
International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

DOI:10.5121/ijcnc.2023.15408 129

RANSOMWARE ATTACK DETECTION BASED ON

PERTINENT SYSTEM CALLS USING MACHINE

LEARNING TECHNIQUES

Ahmed Dib1, Sabri Ghazi2 and Mendjel Mohamed Said Mehdi2

1Networks and Systems laboratory - LRS, Department of Computer Science, Badji

Mokhtar Annaba University, Annaba, Algeria

2Laboratoire de Gestion Electronique de Document – LabGED, Badji

MokhtarAnnabaUniversity Annaba, Algeria

ABSTRACT

In the last few years, the evolution of information technology has resulted in the development of several

interesting and sensitive fields such as the dark Web and cyber-criminality, especially using ransomware

attacks. This paper aims to bring out only critical features and make their observation, or not, in software

behaviour sufficient to decide whether it is ransomware or not. Therefore, we propose a new solution for

ransomware detection based on machine learning algorithms and system calls. First, we introduce our

produced dataset of collected system calls of both ransomware and Benignware. Then, we push pre-
processing steps deeply to reduce efficiently data dimensionality. After that, we introduce a new technique

to select pertinent features. Next, we bring out the critical system calls, their importance and their

contribution to the distinction between dataset elements. Finally, we present our model that achieves an

overall accuracy of 99.81% after K-Fold cross-validation.

KEYWORDS

Ransomware, System calls, Machin learning, Cyber security.

1. INTRODUCTION

Ransomware is a type of malicious software that aims to extort money from its victims by

encrypting their files using various techniques and robust algorithms to make their attacks more
efficient. The attackers provide instructions and a deadline to pay the ransom, which can be a few

hundred dollars on average. Ransomware attacks have been increasing due to the ease of creating

and generating them using various methods and tools. These attacks are facilitated by the

existence of anonymous and untraceable cryptocurrencies on the Internet. Statistics show that
more than 4,000 ransomware attacks are carried out every day [1].

Ransomware-as-a-Service (RAAS) [2] is one of the most commonly used ransomware

generators. It simplifies the process of creating and deploying new ransomware samples,

allowing individuals with little or no knowledge of cybersecurity to create advanced ransomware
variants. The end-user of RAAS specifies certain parameters, such as the ransom amount,

payment instructions, and deadline for payment. RAAS allows for the creation and deployment of

ransomware after certain conditions have been met. Some examples of RAAS instances that have

been discovered since early 2015 include Tox, Fakben, and Radamant [3]. Tox provides a simple
three-step ransomware generator for free, but a portion of the ransom is collected for the benefit

of the service owner.

https://airccse.org/journal/ijc2023.html
https://doi.org/10.5121/ijcnc.2023.15408

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

130

Therefore, a significant amount of effort and research has been conducted to provide reliable

solutions. Static and dynamic features have been defined to identify salient characteristics and
distinguish between benign and malicious applications [4]. Static features are directly extracted

from PE files without execution. The artefact is decompressed, unpacked, disassembled, and, if

necessary, loaded into memory to extract its dump. Several studies have been conducted based on
static feature analysis, including opcodes (operational codes), bytecodes, strings, or Executable

and Linkable Format (ELF) file headers for malware and ransomware detection, for both mobile

and computer systems, as shown in [5, 6, 7, 8, 9]. Conversely, dynamic feature analysis is useful

for overcoming the limitations associated with static features, such as the level and complexity of
artefact obfuscation. Dynamic features are extracted and collected while the ransomware is

running within a protected system, usually in a virtual environment. Numerous studies have

focused on the analysis of dynamic features, such as system/API calls in [10, 11,12], network
traffic in [13, 14, 15], CPU events, load, and memory consumption in [16, 17], and I/O requests

in [18].

Furthermore, machine learning (ML) was widely used for ransomware detection. It is a method

of data analysis that provides a set of interesting algorithms used for learning from data, pattern

recognition, and decision making. Good performances were achieved as a result of involving ML
algorithms in ransomware detection. On one side, ML provides methods based on ensembles

namely bagging, boosting, and stacking. Bagging methods including Random Forest (RF)were

used in several ransomware detection studies. In [19], the author proposed a static analysis based
on the RF method that deals with the extracted features from the artefactraw byte. In [20], the

authors extracted the best features from file system activities, Dynamic Linked Libraries (DLL)

references, and registry activities logs. Then, they performed a dynamic analysis using a set of

ML algorithms including bagging and RF to distinguish between ransomware and Benignware. In
[21], the authors proposed the analysis of API calls to detect various kinds of malware as well as

ransomware. They used tree-based ensemble models including Boosting and Bagging algorithms

such as AdaBoost, XGBoost, and RF. On the other side, several non-ensemble ML algorithms are
used to detect both ransomware and and general types of attacks [22, 23]. Neural Network based

techniques are widely used such as bi-directional Long Short Term Memory (BiLSTM) in [24],

and self-attention-based convolution neural network (SA-CNN) in[25]. Moreover, classical
supervised learning methods are also used in ransomware detection such as Support vector

machines (SVM) in[26],Bayesian Networks and other supervised learning algorithms such as in

[27].

On the other hand, malware analysis studies are usually achieved using collected malware.

Several Web repositories and services allow malicious samples download for free after

registration such as Run [28], VirusShare [29], VirusTotal [30], the Zoo [31], and Free

Automated Malware Analysis Service / Hybrid Analysis. Additionally, they allow a user to
submit suspicious files for scanning and get their analysis reports. This helps to identify new

malicious samples and breaks the spread process of malware. These repositories provide various

types of behavioural reports including PCAP files that store captured network traffic, Indicators
of Compromise (OpenIOC) that give forensic artefacts of an intrusion, Malware Attribute

Enumeration and Characterization (MAEC) [32]which is used for encoding and communicating

high-fidelity information about malware and attacks, and Malware Information Sharing Platform

and Threat Sharing (MISP) reports that are useful for sharing cyber security indicators and threats
within security communities. Therefore, researchers collected the provided samples and reports to

produce their datasets for their specific works such as the use of Hybrid Analysis in the study

[26],Kaggle in [33], Virus Total, Virus Share, and the Zoo in [34], in [35] the authors download
samples from Virus Total and produce a new dataset of API calls publicly available on the

GitHub website [36].

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

131

However, the analysis process of malware produces a high dimensionality set of features. Thus,

data reduction techniques were used for decreasing data in the creation of ML models on one the
hand and carrying out good performances on the other hand. Data dimensionality reduction is an

important pre-processing step that removes incomplete, redundant, irrelevant, and ineffective

data. Moreover, it speeds up the computing process and enhances the accuracy of ML algorithms
that have a column-wise implementation. Most existing ransomware detection studies considered

data dimensionality reduction. They employed a variety of techniques such as Low Variance

Filter, High Correlation Filter, and Principal Component Analysis (PCA), in addition to the use of

some ML algorithms that implicitly performs feature selection such as Random Forests and J48
decision tree. In [14], the authors proposed the selection of the most relevant network packet

features for ransomware detection based on network traffic. They assigned a score to each feature

using the combination of six characteristic correlations namely: gain ratio, information gain,
correlation ranking, One R feature, Relief F ranking, and symmetrical. Four classes of features

were defined according to their correlation score. The class having the highest score interval

contained the lowest number of features and gave the best performances. In [37], the authors

demonstrated that Random forest-based approaches select the most relevant features while
increasing the model performance within an intrusion detection system (IDS).In [33], the authors

used the PCA technique to reduce PE file features for malware detection using deep learning

techniques. In [17], PCA is also employed to reduce hardware performance counters features for
Hardware-Assisted Malware Detection based on ML algorithms. In [20] the authors proposed the

use of a sequential pattern mining technique, namely Mind the Gap: Frequent Sequence Mining

(MG-FSM), to detect the best features for ransomware and Benignware differentiation. They
extracted Maximal Sequential Patterns (MSPs) from three sets of system events namely file

system, DLL, and registry events. After removing outlier sequences, they selected the best three

from nine MSP types that give the best performance when creating their ML model.

Although machine learning can be effective for detecting ransomware, it may also raise ethical

concerns related to biases, privacy, and legal responsibilities. To address these concerns, we

considered the following measures:

 Bias: the collected data is composed of system calls of the main Ransomware families and

Benignware categories to get a balanced and diversified dataset.

 privacy concerns: the proposed technique collects and analyses the API calls provided by the

operating system for each process, focusing only on the type of executed operations, such as
memory allocation, data transmission, etc. without accessing the content or nature of the data.

Furthermore, our study's significant contribution is addressing the danger of ransomware attacks
by employing system calls and machine learning capabilities. Consequently, we proceed to do the

following:

 Introduce a new dataset built from scratch that includes various ransomware families and
Benignware categories. Especially benign samples that share with Ransomware some

capabilities such as file encryption and networking.

 Analyze the impact of various normalization data techniques on the performances of the

different ML algorithms in the context of Ransomware detection.
 Analyze the impact of various dimensionality reduction techniques on the rate of data

reduction and the performances of the different ML algorithms.

 Select the pertinent features to describe the behaviour of both Ransomware and Benignware.
In this part, we propose a new technique inspired by TF-IDF to select important features

regarding their use by Ransomware.

 Build ML models using 8 ML algorithms.

 Quantify the contribution of each pertinent feature in the classification process.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

132

The remainder of this paper is organized as follows: Section 2 presents related work. In Section

3, we describe the steps followed to clean up the dataset, the proposed technique, and the
development of the ML models. Section 4 covers the dataset construction phase, experimentation,

and the obtained results. Finally, Section 5 concludes this study.

2. RELATED WORK

Ransomware detection based on system calls has been the subject of many recent studies. In [43],

the analysis of API call frequencies is proposed to detect 14 strains of ransomware by identifying

their salient features. The API calls of several benign applications are collected and compared to
the API calls of ransomware using Fisher exact tests on a contingency table. This technique is

proposed to distinguish between the behaviour of 14 ransomware samples from different families

and the behaviour of some benign activities such as installing and running Word, Excel, Apache,
etc. However, we believe that there is a lack of ransomware samples on one side, and suspicious

behaviours should be included in the benign activities on the other side, such as file compression,

encryption, and network traffic exchange. This will enable the identification of salient

discriminative features and filter out the common ones.

In [34], the use of a reverse engineering framework is proposed for ransomware detection based

on machine learning algorithms. After converting binary files to hexadecimal, Cosine similarity

is used to extract the DLL level and expected API calls. The detection process is done based on

several machine learning algorithms such as Bayesian Network, Logistic Regression, and
Adaboost combined with Random Forest. However, the authors did not discuss the impact of

using anti-reverse engineering techniques on their proposed technique [38]. Anti-debugging and

anti-reverse engineering provide techniques such as code obfuscation and binary file packing to
encrypt ransomware payloads, anddisrupt and impede the process of reverse engineering.

In [39], a machine learning-based framework is proposed for ransomware detection. The authors

created their dataset using 83 ransomware samples from different families and 84 benignware

samples from various categories. They used API call flows graph (CFG) to calculate the

frequency of consecutive API calls and built machine learning models, including RF, SVM,
Naïve Bayes, and Simple Logistics (SL). The highest accuracy achieved was 98.2% with SL built

on 3000 features. However, the authors did not provide information about the selected features or

their relationship with ransomware activities.

In [40], ransomware behaviour is modelled using a combination of static analysis, trap layer, and
dynamic analysis. From the static analysis, information is gathered from the PE header,

embedded resources, packers and cryptos, embedded strings, etc. The trap layer checks for the

modification of a set of special files, known as "honey files and directories," which are not

expected to be modified during regular operations. Suspicious behaviour, such as Windows
cryptographic API usage, is reported. During dynamic analysis, I/O Request Packets (IRP) are

collected from the file system I/O manager. Only certain requests, such as file read and write

operations, are included in the feature vector. ML models are then built to classify ransomware
and benignware based on the collected features that describe their behaviours. The study was

conducted using 574 ransomware samples from different families and 442 benignware samples.

The achieved True Positive Rate was 98.25% using the Gradient Tree Boosting Algorithm.
However, the authors did not provide details on how they built the ML models or processed the

data.

In [10], a solution is proposed to distinguish ransomware from other types of malware and benign

applications. First, n-gram sets of API call sequences are generated for file manipulation
operations only. Then, feature vectors are produced using Class Frequency - Non-Class

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

133

Frequency (CF-NCF), which provides classification indicators. This technique is based on the

Term Frequency - Inverse Document Frequency (TF-IDF) intended to reflect the importance of a
word to a document in a corpus. Finally, machine learning models are built on a weighted n-gram

vector resulting from multiplying the n-gram data by the weight value obtained from CF-NCF.

Six machine learning classifiers are evaluated, including Random Forest, which achieves the
highest accuracy rate of 98.65%. However, the authors did not provide further details about the

dataset, which includes 1000 ransomware, 900 malware, and only 300 benign applications.

3. METHODOLOGY

This section describes the steps performed to create ML models for ransomware detection. First,

we describe the steps of data normalization, data reduction, and feature selection. Then, we

highlight the interpretability of the most significant features. Finally, we present and discuss our
proposed ML model.

3.1. Dataset normalization

Data normalization is a crucial step to improve the performance of machine learning models by

making the features on a similar scale. We use one of the available methods for rescaling the

entire numeric data, depending on the implemented ML classification algorithms. These data

normalization techniques can be either linear or non-linear. Linear techniques such as Min-Max
and Clipping are sensitive to the presence of outliers and are well-supported by tree-based ML

algorithms. On the other hand, non-linear methods such as Quantile Transformer and Power

Scaler are more beneficial for ML classification algorithms like logistic regression and linear
SVM that perform well with regression problems. Non-linear data normalization methods can

handle outliers and put data under well-known distributions such as uniform and Gaussian-like.

Therefore, we first check if the dataset contains outliers and then conduct experiments to check
the impact of choosing one normalization technique over another. We find an important variation

in the number of system calls, and according to the experimentation shown in section 4.3.2, non-

linear normalization techniques give the best performance. Thus, we normalize our dataset using

one of the non-linear data normalization techniques, which can handle almost all ML
classifications and support some data reduction and feature selection methods such as mutual

information, which perform well with well-known distribution data.

3.2. Dimensionality Reduction

This step aims to remove irrelevant and redundant data from the dataset and select the most
important features for Ransomware detection. We focus on reducing dimensionality using filter-

based feature selection methods. In the case of system calls, redundant data is produced when a

set of API calls is invoked together This usually occurs when opening and closing connections,
manipulating windows, exchanging data, and so on. Table 1 shows examples of highly correlated

API calls.

Table 1. Examples of highly correlated APIs

Redundant APIs call Description

1 dllonexit, _lock, _unlock Functions of process management

belongingto C++ runtime library
‘msvcrxx.dll’

2 CreateThread, CreateWindowExW To create windows using threads

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

134

To reduce data dimensionality, we first remove redundant data by keeping only one item from

each set of highly correlated features. Next, we select the relevant features by retaining the ones
most correlated with the output vector. To determine the most appropriate dimensionality

reduction technique that yields the best performance with the lowest number of features, we

conduct experiments using various correlation methods. Specifically, we use Pearson, Spearman,
and Kendall correlation to measure linear and monotonic relationships, as well as Mutual

Information to measure the information score gained between features and the target. The best

results, as shown in section 4.4.1, are obtained by applying the Spearman correlation between

features and the Kendall correlation between features and the target. The best performance
achieved is 99.26%, with a dimensionality reduction of 98.71%, which corresponds to 67 out of

5194 features. Spearman correlation is used between features, while Kendall correlation is

applied between the remaining features and the target. The use of Kendall correlation allowed us
to detect other relevant features that cannot be detected using Spearman and Mutual Information.

Kendall correlation uses a more robust distance based on concordant and discordant pairs to

describe the relationship between the target and features.

However, the combination of Spearman and MI provides good performance for almost all ML

classification algorithms. This combination makes use of the monotonic correlation between

features on one hand, and the gained information between features and target by calculating the

distance of their distribution on the other hand. This results in a good dimensionality reduction
rate (96.94%) because we exclude features with low MI-scores even if they are moderately

correlated with the target.

3.3. Feature selection

Feature selection is an important step to validate the inputs of ML models. It is ideal to reduce the

number of features while keeping the best performance to obtain the necessary set of features to

distinguish between Ransomware and Benignware. However, in our case, when we reduced

features by applying Spearman and Kendall correlations, we had to choose an extreme threshold
to achieve a high reduction rate. As a result, upon analysing the reduced features, we found that:

 More than half of the features are related to graphical interface manipulation (24% Graphics
and gaming, 31% Windows application UI development).

 All reduced features are captured from Benignware executions.

Thus, we should exclude, as possible, the use of system calls related to graphical interface

manipulation from one side and involve more features that typify Ransomware and describe their

behaviour from the other side. It is mandatory to focus on what happened exactly with the file

system, network, and services regarding both Ransomware and Benignware. For this purpose, we
propose the combination of two methods to select the most important and 'special' features. The

word 'special' is used to indicate that the feature may not be very discriminative since it is not

selected in the data reduction step, but it has different information that we can exploit to
distinguish Ransomware behavior, even if it does not meet correlation criteria. The two methods

that we combined are Permutation Feature Importance (PFI) in addition to the use of a new

technique inspired by TF-IDF. The latter is used in various domains, especially in Natural

Language Processing (NLP). It evaluates the importance of terms in the textual corpus by
calculating TF and IDF.

3.3.1. Feature Importance based on Call Frequency and References (FICFR)

We propose the FICFR technique to extract the most important features frequently called
Ransomware. As seen in the previous section, the API calls resulting from the data reduction step

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

135

𝐹𝑓 = 𝑖 𝑖

only describe Benignware behaviour. To address this issue, we propose a technique inspired by

TF-IDF to calculate a score for each feature that describes its importance concerning
Ransomware. A feature is considered important if its call frequency is higher by Ransomware

and it was referenced by almost all Ransomware,in contrast to Benignware.

Mathematically we define the formulas that calculate the required scores as follows:

1- Feature importance regarding its call frequency by Ransomware:

 ∑𝑅 𝑓𝑖
∑𝑅 𝑓𝑖+∑𝐵 𝑓𝑗 …(1) where 𝑅 𝑓 is the sum of the feature𝑓 calls by all Ransomware and

𝑖 𝑗
(∑𝑅 𝑓𝑖 + ∑𝐵 𝑓𝑗) is the sum of 𝑓 calls by both Ransomware and Benignware.

𝑖 𝑗

2- Feature importance regarding its references by Ransomware samples:
∑𝑅 𝐶𝑖−∑𝐵 𝐶𝑗

𝐹𝑐 = 𝑖 𝑗 …(2) where ∑𝑅 𝐶𝑖 − ∑𝐵 𝐶𝑗 is the number of F calls by Benignware
𝑁/2 𝑖 𝑗

subtracted from the number of F calls done by Ransomware, and N is the number of all

samples.

The score Ff belongs to the range of 0 and 1, and it approaches 1 if the call frequency of the

feature F is very small with Benignware, making it very useful to describe Ransomware
behaviour. On the other hand, the score Fc in the second equation belongs to the range of -1 and

1. It takes negative values if the feature was called by a greater number of Benignware compared

to Ransomware callers. In this case, the feature is not useful because we need to find the features

called specifically by Ransomware. The Score Fc approaches 1 if the features were called by
almost all Ransomware. The final score, which indicates the importance of a feature in describing

Ransomware behaviour, is calculated as follows:𝐹𝑟 = 𝐹𝑓 ∗ 𝐹𝑐…(3)

3.3.2. Feature selection using the combination between PFI and FICFR

To select the most important features to describe both Ransomware and Benignware behaviours,

we follow the process depicted in Figure 1 and described below:

1- Apply the PFI technique to the obtained data from the data reduction step, which allows for

selecting the most salient features that contribute efficiently to the classification.

2- Select the important features regarding Ransomware behaviour, which is done by:

a. Normalizing the data using a non-linear method,
b. Reducing the data by combining Spearman and Kendall. Firstly, we use Spearman

correlation with a threshold of 0.85 to keep non-redundant features. Then, we usethe

Kendall correlation between features and targets with a weak threshold (0.1) to delete

noise.

c. Calculating the importance of features against Ransomware using FICFR.
d. Selecting features with a FICFR score greater than a fixed threshold (0.1 fixed after

experimentation).

∑

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

136

Figure 1. feature selection process

3- Combine the first part of features from step 1 with the part of features obtained from step 2.
We call the resulting set of features RB important features.

4- Run Ransomware detection using RB important features and track the ML algorithm that

gives the best performance.

5- Run PFI again on the ML algorithm selected in step 4 with RB important features and select
the features that have a PFI score greater than 0. The obtained set of features, which we call

RB salient features, are the last and the most important features used to perform Ransomware

detection.

Table 2. List of salient features for Ransomware and Benignware.

Ransomware Benignware

Behavior APIs Behaviour APIs

Client-Server CsrClientCallServer Synchronization NtWaitForSingleObject,
NtOpenMutant

Processes RtlDestroyProcessParameter

s,

RtlCreateProcessParameters
Ex

Painting and

Drawing

LockWindowUpdate

Memory RtlMoveMemory Buffer
Manipulation

memcpy_s

Loader LdrLockLoaderLock Loader LdrQueryImageFile-
ExecutionOptions

Directory and
Paths

RtlDosPathNameToNtPath
Name_U

Keyboard and
Mouse Input

GetLastInputInfo

Security
Descriptors

RtlGetOwnerSecurityDescripto
r

Messages and
Message Queues

InSendMessageEx

Globalization
Services

GetStringTypeW Heaps RtlReAllocateHeap

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

137

According to the results shown in section 4.4.3.3, the best performance reaches 99.81% after K-

fold cross-validation (k=10) using MLP with only 16 features (data reduction rate = 99.69%) that
describe both Ransomware and Benignware behaviour. Table 2 shows the RB salient features.

The last obtained features are the most discriminative system calls. They are related to window

drawing and message passing, process loading, memory manipulation, etc. On the other hand, we
did not find some API calls indicated in the literature, such as CryptDeriveKey, GetUserName,

socket, etc. This is likely due to the diversity of our dataset. The most relevant features listed by

their importance are:

 Ldr Query Image File Execution Options: This API is called only by almost all of

Benignware, which makes it a very discriminative feature. It is mainly used to enable debug

mode or to modify the default application that opens a specified file type in the Windows
registry. Therefore, Ransomware typically does not enable debug mode or modify default

applications to run with specific file types.

 Nt Wait For Single Object: Waits are necessary to synchronize states across threads. This API

is more commonly called Benignware samples.

 Get Last Input Info: This API is used for idle detection and indicates the need for interaction

using the keyboard, mouse, screen, etc. Ransomware typically does not require any interaction

with the user, unlike many Benignware applications. Therefore, it is unlikely that
Ransomware would use this API

 In Send Message Ex: This API is frequently called by many Benignware applications to check

whether the window of the current application is handling a message sent by another thread.
This is useful for processing the results of threads and checking their state if they are blocked

 memcpy_s: This API is used to copy a memory block from one location to another. It is

frequently called by many Benignware applications as an alternative to the memcpy and
memmove APIs.

 Ldr Lock Loader Lock: This API is called by a higher number of Ransomware samples. It

attempts to enter the critical section known as the loader lock. Once the lock is acquired, the

running process can execute code inside DllMain
 RtlDestroyProcessParameters: This API is used by a higher number of Ransomware samples.

It is used to release the memory occupied by the parameters passed to the desired process.

 RtlCreateProcessParametersEx: Used by a larger number of Ransomware and a very small
number of Benignware, this can be used in conjunction with other APIs such as

NtCreateProcessEx and VirtualAllocEx to initiate and run an altered process for malicious

purposes.
 RtlGetOwnerSecurityDescriptor: Called at a higher frequency by almost all Ransomware. It

returns a pointer to the security identifier (SID) of the owner. The malicious application

determines who can access the securable object and which operations can be performed on

this resource.
 LockWindowUpdate: Called by Benignware to control drawing on windows and their

children.

 CsrClientCallServer: This is called by almost all Ransomware. It invokes routines from the
Client Server Runtime Subsystem (CSRSS), which is primarily responsible for Win32 console

handling and GUI shutdown.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

138

4. RESULTS AND DISCUSSION

In this section, we present the process of constructing the dataset and collecting the data.

Afterwards, we discuss the impact of selecting different methods and algorithms when building

our ransomware detection model. We want to emphasize that k-fold cross-validation with k = 10
is used to evaluate the effectiveness of all the models we have built. Additionally, we will

measure the performance based on the accuracy criterion given by the following formula:𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁).

4.1. ML algorithms

During the experimentations, we use 8 ML classification techniques namely Decision tree,

Adaboost, MLP, RF, XGB, SVM, Logistic regression, and light GBM. The hyperparameters of

used ML algorithms are selected using hyperparameter tuning provided by sci-kit-learn to
perform an exhaustive search over specified parameter values for an estimator. For each ML

algorithm, we provide the hyperparameter values to keep a trade-off between its performance

and the computational cost as follows:

 Decision tree: the main hyperparameter is Maxdepth, the selected value is 80 when the whole

features (5194 features) are processed. However, after data reduction, we don’t specify this

hyperparameter since we deal with a dozen of features. This allows the tree to split until all
leaves are pure.

 Adaboost: we selected theDecision tree as the type of weak learner with a Max depth equal to
60 before data reduction and not specified after. Then, we provide 90 as numbers of

theestimator.

 Random forest: the selected value of Max depth is 65 before data reduction and not specified
after, 90 estimators, and true for the use of bootstrap to improve the stability of the model.

 XGBoost and Light GBM: we select 45 for Max depthbefore data reduction and not specified

after, 100 estimators, and learning rateequal to 0.1 to geta an acceptable generalization ability
of the model.

 SVM: we chose the use of linear kernel and the selected value of regularization parameter that

equals to 1.2 to get better trade-off between the training and testing errors. Then, we put the

hyperparameter ‘shrinking’ to true to speed up the training process.

 Logistic regression: we select L1 for the penalty parameter before data reduction and L2 after

to prevent the model from overfitting. Then, we put theinverse regularization strength to 100.0

for weak regularization.

 MLP: we use two hidden layers where the size of the first one is 200 units and the second is

100 units. Then, we select the activation function ‘tanh’, the default Maximum number of

iterations (200), and the strength of the L2 regularization term equals 0.00001.

4.2. Construction of dataset

This section presents the details of sample download, their execution, and API call collection.

4.2.1. Collection of Benignware and Ransomware

Data collection is a critical operation that requires selecting appropriate samples to include in the

study. Firstly, we downloaded 270 samples of both Ransomware and Benignware to create a
balanced and diversified dataset. Then, we downloaded ransomware samples from Any.Run,

VirusShare, and the Free Automated Malware Analysis Service/Hybrid Analysis dataset. We

selected 12 well-known and recent ransomware families, such as WannaCry, CryptoLocker, etc.,

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

139

as depicted in Table 3. On the other hand, we downloaded 270 Benignware samples of various

categories from majorgeeks.com and portableapps.com. We selected almost all categories of
Benignware to ensure dataset diversity on the one hand and to focus on some kind of application

that shares features with ransomware such as encryption, compression, intense access to the file

system manager, and network usage. Table 3 shows the categories of Benignware and the
families of Ransomware included in our dataset, available in [41].

Table 3. The content of the dataset.

Ransomware Benignware

Ransomware Family # of Sample Benignware category # of Sample

CryptoLocker 13 File and Disk Managers 32

CryptoWall 35 File compression 11

CTBLocker 27 File Lock & Encryption 21

Filecoder 20 Networking 22

GPCode 10 System information tools 11

Jaff 6 Calculators And Math 18

Petya 11 Calendars, Reminders & Notes 21

Reveton 24 Games 16

TeslaCrypt 45 Internet Tools Sub-Categories 21

Virlock 33 Malware Removal & Repair 23

Wannacrypt 8 Multimedia 10

Xorist 38 Clipboard Tools 20

/ Browsers Utilities & Tools 22

/ WordPad and Notepad Alternatives 22

Total 270 Total 270

4.2.2. Collection of system calls

To capture system calls, we use a tool called API Monitor. It allows monitoring applications and

captures the system calls of running controlled applications, providing useful features such as
debugging, parameter decoding, and editing process memory. However, it does not allow

automatic exportation of captured system calls to a standard format such as CSV or TXT.

Both Ransomware and Benignware are executed in a virtual machine (guest) having:

 Windows 10, 32-bit system with deactivated firewall and security centre. This allows the

known ransomware to be executed and escape the Windows security system.

 11 GO of data in the system partition and 1.3 GO of data in a separated partition, this data is a
set of different file types namely txt, docx, pdf, jpg, png, exe, bat, mp3, and mp4.

 NAT interface. This is useful to connect the guest to the real machine (host).

 INetSim, allows malicious samples to send their requests and to give them the impression that
the machine is connected to a real Internet.

 API monitor to capture API calls.

We create an instance of a stable version of the guest machine, and then we run each sample of
both ransomware and benign ware separately in a clean session reinitialized behind every

execution. Thus, we clean the system from any damages and modifications caused by

ransomware to ensure that the next execution occurs in similar conditions. Moreover, we
manually run each benign ware file, whether it is portable or installable, to collect its system

calls. Once executed, we perform some of its capabilities according to its category, such as

cloning a disk or compressing some files. This allows us to capture the APIs called while benign

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

140

applications process data. Additionally, all types of system calls are collected, including those

referenced for data access and storage, graphics and gaming, Component Object Model, etc.
Therefore, for each sample, we collect tens of thousands to millions of system calls. The captured

system calls for both benignware and ransomware are reported in a global CSV file that consists

of API designations as columns and the number of their calls in rows. Finally, we obtained a
matrix of 5194 columns/features and 540 rows, which compose the raw data of our dataset.

4.3. Data Normalization

4.3.1. The effect of normalization on the shape of the dataset and the performances

In this experimentation, we demonstrate that the choice of an appropriate normalization method

acts on the shape of data and makes them more meaningful. Figure 2 plots the shape of a feature

namely “SetBkMode” before and after its normalization. On the X-axis is placed the number of
SetBkMode calls, where the Y-axis is the density of calls performed by both Ransomware and

Benignware samples. The analyzed normalization techniques are robust scaler, power

transformation using “yeo-johnson”, and Quantile transformation with uniform distribution. In
the case of linear normalization, the shape of transformed data is the same compared to the

original one except for the variation of the range. However, the results of non-linear methods

shown in Figures2(c,d) look more meaningful against the distribution of calls for both malware

and Benignware. In the case of normalized data using Quantile transformation with uniform
distribution, almost all ransomware API calls belong to the range [0, 0.6], whereas almost all of

the Benignware API calls belong to the range [0.4, 1] which makes it more likely to distinguish

between ransomware and Benignware behaviours.

4.3.2. The effect of normalization on the performances of models

We experiment to show the variation of model performances using different normalization
methods. We use both linear normalization methods, namely min-max and Clipping (Robust

Scaler with quantile range=(25-75)), and non-linear methods, namely Power Transformer with

Yeo-Johnson and Quantile Transformer with both uniform and Gaussian distribution. However,
before building the ML models, we reduce the data using Spearman correlation. Firstly, we

eliminate features with a correlation threshold of 0.85. Then, we eliminate features with a

correlation below 0.48 to the target. We fixed these correlation thresholds after several tests to get
the maximum model performance. Figure 3 shows that the accuracies obtained with SVM, MLP,

and Logistic regression are notably improved with non-linear normalization methods. Moreover,

the highest performance (99.07%) is achieved with MLP and Logistic regression using Power

Transformer and Quantile Transformer (normal distribution). However, linear normalization
techniques have little or no effect on the performance of Decision Tree, AdaBoost, Random

Forest, XGB, and LightGBM. This is due to the presence of outliers in our dataset.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

141

a) SetBkMode calls raw shape b) Zoom-inon the shape of SetBkMode calls
normalized using Robust scaler

c) The shape of SetBkMode calls normalized

using Power Transformation

d) SetBkMode calls shape normalized using
Quantile transformation with uniform

distribution

Figure 2. The shape of the API calls of SetBkMode before and after its normalization using various
schemes

Figure 3. The effect of data normalization on the performances of ML models.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

142

Therefore, the use of MLP in addition to linear ML classification algorithms such as SVM and

Logistic regression should be applied to non-linearly normalized data. On the other hand, tree-
based ML algorithms such as Random Forest, XGB, and LightGBM are not affected by data

normalization. Thus, we continue to use non-linear normalization techniques for the remainder of

the study.

4.4. Dimensionality Reduction

4.4.1. The selection of Dimensionality reduction technique

The objective of this section is to identify the most suitable dimensionality reduction technique

that can assist ML models in achieving optimal performance. Figure 4 demonstrates that the

highest level of data reduction and best performance is achieved by combining the Spearman and
Kendall correlation methods. The experiment involved filtering out correlated features and

retaining the most relevant feature with respect to the target. Table 4 outlines the dimensionality

reduction techniques used in this study, along with their associated thresholds. To eliminate

redundant data, we group the correlated features and retain only one feature item from each
group, using a fixed threshold (thresh1). The threshold thresh1 is selected based on multiple

iterations, and we use the value that yields the best model performance. We note that we could

not use the Kendall correlation due to the high number of features and its high computational
complexity (O(n^2)), compared to the O(n log n) complexity of the Spearman correlation.

Table 4. Applied correlation score for dimensionality reduction experimentation.

Corr.

between

features

Th.1 Corr. between

features and

target

Th.2 Best model

perf.

The

modelhavingt

he best perf.

Dim.

reduction

rate

Pearson 0.85 Pearson 0.35 98.89% LR and
LightGBM

92.43%

Spearman 0.85 Spearman 0.48 99.07% LR and MLP 96.45%

Kendall / Kendall 0.52 98.70% MLP and
SVM

96.67%

Spearman 0.85 MI 0.25 99.07% SVM 96.94%

Spearman 0.85 Kendall 0.55 99.26% MLP 98,71 %

No reduction / / / 98.70% LightGBM 0.00%

Next, we aim to remove the features that do not correlate with the target. To achieve this, we

define a second threshold score (thresh2). As per Table 4, the best performance of 99.26% is
achieved by MLP using a dimensionality reduction technique that combines Spearman and

Kendall correlations. After applying the correlation-based feature selection, the number of

remaining features is 67, which corresponds to only 1.29% of the raw data.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

143

Figure 4. The best model performances after the application of dimensionality reduction.

4.4.2. ML classification algorithms VS dimensionalityreduction techniques

Figure 5 illustrates that the choice of dimensionality reduction technique influences the

performance of the built ML models. The highest performances are obtained by MLP using the

combination of Spearman and Kendall correlations. However, Adaboost and RF are the most
affected by data reduction, in contrast to MLP and SVM.

Figure 5. The performances of the ML models were obtained with various data reduction techniques.

Furthermore, the results show that the lowest performances are obtained with Pearson correlation.

This is because the measure of linear correlation is not necessarily relevant compared to

Spearman and Kendall, which measure the monotonic relationship. Therefore, using Pearson
correlation loses some pertinent features when dealing with the target from one side and does not

perfectly remove redundant features when measuring linear correlation from the other side.

Additionally, we obtained good performances using either Spearman or its combination with MI.
However, we cannot favour one over the other except concerning dimensionality reduction,

which shows better results using the combination of Spearman and MI. Therefore, we conclude

that the use of MI outperforms the dimensionality reduction techniques that rely on Spearman

and Pearson correlation. It measures the gained knowledge from features, even if they are not
correlated, by calculating the distance between their probability distributions.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

144

On the other hand, we obtain the highest performances when replacing MI with Kendall

correlation to measure the relationship between uncorrelated features and the target. This means
that Kendall is more efficient and robust, as mentioned in the literature [42]. It uses Kendall tau,

which is based on the concordant and discordant pairs to describe non-linear relationships, which

are more efficient compared to Spearman rho. In contrast, the use of Kendall correlation affects
the computing time and the use of the CPU due to its complexity O(n^2). However, although the

best performances were obtained by MLP with 1.29% of data using the combination of Spearman

and Kendall, we find that better performances were obtained using almost all ML classification

algorithms with either Spearman or its combination with MI on 3.06% of data.

4.4.3. Feature selection

In this section, we evaluate the obtained features from the dimensionality reduction, from the

FICFR technique, and finally from the combination of PFI and FICFR.

4.4.3.1. The evaluation of obtained features from dimensionality reduction

After reducing the data, we were left with 67 highly correlated features with the target vector.

However, upon further analysis, we discovered that these features only describe Benignware

behaviours since they were frequently called by almost all of their samples, in contrast to
Ransomware. Additionally, we found that 51% of these features were related to Windows

Application UI Development and Graphics API. Therefore, we refined the features by applying

the PFI technique. Table 5 shows the PFI score assigned to each feature using the MLP

algorithm. We only maintained features with positive PFI scores.

Table 5. PFI score of important features.

Feature Behavior PFI

1 LdrQueryImageFileExecutionOptions Loader (LDR) 0.0969

2 GetLastInputInfo User Interaction 0.0395

3 InSendMessageEx Windows and Messages 0.0364

4 IShellIcon Windows Shell 0.0240

5 NtWaitForSingleObject Synchronization 0.0123

6 localtime Windows Internet (WinINet) 0.0111

7 GetFontData Legacy Graphics 0.0043

8 _aligned_offset_malloc Memory Allocation 0.0043

9 LockWindowUpdate Legacy Graphics 0.0037

10 memcpy_s Buffer Manipulation 0.0024

11 RtlReAllocateHeap Runtime Library Routines (RTL) 0.0024

12 GetTextCharsetInfo Internationalization for Windows App 0.0024

13 OffsetWindowOrgEx Legacy Graphics 0.0024

14 RtlRunOnceBeginInitialize Runtime library routines (RTL) 0.0018

15 GetProcessMitigationPolicy Processes and Threads 0.0018

16 LoadTypeLib Automation 0.0018

17 GetForegroundWindow Windows and Messages 0.0018

18 NtFindAtom Atoms 0.0012

19 malloc Memory Allocation 0.0012

20 NtCreateTimer Synchronization 0.0012

21 NtOpenMutant Synchronization 0.0012

Next, we compared the performance obtained with the resulting features from dimensionality

reduction before and after feature selection using the PFI technique. Figure 6 shows that the

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

145

performance obtained after using feature selection based on PFI outperformed the previous

results obtained with reduced data. The maximum performance reached 99.38% using MLP and
logistic regression.

Figure 6. performance improvement after feature selection using PFI.

4.4.3.2. Evaluation of features obtained with FICFR technique

As seen in the previous section, the 21 important features are related to the Benignware

applications. Thus, we apply feature selection using FICFR to obtain descriptors for Ransomware

behaviour. FICFR is applied on normalized, non-redundant, and cleaned data. Data normalization
is carried out using a Quantile transformer scheme, redundant data is removed by applying

Spearman correlation between features, and finally, noisy data is eliminated by applying the

Kendall correlation between features and target vector. The threshold of the Kendall method is
slight (0.1) compared to the use of the same correlation technique for dimensionality reduction.

This choice is justified by the need to filter out noisy data and retain any feature that can provide

additional information regarding Ransomware behaviour. The noisy data, in this case, refers to

features that do not have any correlation with the target vector, including the APIs called with the
same frequency by both Ransomware and Benignware from one side, and called by few samples

whether they are Ransomware or Benignware from the other side. Therefore, applying FICFR

allows the selection of highly relevant and frequently called features by Ransomware.

4.4.3.3. Combination of Ransomware and Benignware best descriptors

In this experiment, we combined the important features selected by PFI (21 features) with those

obtained by FICFR (24 features). As a result, we observed a slight performance improvement and

achieved a new record of 99.44% using SVM. Once the features were combined, we ran the PFI

selection method again to select the most relevant features. The results showed a new
performance record of 99.81% and 99.66% by MLP and SVM respectively after performing K-

fold cross-validation (k=10).

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

146

Figure 7. Performance improvement after combining FICFR features and selection using PFI.

Table 6. Performance measurements using the set of the pertinent features.

 Precision Recall F1 score Accuracy

Decision Tree 97,83 97,41 97,95 97,96

AdaBoost 97,84 100 98,91 99,26

MLP 99,64 100 99,82 99,81

RF 98,24 100 99,27 99,07

XGB 98,21 100 99,09 99,07

SVM 99,29 100 99,64 99,63

LR 97,88 100 98,92 98,89

LightGBM 97,57 100 98,75 98,7

Additionally, we obtained a significant improvement in performance with almost all ML methods

using only 16 out of 45 features that had a PFI score greater than 0. Figure 7 illustrates the

performances obtained with the combined features before and after the selection using the PFI
technique. In addition, table 6 depicts the obtained performance measurements for the different

ML algorithms applied the set of the pertinent features.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

147

a. Explaining individual Ransomware
classification

b. Explaining individual Benignware
classification

Figure 8. Interpretable representation of sample classification using LIME

Table 7. the statistics of the pertinent feature

API PFI

score

of

caller

(Ransom.)

of caller

(Benign.)

Means of

call

freq.(Ranso

m.)

Means of

call

freq.(Beni

gn.)

LdrQueryImageFileExecutio
nOptions

0.475 0 196 0 79.95

NtWaitForSingleObject 0.302 174 265 52.60 3298.12

GetLastInputInfo 0.240 0 167 0 2328.23

InSendMessageEx 0.160 13 187 8.07 19.36

memcpy_s 0.154 59 259 69.75 2088.04

LdrLockLoaderLock 0.142 105 39 15.88 46.23

RtlDestroyProcessParameter
s

0.104
143

62

2.49

2.53

RtlCreateProcessParameters
Ex

0.098
143

6

2.56

2.50

RtlGetOwnerSecurityDescri
ptor

0.086 227 164 14.26 7.48

LockWindowUpdate 0.055 3 154 2.67 12.29

CsrClientCallServer 0.049 209 47 2.64 7.70

GetStringTypeW 0.012 42 3 2.02 3.33

RtlMoveMemory 0 30 2 1.20 0.50

RtlReAllocateHeap 0 108 240 16.67 103.20

RtlDosPathNameToNtPath
Name_U

0 118 44 50.03 179.16

NtOpenMutant 0 89 223 1.80 5.09

To visualize the explanations and contribution of each feature in the classification, we

use Local Interpretable Model-agnostic Explanations (LIME). Figures 8a and 8b

visualize the decision explanations for a Ransomware and Benignware sample respectively.

Indeed, the features with a high PFI score are the most influential in the classification. Table 7

shows the statistics of the pertinent features, their PFI score, call frequency, and the number of

callers whether they are Ransomware or Benignware.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

148

The pertinent features described in Table 7 are the most discriminative APIs. However, the

features with a PFI score of zero for MLP are still useful for other ML algorithms. If we remove
them, we still achieve an accuracy of 99.81% with MLP, but we note a decrease of nearly 0.1%

for the other models built with the other ML algorithms.

However, the accuracy achieved with our proposed method surpasses that of the state-of-the-art

[10, 34, 39, 40]. This can be attributed to our model's ability to process only the most relevant

features, resulting in improved performance and reduced computational costs.

5. CONCLUSION

In this study, we began with the idea that we could differentiate between Ransomware and

Benignware based on their behavior regarding activities such as file renaming and encryption.

However, these behaviours could also be performed by simple tools for tasks such as file batch
renaming, partition management, and file encryption. As a result, we arrived at the actual

discriminative features related to the process and thread levels, such as synchronization, the

ability to use the Windows registry, debug mode, loader lock, CSRSS server, etc.

To achieve our study, we built a dataset from scratch, collecting Ransomware samples from well-

known malware collections, as well as various types of Benignware such as file manipulation and

networking tools. Once we prepared our dataset, we normalized the data using a non-linear
method and reduced the dimensionality by combining Spearman and Kendall correlation

techniques. However, the obtained features only described Benignware behaviour, which led us

to introduce a new feature selection technique called FICFR. This technique selects Ransomware

features based on their frequency and the number of samples referencing them.

Finally, we built machine learning models using eight different algorithms and achieved

impressive performance with 99.81% accuracy using MLP and 99.63% using SVM, with only 16

features.

However, there were some limitations noted during data collection, data reduction, and validation

of the ML models, which are:

 Collecting System calls from Ransomware was difficult most of the time due to the absence of
the C&C server. We simulated its existence but not its commands.

 The complexity of the calculations performed by the data reduction methods to calculate the
correlation between a thousand features.

 The feature selection methods always converge towards choosing those that are related to the

execution of benignware, which led us to propose FICFR to select the relevant features from

each class.

As feature works we perform the following perspectives:

 Grow up our dataset to include a higher number of Ransomware

 Createan ML-based module to detect zero-day Ransomware attacks which can be used

independently or integrated into an anti-virus.

 We turning toward Dynamic Neural Networks since we get the best performance using MLP

which is one kind of neural network from one side, and because we believe that there will
exist other Ransomware families that we need to include in our study from the other side.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

149

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the anonymous reviewers for their insightful comments

and suggestions that greatly improved the quality of this manuscript. We also acknowledge the

contributions of our colleagues who provided valuable feedback and support throughout the
project. Lastly, we would like to thank our families for their patience and understanding during

the writing process.

REFERENCES

[1] T. (2022, May 11). 22 Shocking Ransomware Statistics for Cybersecurity in 2021. Safe At Last.

https://safeatlast.co/blog/ransomware-statistics/

[2] Maurya, A. K., Kumar, N., Agrawal, A., & Khan, R. (2018). Ransomware: evolution, target and

safety measures. International Journal of Computer Sciences and Engineering, 6(1), 80-85.

[3] Ransomware as a Service: 8 Known RaaS Threats. (2021, March 23). Infosec Resources.

https://resources.infosecinstitute.com/topic/ransomware-as-a-service-8-known-raas-threats/

[4] Xu, B., Li, Y., & Yu, X. (2020, October). Malware Detection Based on Static and Dynamic Features
Analysis. In International Conference on Machine Learning for Cyber Security (pp. 111-124).

Springer, Cham.

[5] Hsiao, S. C., & Kao, D. Y. (2018, February). The static analysis of WannaCry ransomware. In 2018

20th International Conference on Advanced Communication Technology (ICACT) (pp. 153-158).

IEEE.

[6] Carlin, D., O'Kane, P., &Sezer, S. (2018, June). Dynamic Opcode Analysis of Ransomware. In 2018

International Conference on Cyber Security and Protection of Digital Services (Cyber Security) (pp.

1-4). IEEE.

[7] Carlin, D., O’Kane, P., &Sezer, S. (2017). Dynamic analysis of malware using run-time opcodes. In

Data analytics and decision support for cybersecurity (pp. 99-125). Springer, Cham.

[8] Hăjmăȿan, G., Mondoc, A., &Creț, O. (2019, September). Bytecode Heuristic Signatures for
Detecting Malware Behavior. In 2019 Conference on Next Generation Computing Applications
(NextComp) (pp. 1-6). IEEE.

[9] Mercaldo, F., Nardone, V., Santone, A., &Visaggio, C. A. (2016, June). Ransomware steals your

phone. formal methods rescue it. In International Conference on Formal Techniques for Distributed

Objects, Components, and Systems (pp. 212-221). Springer, Cham.

[10] Bae, S. I., Lee, G. B., &Im, E. G. (2020). Ransomware detection using machine learning algorithms.

Concurrency and Computation: Practice and Experience, 32(18), e5422.

[11] Arabo, A., Dijoux, R., Poulain, T., & Chevalier, G. (2020). Detecting Ransomware Using Process

Behavior Analysis. Procedia Computer Science, 168, 289-296.

[12] Pektaş, A. (2018). Mining patterns of sequential malicious APIs to detect malware. International

Journal of Network Security & Its Applications (IJNSA) Vol, 10.

[13] Cabaj, K., Gregorczyk, M., &Mazurczyk, W. (2018). Software-defined networking-based crypto
ransomware detection using HTTP traffic characteristics. Computers & Electrical Engineering, 66,
353-368.

[14] Wan, Y.-L., Chang, J.-C., Chen, R.-J., & Wang, S.-J. (2018). Feature-Selection-Based Ransomware

Detection with Machine Learning of Data Analysis. 2018 3rd International Conference on Computer

and Communication Systems (ICS), 85-88. https://doi.org/10.1109/CCOMS.2018.8463300

[15] Huynh, T. T., & Nguyen, T. H. (2021). On the performance of intrusion detection systems with

hidden multilayer neural network using DSD training. International Journal of Computer Networks &

Communications (IJCNC), 117-137.

[16] Aurangzeb, S., Rais, R. N. B., Aleem, M., Islam, M. A., & Iqbal, M. A. (2021). On the classification

of Microsoft-Windows ransomware using hardware profile. PeerJ Computer Science, 7, e361.

https://doi.org/10.7717/peerj-cs.361

https://resources.infosecinstitute.com/topic/ransomware-as-a-service-8-known-raas-threats/
https://doi.org/10.1109/CCOMS.2018.8463300
https://doi.org/10.7717/peerj-cs.361

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

150

[17] Sayadi, H., Makrani, H. M., PudukotaiDinakarrao, S. M., Mohsenin, T., Sasan, A., Rafatirad, S., &

Homayoun, H. (2019). 2SMaRT: A Two-Stage Machine Learning-Based Approach for Run-Time

Specialized Hardware-Assisted Malware Detection. 2019 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 728-733. https://doi.org/10.23919/DATE.2019.8715080

[18] Lu, T., Zhang, L., Wang, S., & Gong, Q. (2017, December). Ransomware detection isbased on V-
detector negative selection algorithm. In 2017 International Conference on Security, Pattern
Analysis, and Cybernetics (SPAC) (pp. 531-536). IEEE.

[19] Khammas, B. M. (2020). Ransomware Detection using Random Forest Technique. ICT Express, 6(4),

325-331. https://doi.org/10.1016/j.icte.2020.11.001

[20] Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., &Khayami, R. (2020). Know

Abnormal, Find Evil : Frequent Pattern Mining for Ransomware Threat Hunting and Intelligence.

IEEE Transactions on Emerging Topics in Computing, 8(2), 341-351.

https://doi.org/10.1109/TETC.2017.2756908

[21] Euh, S., Lee, H., Kim, D., & Hwang, D. (2020). Comparative Analysis of Low-Dimensional Features

and Tree-Based Ensembles for Malware Detection Systems. IEEE Access, 8, 76796-76808.

https://doi.org/10.1109/ACCESS.2020.2986014

[22] Al-Akhras, M., Alawairdhi, M., Alkoudari, A., &Atawneh, S. (2020). Using machine learning to
build a classification model for iot networks to detect attack signatures. Int. J. Comput. Netw.
Commun.(IJCNC), 12, 99-116.

[23] Sultan, M. T., Sayed, H. E., & Khan, M. A. (2023). An Intrusion Detection Mechanism for MANETs

Based on Deep Learning Artificial Neural Networks (ANNs). arXiv preprint arXiv:2303.08248.

[24] Roy, K. C., & Chen, Q. (2021). DeepRan : Attention-based BiLSTM and CRF for Ransomware Early

Detection and Classification. Information Systems Frontiers, 23(2), 299-315.

https://doi.org/10.1007/s10796-020-10017-4

[25] Gaur, K., Kumar, N., Handa, A., & Shukla, S. K. (2021). Static Ransomware Analysis Using

Machine Learning and Deep Learning Models. In M. Anbar, N. Abdullah, & S. Manickam (Éds.),

Advances in Cyber Security (p. 450-467). Springer. https://doi.org/10.1007/978-981-33-6835-4_30

[26] Takeuchi, Y., Sakai, K., & Fukumoto, S. (2018). Detecting Ransomware using Support Vector
Machines. Proceedings of the 47th International Conference on Parallel Processing Companion, 1-6.
https://doi.org/10.1145/3229710.3229726

[27] Adamu, U., & Awan, I. (2019). Ransomware Prediction Using Supervised Learning Algorithms.

2019 7th International Conference on Future Internet of Things and Cloud (FiCloud), 57-63.

https://doi.org/10.1109/FiCloud.2019.00016

[28] Interactive Online Malware Analysis Sandbox—ANY.RUN. (s. d.). (2022, June 13).

https://app.any.run/

[29] VirusShare.com. (s. d.). (2022, June 13). https://virusshare.com/

[30] VirusTotal. (s. d.). (2022, June 13). https://www.virustotal.com/gui/

[31] Ytisf/theZoo [Python]. (2022, June 27). https://github.com/ytisf/theZoo/

[32] MAEC - Malware Attribute Enumeration and Characterization | MAEC Project Documentation.

(s. d.). (2022, June 25). https://maecproject.github.io/
[33] Azeez, N. A., Odufuwa, O. E., Misra, S., Oluranti, J., &Damaševičius, R. (2021). Windows PE

Malware Detection Using Ensemble Learning. Informatics, 8(1), 10.

https://doi.org/10.3390/informatics8010010

[34] Poudyal, S., Subedi, K. P., & Dasgupta, D. (2018, November). A framework for analyzing

ransomware using machine learning. In 2018 IEEE Symposium Series on Computational Intelligence

(SSCI) (pp. 1692-1699). IEEE.

[35] Catak, F. O., Yazı, A. F., Elezaj, O., & Ahmed, J. (2020). Deep learning based Sequential model for

malware analysis using Windows exe API Calls. PeerJ Computer Science, 6, e285.

https://doi.org/10.7717/peerj-cs.285

[36] Catak, F. O. (2021). Ocatak/malware_api_class [Python]. (2022, June 27).

https://github.com/ocatak/malware_api_class

[37] Hasan, M. A. M., Nasser, M., Ahmad, S., &Molla, K. I. (2016). Feature Selection for Intrusion
Detection Using Random Forest. Journal of Information Security, 7(3), 129-140.

https://doi.org/10.4236/jis.2016.73009

[38] Priya, R. H., & Bhagavan, K. (2019). Anti –Reverse Engineering Techniques Employed by Malware.

8(6), 5.

https://doi.org/10.23919/DATE.2019.8715080
https://doi.org/10.1109/TETC.2017.2756908
https://doi.org/10.1109/ACCESS.2020.2986014
https://doi.org/10.1007/s10796-020-10017-4
https://doi.org/10.1007/978-981-33-6835-4_30
https://doi.org/10.1145/3229710.3229726
https://doi.org/10.1109/FiCloud.2019.00016
https://app.any.run/
https://virusshare.com/
https://www.virustotal.com/gui/
https://github.com/ytisf/theZoo
https://maecproject.github.io/
https://doi.org/10.3390/informatics8010010
https://doi.org/10.7717/peerj-cs.285
https://github.com/ocatak/malware_api_class
https://doi.org/10.4236/jis.2016.73009

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.4, July 2023

151

[39] Chen, Z. G., Kang, H. S., Yin, S. N., & Kim, S. R. (2017, September). Automatic ransomware

detection and analysis based on dynamic API call flow graph. In Proceedings of the International

Conference on Research in Adaptive and Convergent Systems (pp. 196-201).

[40] Shaukat, S. K., & Ribeiro, V. J. (2018, January). RansomWall: A layered defence system against
cryptographic ransomware attacks using machine learning. In 2018 10th International Conference on
Communication Systems & Networks (COMSNETS) (pp. 356-363). IEEE.

[41] Dib, A., Ghazi, S., &Mendjel, M. S. M. (2022), “Ransomware/Benignware System Calls”, Mendeley

Data, V1, doi: 10.17632/kbt8xt3678.1

[42] Newson, R. (2002). Parameters behind “Nonparametric” Statistics : Kendall’s tau, Somers’ D and

Median Differences. The Stata Journal: Promoting Communications on Statistics and Stata, 2(1), 45-

64. https://doi.org/10.1177/1536867X0200200103

[43] Hampton, N., Baig, Z., &Zeadally, S. (2018). Ransomware behavioural analysis on Windows

platforms. Journal of information security and applications, 40, 44-51.

https://doi.org/10.1177/1536867X0200200103

	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1. Dataset normalization
	3.2. Dimensionality Reduction
	3.3. Feature selection
	3.3.1. Feature Importance based on Call Frequency and References (FICFR)
	3.3.2. Feature selection using the combination between PFI and FICFR
	4. RESULTS AND DISCUSSION

	4.1. ML algorithms
	4.2. Construction of dataset
	4.2.1. Collection of Benignware and Ransomware
	4.2.2. Collection of system calls

	4.3. Data Normalization
	4.3.1. The effect of normalization on the shape of the dataset and the performances
	4.3.2. The effect of normalization on the performances of models

	4.4. Dimensionality Reduction
	4.4.1. The selection of Dimensionality reduction technique
	4.4.2. ML classification algorithms VS dimensionalityreduction techniques
	4.4.3. Feature selection
	4.4.3.1. The evaluation of obtained features from dimensionality reduction
	4.4.3.2. Evaluation of features obtained with FICFR technique
	4.4.3.3. Combination of Ransomware and Benignware best descriptors
	5. CONCLUSION

