sent as a reply to UDP data request messages. The data reply 
includes a 4 bytes file identifier field and then the data block. An RSA-2048 signature of the 

MD5 hash of the plaintext data is appended to the transmitted files. The maximum payload size 

of a UDP data reply message is 1360 bytes. 

 
Data transmission via TCP starts with a message header, where the type field takes 0x64 for a 

binary update and 0x66 for a configuration update. A little-endian integer with value 1 terminates 

the data transmission via TCP, where no header is used. 
 

The payload of a peer list request message contains the identifier(20 bytes) of the sending bot 

followed by eight random bytes. The receiver bot sends a peer list reply message containing ten 
peers from its peer list. The size of the peer list reply message is 450 bytes. The peer list reply 

message adds six fields for each returned peer; IP type, peer ID, IPv4 address, IPv4 port, IPv6 

address ,and IPv6 port. Fig. 6 depicts the structure of each peer in the peer list reply message 

payload. 

 
Figure 6. Format of peer-list reply message payload for one peer node. 

 

Fig. 7 depicts the proxy announcement message payload format. This message utilizes the TTL 
field in the message header. Initially, the value of the TTL field is 4. When a bot node receives a 

proxy announcement message, it updates its proxy list by adding the new proxy node. Then 

decrements the value of TTL and sends this message to its neighbor  nodes. The message will be 
broadcasted until the value of the TTL field reaches 0.  

 

 
 

Figure 7. Format of the proxy announcement message payload 

 

Finally, the Zeus bot nodes use another type of message called the C2 message. This message is 
exchanged over TCP and wraps  HTTP messages. This HTTP-based message is used to instruct 

the bot nodes to perform various malicious activities such as executing a file at a URL, stealing 

crypto certificates, stealing cookies ,and performing a DDoS attack at a given URL. The C2 
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message is also used for transferring the stolen data from the bot nodes to the upper layer nodes. 
Since the C2 message contains an HTTP message, the authors of the technical reports suspect 

that the communication between the proxy bots and the C2 layer is HTTP based.  

 

4.1.2.2. Generation of Zeus Botnet Traffic in the Testbed 
 

We use a system with an 8th-generation Intel i7 processor and 32 GB RAM for the testbed. 

Debian Linux (buster) operating system is installed in the system. We use the QEMU 
virtualization to create 101 virtual hosts. The Debian Linux (stretch) operating system has been 

installed in the virtual hosts to reduce memory footprint. The network setup is done to 

interconnect the virtual hosts. A copy of the developed bot has been run in each virtual host. 
These bots create a P2P network among themselves and communicate periodically (30 minutes) 

with every 15 others, as is done by the Zeus botnet. A random bot node is selected as a proxy bot 

node. This proxy bot node collects information from the bot nodes and sends them to the upper 

layer. Furthermore, this proxy bot node distributes commands or any other information gotten 
from the upper layer to the bot nodes. In the testbed, the bots steal terminal history information 

and send it periodically to the proxy bot nodes.  

 
The experiment was run for 24 hours to get a clear communication structure of the bot nodes. We 

captured the header of all the packets passing through the router using the tcpdump tool. Then we 

converted the traffic into the NetFlow data using the probe tool. This NetFlow data contains flow 
information of the bot nodes. Table 1 shows the flow information of the Zeus botnet captured in 

the testbed. Out of all the flow fields, only the source IP addresses and the destination IP 

addresses are retained for further analysis. 

 
Table 1. Flow information of Zeus botnet captured in the testbed 

 
Sl. 

no.  

Flow 

information 

Description  

 

1 IPV4_SRC_

ADD 

Source IP address(IPV4) 

2 IPV4_DST_

ADDR   

Destination IP address(IPV4) 

3 IN_PKTS Number of input packets 

4 IN_BYTES Size of input packets in bytes 

5 FIRST_SWIT

CHED   

System uptime at which the first packet of this flow was switched 

6 LAST_SWIT

CHED    

System uptime at which the last packet of this flow was switched 

7 SRC_TOS         Type of Service byte setting when entering incoming interface 

 

These flow data contain bot traffic only. To get a realistic dataset, we mix this data with the flow 
data captured from a real network. For that, we use the CAIDA OC48 Peering Point Traces 

dataset (2002-2003) which is publicly available. Their newer dataset is no longer publicly 

available. This publicly available dataset was collected in 2002 and 2003. It contains anonymized 
passive traffic traces captured at a large ISP's west coast OC48 peering link. The data in the 

CAIDA dataset are converted to network flow before mixing. As with the testbed data, a list of 

source and destination IP-address pairs are extracted from these network flows. We mix these 

two types of traffic flow as follows: 
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Each bot IP address is merged with an IP address of the CAIDA dataset chosen randomly. The 
corresponding flows are also merged. One IP address represents both these IP addresses in the 

final dataset. The details of the final dataset are depicted in table 2. 

 
Table 2. Details of the testbed dataset 

 
Number of nodes  Number of bot 

nodes 

Number of botnet 

flows 

Number of non-

bot nodes 

Number of non-

botnet flows 

194044  101  1001986  193943 5954245 

 
The dataset contains no null values as it was generated in a testbed. Our goal is to locate an entire 

botnet. However, some of the data may be missing as botnets can potentially span the whole 

Internet, and all such data cannot be captured in reality. To check how our method performs 
under missing data, we experimented by dropping communications from some bots from our 

dataset. The result seems satisfying and is presented in figure 12. 

 
The dataset's ratio of bot traffic to regular traffic in the real-worldis significantly low. It is kept 

low in our dataset as well, to make it imbalanced. To deal with the problem, we reported 

precision and recall as the measure which represents performance well in an imbalanced dataset. 

 

4.2. Details of CTU-13 Dataset 
 
To evaluate the performance of the proposed method, we have also used the CTU-13dataset[41]. 

The dataset has 13 scenarios, and each scenario has different malware traffic. Since only scenario 

12 contains P2P botnet traffic, we have used this scenario to evaluate the proposed method. A 

brief description of scenario 12 of the CTU-13 dataset is given in table 3. 
 

Table 3. Details of scenario 12 of CTU-13 dataset 

 
Bot Number of 

Bot 

Characteristics of 

botnets 

 Duration 

(hrs)   

Number of non-

bot nodes 

Number of 

flows 

NSIS.ay 3  P2P 1.21  94393 325471 

 

4.3. Results 
 
We use the following performance metrics to evaluate the performance of our method 
 

ACCURACY  =  (TP+TN)/(TP+TN+FP+FN)   (2) 
PRECISION  =   TP/(TP+FP)     (3) 
RECALL       =  TP/(TP+FN)     (4) 
FPR             =   FP/(FP+TN)     (5) 

 

Where TP stands for True Positive and represents the number of bot nodes that were correctly 

identified, TN for True Negative and represents the number of non-bot nodes that were correctly 

identified, FP for False Positive and represents the number of non-bot nodes that were incorrectly 
identified, FN for False Negative and represents the number of bot nodes that were incorrectly 

identified. FPR is the False Positive Rate. 

 
Our three approaches detect bot nodes separately. The final results are obtained by performing an 

ensemble operation on the results provided by the three approaches. The individual results of all 

approaches are shown in table 4, and the final results are shown in table 5 in both datasets. 
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Table 4. Results of approach, I, II and III in both the datasets 

 
Dataset Methods Accuracy Precision Recall FPR 

Testbed 

dataset 

Approach I 0.9999 0.9417 0.9604 0.00003 

Approach II 0.9999 0.8475 0.9901 0.00009 

Approach III 0.9999 0.8065 0.9901 0.0001 

CTU-13 

dataset 

Approach I 0.9991 0.0333 1 0.0009 

Approach II 0.9991 0.0327 1 0.0009 

Approach III 0.9989 0.0306 1 0.0011 

 
Table 5. Final results of the proposed method 

 
Dataset Accuracy Precision Recall FPR 

Testbed dataset 0.9999 0.9429 0.9802 0.0001 

CTU-13 dataset 0.9991 0.0333 1 0.0009 

 

Table 4 shows that approaches I, II, and III deliver a 99.99% accuracy in the testbed dataset. 

Similarly, approaches II and III show 99.01% recall in the testbed dataset. However, the FPR of 
approach III is higher than approaches I and II. Therefore, the precision of approach III is 80.65% 

which is lower than approaches I and II. The best precision is shown by approach I, which is 

94.17% in the testbed dataset. 

 
In the CTU-13 dataset, approaches I, II , and III detect all the bot nodes. Therefore they show 

100% recall. Since the dataset contains three bot nodes, only one false positive node also 

adversely affects the precision result. Therefore, the precision of all the approaches in the CTU-
13 dataset is significantly low.   However, the FPR is significantly low in all the approaches in 

the CTU-13 dataset. The accuracy is above 99.8% in all the approaches. 

 
After performing ensemble operations on the independent results of approach I, II ,and III, we get 

the final result of the proposed method. As shown in  table 5, the proposed method delivers more 

than 99.9% accuracy in both datasets. In the testbed dataset, the proposed method shows 98.02% 

recall, 94.29% precision ,and less than 0.01% FPR result. On the other hand, the CTU-13 dataset 
contains three bot nodes. So, only one false positive node also adversely affects the precision 

result. Therefore, we get a 3.33% precision to result in the CTU-13 dataset. However, the method 

delivers 100% recall and 0.09% FPR in the CTU-13 dataset.  
 

5. COMPARISON WITH PREVIOUS DESIGN 
 

In this section, we compare our method's performance to the methods discussed in the related 

work. The methods we have compared use datasets that require more than the source and 
destination IP addresses. Two of the three methods[5, 17] make use of packet header fields. This 

necessitates the analysis of a large volume of data. As a result, these methods will have a 

significant processing overhead. They will be ineffective in situations where a large number of 
bots is to be detected, such as in our testbed dataset. The other method[20] uses fields from the 

flow record, which also increases the volume of data to be analyzed. Moreover, they assume 

certain traffic patterns. They made use of the upstream and downstream packet ratios. In a real-
world scenario, the majority of traffic in a host is normal traffic. Due to the low volume of bot 

traffic, such bot traffic is unlikely to change the upstream and downstream packet ratio and is 

likely to be lower than that caused by the randomness of communicated packets. As a result, this 

method is not expected to produce better results in a realistic dataset.  
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As our dataset contains only source IP and destination IP addresses, the above methods, which 

require additional data cannot be compared quantitatively using our dataset. 
 

The comparison results are shown in Table 6. Method 2 uses their private testbed dataset. The 
method in sl. no. 1 gets more than 99% accuracy. However, other metrics such as precision, 

recall, TPR, and FPR are not shown. The method in sl. no. 2 and 3 get 100% TPR. However, they 

do not show other performance metrics like accuracy, precision, or recall. The FPR of the method 
in sl. no. 3 is higher than our method. From the comparison result, it is seen that our method has 

outperformed all other methods. 

 
Table 6. Comparison result of the proposed method with other methods 

 
Sl. 

no. 

Papers Dataset 

used 

Accuracy Precision Recall TPR TNR FPR FNR 

1 [5] Dataset of 

Peer Rush 

>99       

2 [20] Own 

testbed 

   100  0  

3 [17] ISCX    100  0.706  

4 Our 

metho

d 

CTU-13 99.91 3.33 1 100 99.91 0.09 0 

5 Our 

metho

d 

Testbed 99.99 94.29 98.02 98.0

2 

99.99 0.01 1.98 

 

6. TUNING OF PARAMETERS IN THE PROPOSED METHOD 

 

6.1. In Approach  I 
 

The inflation parameter, which regulates the level of granularity of the output clusters, is the 
parameter that needs to be adjusted in  approach I. It impacts the total number of non-bot nodes in 

the cluster containing both nodes. We have experimented by changing the inflation parameter 

values from 1.2 to 5 to observe their sensitivity. Fig. 8(a) shows the results in the CTU-13 dataset 
and fig. 8(b) shows the results in the testbed dataset.  

 

In the CTU-13 dataset, approach-I delivers consistent results for all the metrics from the inflation 
parameter 2.2. The accuracy and recall are above 99%, and precision and FPR are less than 5%. 

The testbed dataset shows fluctuation for the initial values of the inflation parameter. However, 

the approach shows consistent results from the values 1.5 and above. The accuracy, precision 

,and recall are more than 90% from the value of 1.5. Similarly, FPR is less than 1% for the 
inflation parameter 1.5 and above. We observe acceptable accuracy, precision, recall ,and FPR 

results from the inflation value of 1.5 and above for both datasets. 
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(a)  In CTU-13 dataset           (b) In testbed dataset 

 
Figure 8. Variation of results in different values of inflation parameter of approach I in both datasets 

 

6.2. In Approach II 
 

In this approach, the parameter N is tuned to determine how many outermost loops should be run 
before choosing the optimal solution. We change N from 1 to 15 to observe the sensitivity of this 

parameter. Fig. 9(a) shows the results in the CTU-13 dataset and fig. 9(b) shows the results in the 

testbed dataset. 

 
The approach delivers high accuracy and recall and low precision and FPR for all the values of N 

in CTU-13 datasets. We get more than 99% accuracy and precision, less than 1% precision ,and 

less than 1% FPR for all the values of N. On the other hand, we get more than 99% accuracy and 
recall for all the values of N in the testbed dataset. FPR is constant and less than 1% for all the 

values of N. We get more than 80% precision within the range of 1 to 7. However, from the value 

8, precision results decrease and less than 60% result is obtained. We observe the best results for 
both datasets. from 1 to 7. 

 

 
 

(a) In CTU-13 dataset  (b) In testbed dataset 

 
Figure 9. Variation of results in different values of N of approach II in both dataset 

 

6.3. In Approach  III 
 
This method uses the PageRank and the HDBSCAN clustering algorithm to detect the bot nodes. 

We tune the threshold values for the PageRank algorithm to get the optimum result. Here we 

change the threshold values from 0.00009 to 0.0000001. 
 

In  fig. 10(a), we see the results of accuracy, precision, recall ,and FPR implemented in the CTU-

13 dataset. The fig. shows that all the performance metrics deliver the same results with minimal 

fluctuation in all the threshold values. Accuracy and recall are above 90%, and precision and FPR 
are less than 1% for all the values. We observe the best results in both datasets in the range of 
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0.0000001 to 0.00004. Fig.s 10(b) shows the result of the PageRank algorithm implemented in 
the testbed dataset. The accuracy and recall are constant and high for the threshold values from 

0.00000010 to 0.00004. After that, recall decreases to 20% ,and accuracy increases to 99%. FPR 

is consistent and less than 1% for all the values.    

 

 
 

(a) In CTU-13 dataset  (b) In testbed dataset 

 
Figure 10. Results of threshold value variations of PageRank algorithm in both dataset 

 

In the HDBSCAN clustering algorithm, we can tune the min_clus_size parameter. This parameter 

specifies the minimum number of nodes in a cluster. We have tuned this parameter from 5 to 100 
and have got the following results for both datasets. 
 

 
 

(a)  In testbed dataset             (b) In CTU-13 dataset 

 
Figure 11. Parameter tuning in HDBScan clustering algorithm in both dataset 

 
In the CTU-13 dataset, accuracy and recall are constantly high for all the values of the 

min_clus_size parameter. On the other hand,  precision and the FPR show significantly low 

results for all the values.  In the testbed dataset, the precision and recall show high fluctuation in 
the initial values of the min_clus_size parameter. However, from the parameter values 42 and 

above, we get consistently good results for all the matrices. On the other hand, we got more than 

99% results for accuracy in all the parameter values in the testbed dataset. Finally, we get less 

than 1% FPR for all the values of min_clus_size in the testbed dataset. 
 

7. ROBUSTNESS OF OUR PROPOSED METHOD 
 

To investigate the robustness of the proposed method in datasets with more than three bots, such 
as the CTU-13 dataset, we run an experiment in which we vary the number of bots from 5 to 101 

while keeping the total number of nodes constant across the dataset, i.e. 194044. We performed 

this experiment in our testbed dataset because there is no other publicly available dataset with 

more than three bot nodes other than CTU-13. Figure 12 depicts the outcomes of our method 
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across all datasets. According to the results, this method performs reasonably well in terms of 
accuracy, precision, recall and FPR, with this varying mixture of the bot and non-bot traffic. 
 

 
 

Figure 12. Results of our method in different datasets containing bot nodes from 5 to 101 bot nodes. 

 

8. CONCLUSION 
 

We have developed a method to detect P2P botnets. We have used three different approaches to 
detect bot nodes individually. Then an ensemble operation is performed on the results provided 

by the three approaches to get the final result. To test the performance of the proposed method, 

we have set up a testbed and generated a synthetic dataset. We also use a publicly available 
dataset, the CTU-13 dataset, for comparison. Experimental results show an accuracy of 99.99%, a 

precision of 94.3%, a recall of 98.02% ,and an FPR of 0.01% on the testbed dataset. We also 

obtain 99.91% accuracy and 100% recall using the CTU-13 dataset. The results are better than 

the existing works. 
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