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ABSTRACT 

In the last few years, the evolution of information technology has resulted in the development of several 

interesting and sensitive fields such as the dark Web and cyber-criminality, especially using ransomware 

attacks. This paper aims to bring out only critical features and make their observation, or not, in software 

behaviour sufficient to decide whether it is ransomware or not. Therefore, we propose a new solution for 

ransomware detection based on machine learning algorithms and system calls. First, we introduce our 

produced dataset of collected system calls of both ransomware and Benignware. Then, we push pre- 
processing steps deeply to reduce efficiently data dimensionality. After that, we introduce a new technique 

to select pertinent features. Next, we bring out the critical system calls, their importance and their 

contribution to the distinction between dataset elements. Finally, we present our model that achieves an 

overall accuracy of 99.81% after K-Fold cross-validation. 
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1. INTRODUCTION 

Ransomware is a type of malicious software that aims to extort money from its victims by 

encrypting their files using various techniques and robust algorithms to make their attacks more 
efficient. The attackers provide instructions and a deadline to pay the ransom, which can be a few 

hundred dollars on average. Ransomware attacks have been increasing due to the ease of creating 

and generating them using various methods and tools. These attacks are facilitated by the 

existence of anonymous and untraceable cryptocurrencies on the Internet. Statistics show that 
more than 4,000 ransomware attacks are carried out every day [1]. 

 

Ransomware-as-a-Service (RAAS) [2] is one of the most commonly used ransomware 

generators. It simplifies the process of creating and deploying new ransomware samples, 

allowing individuals with little or no knowledge of cybersecurity to create advanced ransomware 
variants. The end-user of RAAS specifies certain parameters, such as the ransom amount, 

payment instructions, and deadline for payment. RAAS allows for the creation and deployment of 

ransomware after certain conditions have been met. Some examples of RAAS instances that have 

been discovered since early 2015 include Tox, Fakben, and Radamant [3]. Tox provides a simple 
three-step ransomware generator for free, but a portion of the ransom is collected for the benefit 

of the service owner. 

https://airccse.org/journal/ijc2023.html
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Therefore, a significant amount of effort and research has been conducted to provide reliable 

solutions. Static and dynamic features have been defined to identify salient characteristics and 
distinguish between benign and malicious applications [4]. Static features are directly extracted 

from PE files without execution. The artefact is decompressed, unpacked, disassembled, and, if 

necessary, loaded into memory to extract its dump. Several studies have been conducted based on 
static feature analysis, including opcodes (operational codes), bytecodes, strings, or Executable 

and Linkable Format (ELF) file headers for malware and ransomware detection, for both mobile 

and computer systems, as shown in [5, 6, 7, 8, 9]. Conversely, dynamic feature analysis is useful 

for overcoming the limitations associated with static features, such as the level and complexity of 
artefact obfuscation. Dynamic features are extracted and collected while the ransomware is 

running within a protected system, usually in a virtual environment. Numerous studies have 

focused on the analysis of dynamic features, such as system/API calls in [10, 11,12], network 
traffic in [13, 14, 15], CPU events, load, and memory consumption in [16, 17], and I/O requests 

in [18]. 
 

Furthermore, machine learning (ML) was widely used for ransomware detection. It is a method 

of data analysis that provides a set of interesting algorithms used for learning from data, pattern 

recognition, and decision making. Good performances were achieved as a result of involving ML 
algorithms in ransomware detection. On one side, ML provides methods based on ensembles 

namely bagging, boosting, and stacking. Bagging methods including Random Forest (RF)were 

used in several ransomware detection studies. In [19], the author proposed a static analysis based 
on the RF method that deals with the extracted features from the artefactraw byte. In [20], the 

authors extracted the best features from file system activities, Dynamic Linked Libraries (DLL) 

references, and registry activities logs. Then, they performed a dynamic analysis using a set of 

ML algorithms including bagging and RF to distinguish between ransomware and Benignware. In 
[21], the authors proposed the analysis of API calls to detect various kinds of malware as well as 

ransomware. They used tree-based ensemble models including Boosting and Bagging algorithms 

such as AdaBoost, XGBoost, and RF. On the other side, several non-ensemble ML algorithms are 
used to detect both ransomware and and general types of attacks [22, 23]. Neural Network based 

techniques are widely used such as bi-directional Long Short Term Memory (BiLSTM) in [24], 

and self-attention-based convolution neural network (SA-CNN) in[25]. Moreover, classical 
supervised learning methods are also used in ransomware detection such as Support vector 

machines (SVM) in[26],Bayesian Networks and other supervised learning algorithms such as in 

[27]. 

 
On the other hand, malware analysis studies are usually achieved using collected malware. 

Several Web repositories and services allow malicious samples download for free after 

registration such as Run [28], VirusShare [29], VirusTotal [30], the Zoo [31], and Free 

Automated Malware Analysis Service / Hybrid Analysis. Additionally, they allow a user to 
submit suspicious files for scanning and get their analysis reports. This helps to identify new 

malicious samples and breaks the spread process of malware. These repositories provide various 

types of behavioural reports including PCAP files that store captured network traffic, Indicators 
of Compromise (OpenIOC) that give forensic artefacts of an intrusion, Malware Attribute 

Enumeration and Characterization (MAEC) [32]which is used for encoding and communicating 

high-fidelity information about malware and attacks, and Malware Information Sharing Platform 

and Threat Sharing (MISP) reports that are useful for sharing cyber security indicators and threats 
within security communities. Therefore, researchers collected the provided samples and reports to 

produce their datasets for their specific works such as the use of Hybrid Analysis in the study 

[26],Kaggle in [33], Virus Total, Virus Share, and the Zoo in [34], in [35] the authors download 
samples from Virus Total and produce a new dataset of API calls publicly available on the 

GitHub website [36]. 
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However, the analysis process of malware produces a high dimensionality set of features. Thus, 

data reduction techniques were used for decreasing data in the creation of ML models on one the 
hand and carrying out good performances on the other hand. Data dimensionality reduction is an 

important pre-processing step that removes incomplete, redundant, irrelevant, and ineffective 

data. Moreover, it speeds up the computing process and enhances the accuracy of ML algorithms 
that have a column-wise implementation. Most existing ransomware detection studies considered 

data dimensionality reduction. They employed a variety of techniques such as Low Variance 

Filter, High Correlation Filter, and Principal Component Analysis (PCA), in addition to the use of 

some ML algorithms that implicitly performs feature selection such as Random Forests and J48 
decision tree. In [14], the authors proposed the selection of the most relevant network packet 

features for ransomware detection based on network traffic. They assigned a score to each feature 

using the combination of six characteristic correlations namely: gain ratio, information gain, 
correlation ranking, One R feature, Relief F ranking, and symmetrical. Four classes of features 

were defined according to their correlation score. The class having the highest score interval 

contained the lowest number of features and gave the best performances. In [37], the authors 

demonstrated that Random forest-based approaches select the most relevant features while 
increasing the model performance within an intrusion detection system (IDS).In [33], the authors 

used the PCA technique to reduce PE file features for malware detection using deep learning 

techniques. In [17], PCA is also employed to reduce hardware performance counters features for 
Hardware-Assisted Malware Detection based on ML algorithms. In [20] the authors proposed the 

use of a sequential pattern mining technique, namely Mind the Gap: Frequent Sequence Mining 

(MG-FSM), to detect the best features for ransomware and Benignware differentiation. They 
extracted Maximal Sequential Patterns (MSPs) from three sets of system events namely file 

system, DLL, and registry events. After removing outlier sequences, they selected the best three 

from nine MSP types that give the best performance when creating their ML model. 

 
Although machine learning can be effective for detecting ransomware, it may also raise ethical 

concerns related to biases, privacy, and legal responsibilities. To address these concerns, we 

considered the following measures: 

 
 Bias: the collected data is composed of system calls of the main Ransomware families and 

Benignware categories to get a balanced and diversified dataset. 

 privacy concerns: the proposed technique collects and analyses the API calls provided by the 

operating system for each process, focusing only on the type of executed operations, such as 
memory allocation, data transmission, etc. without accessing the content or nature of the data. 

 

Furthermore, our study's significant contribution is addressing the danger of ransomware attacks 
by employing system calls and machine learning capabilities. Consequently, we proceed to do the 

following: 

 

 Introduce a new dataset built from scratch that includes various ransomware families and 
Benignware categories. Especially benign samples that share with Ransomware some 

capabilities such as file encryption and networking. 

 Analyze the impact of various normalization data techniques on the performances of the 

different ML algorithms in the context of Ransomware detection. 
 Analyze the impact of various dimensionality reduction techniques on the rate of data 

reduction and the performances of the different ML algorithms. 

 Select the pertinent features to describe the behaviour of both Ransomware and Benignware. 
In this part, we propose a new technique inspired by TF-IDF to select important features 

regarding their use by Ransomware. 

 Build ML models using 8 ML algorithms. 

 Quantify the contribution of each pertinent feature in the classification process. 
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The remainder of this paper is organized as follows: Section 2 presents related work. In Section 

3, we describe the steps followed to clean up the dataset, the proposed technique, and the 
development of the ML models. Section 4 covers the dataset construction phase, experimentation, 

and the obtained results. Finally, Section 5 concludes this study. 

 

2. RELATED WORK 

Ransomware detection based on system calls has been the subject of many recent studies. In [43], 

the analysis of API call frequencies is proposed to detect 14 strains of ransomware by identifying 

their salient features. The API calls of several benign applications are collected and compared to 
the API calls of ransomware using Fisher exact tests on a contingency table. This technique is 

proposed to distinguish between the behaviour of 14 ransomware samples from different families 

and the behaviour of some benign activities such as installing and running Word, Excel, Apache, 
etc. However, we believe that there is a lack of ransomware samples on one side, and suspicious 

behaviours should be included in the benign activities on the other side, such as file compression, 

encryption, and network traffic exchange. This will enable the identification of salient 

discriminative features and filter out the common ones. 

 
In [34], the use of a reverse engineering framework is proposed for ransomware detection based 

on machine learning algorithms. After converting binary files to hexadecimal, Cosine similarity 

is used to extract the DLL level and expected API calls. The detection process is done based on 

several machine learning algorithms such as Bayesian Network, Logistic Regression, and 
Adaboost combined with Random Forest. However, the authors did not discuss the impact of 

using anti-reverse engineering techniques on their proposed technique [38]. Anti-debugging and 

anti-reverse engineering provide techniques such as code obfuscation and binary file packing to 
encrypt ransomware payloads, anddisrupt and impede the process of reverse engineering. 

 

In [39], a machine learning-based framework is proposed for ransomware detection. The authors 

created their dataset using 83 ransomware samples from different families and 84 benignware 

samples from various categories. They used API call flows graph (CFG) to calculate the 

frequency of consecutive API calls and built machine learning models, including RF, SVM, 
Naïve Bayes, and Simple Logistics (SL). The highest accuracy achieved was 98.2% with SL built 

on 3000 features. However, the authors did not provide information about the selected features or 

their relationship with ransomware activities. 

 

In [40], ransomware behaviour is modelled using a combination of static analysis, trap layer, and 
dynamic analysis. From the static analysis, information is gathered from the PE header, 

embedded resources, packers and cryptos, embedded strings, etc. The trap layer checks for the 

modification of a set of special files, known as "honey files and directories," which are not 

expected to be modified during regular operations. Suspicious behaviour, such as Windows 
cryptographic API usage, is reported. During dynamic analysis, I/O Request Packets (IRP) are 

collected from the file system I/O manager. Only certain requests, such as file read and write 

operations, are included in the feature vector. ML models are then built to classify ransomware 
and benignware based on the collected features that describe their behaviours. The study was 

conducted using 574 ransomware samples from different families and 442 benignware samples. 

The achieved True Positive Rate was 98.25% using the Gradient Tree Boosting Algorithm. 
However, the authors did not provide details on how they built the ML models or processed the 

data. 

 

In [10], a solution is proposed to distinguish ransomware from other types of malware and benign 

applications. First, n-gram sets of API call sequences are generated for file manipulation 
operations only. Then, feature vectors are produced using Class Frequency - Non-Class 



International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023 

133 

 

 

Frequency (CF-NCF), which provides classification indicators. This technique is based on the 

Term Frequency - Inverse Document Frequency (TF-IDF) intended to reflect the importance of a 
word to a document in a corpus. Finally, machine learning models are built on a weighted n-gram 

vector resulting from multiplying the n-gram data by the weight value obtained from CF-NCF. 

Six machine learning classifiers are evaluated, including Random Forest, which achieves the 
highest accuracy rate of 98.65%. However, the authors did not provide further details about the 

dataset, which includes 1000 ransomware, 900 malware, and only 300 benign applications. 

 

3. METHODOLOGY 

This section describes the steps performed to create ML models for ransomware detection. First, 

we describe the steps of data normalization, data reduction, and feature selection. Then, we 

highlight the interpretability of the most significant features. Finally, we present and discuss our 
proposed ML model. 

 

3.1. Dataset normalization 
 

Data normalization is a crucial step to improve the performance of machine learning models by 

making the features on a similar scale. We use one of the available methods for rescaling the 

entire numeric data, depending on the implemented ML classification algorithms. These data 

normalization techniques can be either linear or non-linear. Linear techniques such as Min-Max 
and Clipping are sensitive to the presence of outliers and are well-supported by tree-based ML 

algorithms. On the other hand, non-linear methods such as Quantile Transformer and Power 

Scaler are more beneficial for ML classification algorithms like logistic regression and linear 
SVM that perform well with regression problems. Non-linear data normalization methods can 

handle outliers and put data under well-known distributions such as uniform and Gaussian-like. 

Therefore, we first check if the dataset contains outliers and then conduct experiments to check 
the impact of choosing one normalization technique over another. We find an important variation 

in the number of system calls, and according to the experimentation shown in section 4.3.2, non- 

linear normalization techniques give the best performance. Thus, we normalize our dataset using 

one of the non-linear data normalization techniques, which can handle almost all ML 
classifications and support some data reduction and feature selection methods such as mutual 

information, which perform well with well-known distribution data. 

 

3.2. Dimensionality Reduction 
 

This step aims to remove irrelevant and redundant data from the dataset and select the most 
important features for Ransomware detection. We focus on reducing dimensionality using filter- 

based feature selection methods. In the case of system calls, redundant data is produced when a 

set of API calls is invoked together This usually occurs when opening and closing connections, 
manipulating windows, exchanging data, and so on. Table 1 shows examples of highly correlated 

API calls. 
 

Table 1. Examples of highly correlated APIs 

 
# Redundant APIs call Description 

1     dllonexit, _lock, _unlock Functions of process management 

belongingto C++ runtime library 
‘msvcrxx.dll’ 

2 CreateThread, CreateWindowExW To create windows using threads 
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To reduce data dimensionality, we first remove redundant data by keeping only one item from 

each set of highly correlated features. Next, we select the relevant features by retaining the ones 
most correlated with the output vector. To determine the most appropriate dimensionality 

reduction technique that yields the best performance with the lowest number of features, we 

conduct experiments using various correlation methods. Specifically, we use Pearson, Spearman, 
and Kendall correlation to measure linear and monotonic relationships, as well as Mutual 

Information to measure the information score gained between features and the target. The best 

results, as shown in section 4.4.1, are obtained by applying the Spearman correlation between 

features and the Kendall correlation between features and the target. The best performance 
achieved is 99.26%, with a dimensionality reduction of 98.71%, which corresponds to 67 out of 

5194 features. Spearman correlation is used between features, while Kendall correlation is 

applied between the remaining features and the target. The use of Kendall correlation allowed us 
to detect other relevant features that cannot be detected using Spearman and Mutual Information. 

Kendall correlation uses a more robust distance based on concordant and discordant pairs to 

describe the relationship between the target and features. 

 
However, the combination of Spearman and MI provides good performance for almost all ML 

classification algorithms. This combination makes use of the monotonic correlation between 

features on one hand, and the gained information between features and target by calculating the 

distance of their distribution on the other hand. This results in a good dimensionality reduction 
rate (96.94%) because we exclude features with low MI-scores even if they are moderately 

correlated with the target. 

 

3.3. Feature selection 
 

Feature selection is an important step to validate the inputs of ML models. It is ideal to reduce the 

number of features while keeping the best performance to obtain the necessary set of features to 

distinguish between Ransomware and Benignware. However, in our case, when we reduced 

features by applying Spearman and Kendall correlations, we had to choose an extreme threshold 
to achieve a high reduction rate. As a result, upon analysing the reduced features, we found that: 

 

 More than half of the features are related to graphical interface manipulation (24% Graphics 
and gaming, 31% Windows application UI development). 

 All reduced features are captured from Benignware executions. 

 

Thus, we should exclude, as possible, the use of system calls related to graphical interface 

manipulation from one side and involve more features that typify Ransomware and describe their 

behaviour from the other side. It is mandatory to focus on what happened exactly with the file 

system, network, and services regarding both Ransomware and Benignware. For this purpose, we 
propose the combination of two methods to select the most important and 'special' features. The 

word 'special' is used to indicate that the feature may not be very discriminative since it is not 

selected in the data reduction step, but it has different information that we can exploit to 
distinguish Ransomware behavior, even if it does not meet correlation criteria. The two methods 

that we combined are Permutation Feature Importance (PFI) in addition to the use of a new 

technique inspired by TF-IDF. The latter is used in various domains, especially in Natural 

Language Processing (NLP). It evaluates the importance of terms in the textual corpus by 
calculating TF and IDF. 

 

3.3.1. Feature Importance based on Call Frequency and References (FICFR) 

 
We propose the FICFR technique to extract the most important features frequently called 
Ransomware. As seen in the previous section, the API calls resulting from the data reduction step 
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𝐹𝑓 = 𝑖  𝑖 

only describe Benignware behaviour. To address this issue, we propose a technique inspired by 

TF-IDF to calculate a score for each feature that describes its importance concerning 
Ransomware. A feature is considered important if its call frequency is higher by Ransomware 

and it was referenced by almost all Ransomware,in contrast to Benignware. 

Mathematically we define the formulas that calculate the required scores as follows: 

1- Feature importance regarding its call frequency by Ransomware: 

  ∑𝑅 𝑓𝑖 
∑𝑅 𝑓𝑖+∑𝐵 𝑓𝑗 …(1) where 𝑅 𝑓 is the sum of the feature𝑓 calls by all Ransomware and 

𝑖 𝑗 
(∑𝑅 𝑓𝑖 + ∑𝐵 𝑓𝑗) is the sum of 𝑓 calls by both Ransomware and Benignware. 

𝑖 𝑗 

2- Feature importance regarding its references by Ransomware samples: 
∑𝑅 𝐶𝑖−∑𝐵 𝐶𝑗 

𝐹𝑐 =  𝑖 𝑗  …(2) where   ∑𝑅 𝐶𝑖 − ∑𝐵 𝐶𝑗 is the number of F calls by Benignware 
𝑁/2 𝑖 𝑗 

subtracted from the number of F calls done by Ransomware, and N is the number of all 

samples. 

 

The score Ff belongs to the range of 0 and 1, and it approaches 1 if the call frequency of the 

feature F is very small with Benignware, making it very useful to describe Ransomware 
behaviour. On the other hand, the score Fc in the second equation belongs to the range of -1 and 

1. It takes negative values if the feature was called by a greater number of Benignware compared 

to Ransomware callers. In this case, the feature is not useful because we need to find the features 

called specifically by Ransomware. The Score Fc approaches 1 if the features were called by 
almost all Ransomware. The final score, which indicates the importance of a feature in describing 

Ransomware behaviour, is calculated as follows:𝐹𝑟 = 𝐹𝑓 ∗ 𝐹𝑐…(3) 

 

3.3.2. Feature selection using the combination between PFI and FICFR 
 

To select the most important features to describe both Ransomware and Benignware behaviours, 

we follow the process depicted in Figure 1 and described below: 

 

1- Apply the PFI technique to the obtained data from the data reduction step, which allows for 

selecting the most salient features that contribute efficiently to the classification. 

 

2- Select the important features regarding Ransomware behaviour, which is done by: 

a. Normalizing the data using a non-linear method, 
b. Reducing the data by combining Spearman and Kendall. Firstly, we use Spearman 

correlation with a threshold of 0.85 to keep non-redundant features. Then, we usethe 

Kendall correlation between features and targets with a weak threshold (0.1) to delete 

noise. 

c. Calculating the importance of features against Ransomware using FICFR. 
d. Selecting features with a FICFR score greater than a fixed threshold (0.1 fixed after 

experimentation). 

∑ 
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Figure 1. feature selection process 

 

3- Combine the first part of features from step 1 with the part of features obtained from step 2. 
We call the resulting set of features RB important features. 

4- Run Ransomware detection using RB important features and track the ML algorithm that 

gives the best performance. 

5- Run PFI again on the ML algorithm selected in step 4 with RB important features and select 
the features that have a PFI score greater than 0. The obtained set of features, which we call 

RB salient features, are the last and the most important features used to perform Ransomware 

detection. 
 

Table 2. List of salient features for Ransomware and Benignware. 

 
Ransomware Benignware 

Behavior APIs Behaviour APIs 

Client-Server CsrClientCallServer Synchronization NtWaitForSingleObject, 
NtOpenMutant 

Processes RtlDestroyProcessParameter 

s, 

RtlCreateProcessParameters 
Ex 

Painting and 

Drawing 

LockWindowUpdate 

Memory RtlMoveMemory Buffer 
Manipulation 

memcpy_s 

Loader LdrLockLoaderLock Loader LdrQueryImageFile- 
ExecutionOptions 

Directory and 
Paths 

RtlDosPathNameToNtPath 
Name_U 

Keyboard and 
Mouse Input 

GetLastInputInfo 

Security 
Descriptors 

RtlGetOwnerSecurityDescripto 
r 

Messages and 
Message Queues 

InSendMessageEx 

Globalization 
Services 

GetStringTypeW Heaps RtlReAllocateHeap 
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According to the results shown in section 4.4.3.3, the best performance reaches 99.81% after K- 

fold cross-validation (k=10) using MLP with only 16 features (data reduction rate = 99.69%) that 
describe both Ransomware and Benignware behaviour. Table 2 shows the RB salient features. 

The last obtained features are the most discriminative system calls. They are related to window 

drawing and message passing, process loading, memory manipulation, etc. On the other hand, we 
did not find some API calls indicated in the literature, such as CryptDeriveKey, GetUserName, 

socket, etc. This is likely due to the diversity of our dataset. The most relevant features listed by 

their importance are: 

 
 Ldr Query Image File Execution Options: This API is called only by almost all of 

Benignware, which makes it a very discriminative feature. It is mainly used to enable debug 

mode or to modify the default application that opens a specified file type in the Windows 
registry. Therefore, Ransomware typically does not enable debug mode or modify default 

applications to run with specific file types. 

 Nt Wait For Single Object: Waits are necessary to synchronize states across threads. This API 

is more commonly called Benignware samples. 

 Get Last Input Info: This API is used for idle detection and indicates the need for interaction 

using the keyboard, mouse, screen, etc. Ransomware typically does not require any interaction 

with the user, unlike many Benignware applications. Therefore, it is unlikely that 
Ransomware would use this API 

 In Send Message Ex: This API is frequently called by many Benignware applications to check 

whether the window of the current application is handling a message sent by another thread. 
This is useful for processing the results of threads and checking their state if they are blocked 

 memcpy_s: This API is used to copy a memory block from one location to another. It is 

frequently called by many Benignware applications as an alternative to the memcpy and 
memmove APIs. 

 Ldr Lock Loader Lock: This API is called by a higher number of Ransomware samples. It 

attempts to enter the critical section known as the loader lock. Once the lock is acquired, the 

running process can execute code inside DllMain 
 RtlDestroyProcessParameters: This API is used by a higher number of Ransomware samples. 

It is used to release the memory occupied by the parameters passed to the desired process. 

 RtlCreateProcessParametersEx: Used by a larger number of Ransomware and a very small 
number of Benignware, this can be used in conjunction with other APIs such as 

NtCreateProcessEx and VirtualAllocEx to initiate and run an altered process for malicious 

purposes. 
 RtlGetOwnerSecurityDescriptor: Called at a higher frequency by almost all Ransomware. It 

returns a pointer to the security identifier (SID) of the owner. The malicious application 

determines who can access the securable object and which operations can be performed on 

this resource. 
 LockWindowUpdate: Called by Benignware to control drawing on windows and their 

children. 

 CsrClientCallServer: This is called by almost all Ransomware. It invokes routines from the 
Client Server Runtime Subsystem (CSRSS), which is primarily responsible for Win32 console 

handling and GUI shutdown. 
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4. RESULTS AND DISCUSSION 

In this section, we present the process of constructing the dataset and collecting the data. 

Afterwards, we discuss the impact of selecting different methods and algorithms when building 

our ransomware detection model. We want to emphasize that k-fold cross-validation with k = 10 
is used to evaluate the effectiveness of all the models we have built. Additionally, we will 

measure the performance based on the accuracy criterion given by the following formula:𝑐𝑐 = 
(𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁). 

 

4.1. ML algorithms 
 

During the experimentations, we use 8 ML classification techniques namely Decision tree, 

Adaboost, MLP, RF, XGB, SVM, Logistic regression, and light GBM. The hyperparameters of 

used ML algorithms are selected using hyperparameter tuning provided by sci-kit-learn to 
perform an exhaustive search over specified parameter values for an estimator. For each ML 

algorithm, we provide the   hyperparameter values to keep a trade-off between its performance 

and the computational cost as follows: 

 
 Decision tree: the main hyperparameter is Maxdepth, the selected value is 80 when the whole 

features (5194 features) are processed. However, after data reduction, we don’t specify this 

hyperparameter since we deal with a dozen of features. This allows the tree to split until all 
leaves are pure. 

 Adaboost: we selected theDecision tree as the type of weak learner with a Max depth equal to 
60 before data reduction and not specified after. Then, we provide 90 as numbers of 

theestimator. 

  Random forest: the selected value of Max depth is 65 before data reduction and not specified 
after, 90 estimators, and true for the use of bootstrap to improve the stability of the model. 

 XGBoost and Light GBM: we select 45 for Max depthbefore data reduction and not specified 

after, 100 estimators, and learning rateequal to 0.1 to geta an acceptable generalization ability 
of the model. 

 SVM: we chose the use of linear kernel and the selected value of regularization parameter that 

equals to 1.2 to get better trade-off between the training and testing errors. Then, we put the 

hyperparameter ‘shrinking’ to true to speed up the training process. 

 Logistic regression: we select L1 for the penalty parameter before data reduction and L2 after 

to prevent the model from overfitting. Then, we put theinverse regularization strength to 100.0 

for weak regularization. 

 MLP: we use two hidden layers where the size of the first one is 200 units and the second is 

100 units. Then, we select the activation function ‘tanh’, the default Maximum number of 

iterations (200), and the strength of the L2 regularization term equals 0.00001. 
 

4.2. Construction of dataset 
 

This section presents the details of sample download, their execution, and API call collection. 

 

4.2.1. Collection of Benignware and Ransomware 
 

Data collection is a critical operation that requires selecting appropriate samples to include in the 

study. Firstly, we downloaded 270 samples of both Ransomware and Benignware to create a 
balanced and diversified dataset. Then, we downloaded ransomware samples from Any.Run, 

VirusShare, and the Free Automated Malware Analysis Service/Hybrid Analysis dataset. We 

selected 12 well-known and recent ransomware families, such as WannaCry, CryptoLocker, etc., 
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as depicted in Table 3. On the other hand, we downloaded 270 Benignware samples of various 

categories from majorgeeks.com and portableapps.com. We selected almost all categories of 
Benignware to ensure dataset diversity on the one hand and to focus on some kind of application 

that shares features with ransomware such as encryption, compression, intense access to the file 

system manager, and network usage. Table 3 shows the categories of Benignware and the 
families of Ransomware included in our dataset, available in [41]. 

 
Table 3. The content of the dataset. 

 
Ransomware Benignware 

Ransomware Family # of Sample Benignware category # of Sample 

CryptoLocker 13 File and Disk Managers 32 

CryptoWall 35 File compression 11 

CTBLocker 27 File Lock & Encryption 21 

Filecoder 20 Networking 22 

GPCode 10 System information tools 11 

Jaff 6 Calculators And Math 18 

Petya 11 Calendars, Reminders & Notes 21 

Reveton 24 Games 16 

TeslaCrypt 45 Internet Tools Sub-Categories 21 

Virlock 33 Malware Removal & Repair 23 

Wannacrypt 8 Multimedia 10 

Xorist 38 Clipboard Tools 20 

/  Browsers Utilities & Tools 22 

/  WordPad and Notepad Alternatives 22 

Total 270 Total 270 

 

4.2.2. Collection of system calls 
 

To capture system calls, we use a tool called API Monitor. It allows monitoring applications and 

captures the system calls of running controlled applications, providing useful features such as 
debugging, parameter decoding, and editing process memory. However, it does not allow 

automatic exportation of captured system calls to a standard format such as CSV or TXT. 

 

Both Ransomware and Benignware are executed in a virtual machine (guest) having: 
 

 Windows 10, 32-bit system with deactivated firewall and security centre. This allows the 

known ransomware to be executed and escape the Windows security system. 

 11 GO of data in the system partition and 1.3 GO of data in a separated partition, this data is a 
set of different file types namely txt, docx, pdf, jpg, png, exe, bat, mp3, and mp4. 

 NAT interface. This is useful to connect the guest to the real machine (host). 

 INetSim, allows malicious samples to send their requests and to give them the impression that 
the machine is connected to a real Internet. 

 API monitor to capture API calls. 
 

We create an instance of a stable version of the guest machine, and then we run each sample of 
both ransomware and benign ware separately in a clean session reinitialized behind every 

execution. Thus, we clean the system from any damages and modifications caused by 

ransomware to ensure that the next execution occurs in similar conditions. Moreover, we 
manually run each benign ware file, whether it is portable or installable, to collect its system 

calls. Once executed, we perform some of its capabilities according to its category, such as 

cloning a disk or compressing some files. This allows us to capture the APIs called while benign 
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applications process data. Additionally, all types of system calls are collected, including those 

referenced for data access and storage, graphics and gaming, Component Object Model, etc. 
Therefore, for each sample, we collect tens of thousands to millions of system calls. The captured 

system calls for both benignware and ransomware are reported in a global CSV file that consists 

of API designations as columns and the number of their calls in rows. Finally, we obtained a 
matrix of 5194 columns/features and 540 rows, which compose the raw data of our dataset. 

 

4.3. Data Normalization 

 
4.3.1. The effect of normalization on the shape of the dataset and the performances 

 

In this experimentation, we demonstrate that the choice of an appropriate normalization method 

acts on the shape of data and makes them more meaningful. Figure 2 plots the shape of a feature 

namely “SetBkMode” before and after its normalization. On the X-axis is placed the number of 
SetBkMode calls, where the Y-axis is the density of calls performed by both Ransomware and 

Benignware samples. The analyzed normalization techniques are robust scaler, power 

transformation using “yeo-johnson”, and Quantile transformation with uniform distribution. In 
the case of linear normalization, the shape of transformed data is the same compared to the 

original one except for the variation of the range. However, the results of non-linear methods 

shown in Figures2(c,d) look more meaningful against the distribution of calls for both malware 

and Benignware. In the case of normalized data using Quantile transformation with uniform 
distribution, almost all ransomware API calls belong to the range [0, 0.6], whereas almost all of 

the Benignware API calls belong to the range [0.4, 1] which makes it more likely to distinguish 

between ransomware and Benignware behaviours. 

 

4.3.2. The effect of normalization on the performances of models 
 

We experiment to show the variation of model performances using different normalization 
methods. We use both linear normalization methods, namely min-max and Clipping (Robust 

Scaler with quantile range=(25-75)), and non-linear methods, namely Power Transformer with 

Yeo-Johnson and Quantile Transformer with both uniform and Gaussian distribution. However, 
before building the ML models, we reduce the data using Spearman correlation. Firstly, we 

eliminate features with a correlation threshold of 0.85. Then, we eliminate features with a 

correlation below 0.48 to the target. We fixed these correlation thresholds after several tests to get 
the maximum model performance. Figure 3 shows that the accuracies obtained with SVM, MLP, 

and Logistic regression are notably improved with non-linear normalization methods. Moreover, 

the highest performance (99.07%) is achieved with MLP and Logistic regression using Power 

Transformer and Quantile Transformer (normal distribution). However, linear normalization 
techniques have little or no effect on the performance of Decision Tree, AdaBoost, Random 

Forest, XGB, and LightGBM. This is due to the presence of outliers in our dataset. 
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a) SetBkMode calls raw shape b) Zoom-inon the shape of SetBkMode calls 
normalized using Robust scaler 

  

c) The shape of SetBkMode calls normalized 

using Power Transformation 

d) SetBkMode calls shape normalized using 
Quantile transformation with uniform 

distribution 
 

Figure 2. The shape of the API calls of SetBkMode before and after its normalization using various 
schemes 

 

 
Figure 3. The effect of data normalization on the performances of ML models. 
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Therefore, the use of MLP in addition to linear ML classification algorithms such as SVM and 

Logistic regression should be applied to non-linearly normalized data. On the other hand, tree- 
based ML algorithms such as Random Forest, XGB, and LightGBM are not affected by data 

normalization. Thus, we continue to use non-linear normalization techniques for the remainder of 

the study. 
 

4.4. Dimensionality Reduction 
 

4.4.1. The selection of Dimensionality reduction technique 

 

The objective of this section is to identify the most suitable dimensionality reduction technique 

that can assist ML models in achieving optimal performance. Figure 4 demonstrates that the 

highest level of data reduction and best performance is achieved by combining the Spearman and 
Kendall correlation methods. The experiment involved filtering out correlated features and 

retaining the most relevant feature with respect to the target. Table 4 outlines the dimensionality 

reduction techniques used in this study, along with their associated thresholds. To eliminate 

redundant data, we group the correlated features and retain only one feature item from each 
group, using a fixed threshold (thresh1). The threshold thresh1 is selected based on multiple 

iterations, and we use the value that yields the best model performance. We note that we could 

not use the Kendall correlation due to the high number of features and its high computational 
complexity (O(n^2)), compared to the O(n log n) complexity of the Spearman correlation. 

 

Table 4. Applied correlation score for dimensionality reduction experimentation. 

 
Corr. 

between 

features 

Th.1 Corr. between 

features and 

target 

Th.2 Best model 

perf. 

The 

modelhavingt 

he best perf. 

Dim. 

reduction 

rate 

Pearson 0.85 Pearson 0.35 98.89% LR and 
LightGBM 

92.43% 

Spearman 0.85 Spearman 0.48 99.07% LR and MLP 96.45% 

Kendall / Kendall 0.52 98.70% MLP and 
SVM 

96.67% 

Spearman 0.85 MI 0.25 99.07% SVM 96.94% 

Spearman 0.85 Kendall 0.55 99.26% MLP 98,71 % 

No reduction / / / 98.70% LightGBM 0.00% 

Next, we aim to remove the features that do not correlate with the target. To achieve this, we 

define a second threshold score (thresh2). As per Table 4, the best performance of 99.26% is 
achieved by MLP using a dimensionality reduction technique that combines Spearman and 

Kendall correlations. After applying the correlation-based feature selection, the number of 

remaining features is 67, which corresponds to only 1.29% of the raw data. 
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Figure 4. The best model performances after the application of dimensionality reduction. 

 

4.4.2. ML classification algorithms VS dimensionalityreduction techniques 

 

Figure 5 illustrates that the choice of dimensionality reduction technique influences the 

performance of the built ML models. The highest performances are obtained by MLP using the 

combination of Spearman and Kendall correlations. However, Adaboost and RF are the most 
affected by data reduction, in contrast to MLP and SVM. 

 

Figure 5. The performances of the ML models were obtained with various data reduction techniques. 

 

Furthermore, the results show that the lowest performances are obtained with Pearson correlation. 

This is because the measure of linear correlation is not necessarily relevant compared to 

Spearman and Kendall, which measure the monotonic relationship. Therefore, using Pearson 
correlation loses some pertinent features when dealing with the target from one side and does not 

perfectly remove redundant features when measuring linear correlation from the other side. 

Additionally, we obtained good performances using either Spearman or its combination with MI. 
However, we cannot favour one over the other except concerning dimensionality reduction, 

which shows better results using the combination of Spearman and MI. Therefore, we conclude 

that the use of MI outperforms the dimensionality reduction techniques that rely on Spearman 

and Pearson correlation. It measures the gained knowledge from features, even if they are not 
correlated, by calculating the distance between their probability distributions. 
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On the other hand, we obtain the highest performances when replacing MI with Kendall 

correlation to measure the relationship between uncorrelated features and the target. This means 
that Kendall is more efficient and robust, as mentioned in the literature [42]. It uses Kendall tau, 

which is based on the concordant and discordant pairs to describe non-linear relationships, which 

are more efficient compared to Spearman rho. In contrast, the use of Kendall correlation affects 
the computing time and the use of the CPU due to its complexity O(n^2). However, although the 

best performances were obtained by MLP with 1.29% of data using the combination of Spearman 

and Kendall, we find that better performances were obtained using almost all ML classification 

algorithms with either Spearman or its combination with MI on 3.06% of data. 

 

4.4.3. Feature selection 
 

In this section, we evaluate the obtained features from the dimensionality reduction, from the 

FICFR technique, and finally from the combination of PFI and FICFR. 

 

4.4.3.1. The evaluation of obtained features from dimensionality reduction 

 

After reducing the data, we were left with 67 highly correlated features with the target vector. 

However, upon further analysis, we discovered that these features only describe Benignware 

behaviours since they were frequently called by almost all of their samples, in contrast to 
Ransomware. Additionally, we found that 51% of these features were related to Windows 

Application UI Development and Graphics API. Therefore, we refined the features by applying 

the PFI technique. Table 5 shows the PFI score assigned to each feature using the MLP 

algorithm. We only maintained features with positive PFI scores. 

 
Table 5. PFI score of important features. 

 
# Feature Behavior PFI 

1 LdrQueryImageFileExecutionOptions Loader (LDR) 0.0969 

2 GetLastInputInfo User Interaction 0.0395 

3 InSendMessageEx Windows and Messages 0.0364 

4 IShellIcon Windows Shell 0.0240 

5 NtWaitForSingleObject Synchronization 0.0123 

6 localtime Windows Internet (WinINet) 0.0111 

7 GetFontData Legacy Graphics 0.0043 

8 _aligned_offset_malloc Memory Allocation 0.0043 

9 LockWindowUpdate Legacy Graphics 0.0037 

10 memcpy_s Buffer Manipulation 0.0024 

11 RtlReAllocateHeap Runtime Library Routines (RTL) 0.0024 

12 GetTextCharsetInfo Internationalization for Windows App 0.0024 

13 OffsetWindowOrgEx Legacy Graphics 0.0024 

14 RtlRunOnceBeginInitialize Runtime library routines (RTL) 0.0018 

15 GetProcessMitigationPolicy Processes and Threads 0.0018 

16 LoadTypeLib Automation 0.0018 

17 GetForegroundWindow Windows and Messages 0.0018 

18 NtFindAtom Atoms 0.0012 

19 malloc Memory Allocation 0.0012 

20 NtCreateTimer Synchronization 0.0012 

21 NtOpenMutant Synchronization 0.0012 

 

Next, we compared the performance obtained with the resulting features from dimensionality 

reduction before and after feature selection using the PFI technique. Figure 6 shows that the 
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performance obtained after using feature selection based on PFI outperformed the previous 

results obtained with reduced data. The maximum performance reached 99.38% using MLP and 
logistic regression. 

 
 

 
Figure 6. performance improvement after feature selection using PFI. 

 

4.4.3.2. Evaluation of features obtained with FICFR technique 
 

As seen in the previous section, the 21 important features are related to the Benignware 

applications. Thus, we apply feature selection using FICFR to obtain descriptors for Ransomware 

behaviour. FICFR is applied on normalized, non-redundant, and cleaned data. Data normalization 
is carried out using a Quantile transformer scheme, redundant data is removed by applying 

Spearman correlation between features, and finally, noisy data is eliminated by applying the 

Kendall correlation between features and target vector. The threshold of the Kendall method is 
slight (0.1) compared to the use of the same correlation technique for dimensionality reduction. 

This choice is justified by the need to filter out noisy data and retain any feature that can provide 

additional information regarding Ransomware behaviour. The noisy data, in this case, refers to 

features that do not have any correlation with the target vector, including the APIs called with the 
same frequency by both Ransomware and Benignware from one side, and called by few samples 

whether they are Ransomware or Benignware from the other side. Therefore, applying FICFR 

allows the selection of highly relevant and frequently called features by Ransomware. 

 

4.4.3.3. Combination of Ransomware and Benignware best descriptors 

 

In this experiment, we combined the important features selected by PFI (21 features) with those 

obtained by FICFR (24 features). As a result, we observed a slight performance improvement and 

achieved a new record of 99.44% using SVM. Once the features were combined, we ran the PFI 

selection method again to select the most relevant features. The results showed a new 
performance record of 99.81% and 99.66% by MLP and SVM respectively after performing K- 

fold cross-validation (k=10). 
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Figure 7. Performance improvement after combining FICFR features and selection using PFI. 

Table 6. Performance measurements using the set of the pertinent features. 

 Precision Recall F1 score Accuracy 

Decision Tree 97,83 97,41 97,95 97,96 

AdaBoost 97,84 100 98,91 99,26 

MLP 99,64 100 99,82 99,81 

RF 98,24 100 99,27 99,07 

XGB 98,21 100 99,09 99,07 

SVM 99,29 100 99,64 99,63 

LR 97,88 100 98,92 98,89 

LightGBM 97,57 100 98,75 98,7 

 

Additionally, we obtained a significant improvement in performance with almost all ML methods 

using only 16 out of 45 features that had a PFI score greater than 0. Figure 7 illustrates the 

performances obtained with the combined features before and after the selection using the PFI 
technique. In addition, table 6 depicts the obtained performance measurements for the different 

ML algorithms applied the set of the pertinent features. 
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a. Explaining individual Ransomware 
classification 

b. Explaining individual Benignware 
classification 

 

Figure 8. Interpretable representation of sample classification using LIME 

Table 7. the statistics of the pertinent feature 

API PFI 

score 

# of 

caller 

(Ransom.) 

# of caller 

(Benign.) 

Means of 

call 

freq.(Ranso 

m.) 

Means of 

call 

freq.(Beni 

gn.) 

LdrQueryImageFileExecutio 
nOptions 

0.475 0 196 0 79.95 

NtWaitForSingleObject 0.302 174 265 52.60 3298.12 

GetLastInputInfo 0.240 0 167 0 2328.23 

InSendMessageEx 0.160 13 187 8.07 19.36 

memcpy_s 0.154 59 259 69.75 2088.04 

LdrLockLoaderLock 0.142 105 39 15.88 46.23 

RtlDestroyProcessParameter 
s 

0.104  
143 

 

62 
 

2.49 
 

2.53 

RtlCreateProcessParameters 
Ex 

0.098  
143 

 

6 
 

2.56 
 

2.50 

RtlGetOwnerSecurityDescri 
ptor 

0.086 227 164 14.26 7.48 

LockWindowUpdate 0.055 3 154 2.67 12.29 

CsrClientCallServer 0.049 209 47 2.64 7.70 

GetStringTypeW 0.012 42 3 2.02 3.33 

RtlMoveMemory 0 30 2 1.20 0.50 

RtlReAllocateHeap 0 108 240 16.67 103.20 

RtlDosPathNameToNtPath 
Name_U 

0 118 44 50.03 179.16 

NtOpenMutant 0 89 223 1.80 5.09 

 

To visualize the explanations and contribution of each feature in the classification, we 

use Local Interpretable Model-agnostic Explanations (LIME). Figures 8a and 8b 

visualize the decision explanations for a Ransomware and Benignware sample respectively. 

Indeed, the features with a high PFI score are the most influential in the classification. Table 7 

shows the statistics of the pertinent features, their PFI score, call frequency, and the number of 

callers whether they are Ransomware or Benignware. 
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The pertinent features described in Table 7 are the most discriminative APIs. However, the 

features with a PFI score of zero for MLP are still useful for other ML algorithms. If we remove 
them, we still achieve an accuracy of 99.81% with MLP, but we note a decrease of nearly 0.1% 

for the other models built with the other ML algorithms. 
 

However, the accuracy achieved with our proposed method surpasses that of the state-of-the-art 

[10, 34, 39, 40]. This can be attributed to our model's ability to process only the most relevant 

features, resulting in improved performance and reduced computational costs. 

 

5. CONCLUSION 

In this study, we began with the idea that we could differentiate between Ransomware and 

Benignware based on their behavior regarding activities such as file renaming and encryption. 

However, these behaviours could also be performed by simple tools for tasks such as file batch 
renaming, partition management, and file encryption. As a result, we arrived at the actual 

discriminative features related to the process and thread levels, such as synchronization, the 

ability to use the Windows registry, debug mode, loader lock, CSRSS server, etc. 

 
To achieve our study, we built a dataset from scratch, collecting Ransomware samples from well- 

known malware collections, as well as various types of Benignware such as file manipulation and 

networking tools. Once we prepared our dataset, we normalized the data using a non-linear 
method and reduced the dimensionality by combining Spearman and Kendall correlation 

techniques. However, the obtained features only described Benignware behaviour, which led us 

to introduce a new feature selection technique called FICFR. This technique selects Ransomware 

features based on their frequency and the number of samples referencing them. 
 

Finally, we built machine learning models using eight different algorithms and achieved 

impressive performance with 99.81% accuracy using MLP and 99.63% using SVM, with only 16 

features. 

 
However, there were some limitations noted during data collection, data reduction, and validation 

of the ML models, which are: 

 

 Collecting System calls from Ransomware was difficult most of the time due to the absence of 
the C&C server. We simulated its existence but not its commands. 

 The complexity of the calculations performed by the data reduction methods to calculate the 
correlation between a thousand features. 

 The feature selection methods always converge towards choosing those that are related to the 

execution of benignware, which led us to propose FICFR to select the relevant features from 

each class. 

 
As feature works we perform the following perspectives: 

 

 Grow up our dataset to include a higher number of Ransomware 

 Createan ML-based module to detect zero-day Ransomware attacks which can be used 

independently or integrated into an anti-virus. 

 We turning toward Dynamic Neural Networks since we get the best performance using MLP 

which is one kind of neural network from one side, and because we believe that there will 
exist other Ransomware families that we need to include in our study from the other side. 
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