
International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

DOI: 10.5121/ijcnc.2023.15508 127

A SURVEY ON CDN VULNERABILITY

TO DOS ATTACKS

Maurizio D’Arienzo and Serena Gracco

Dipartimento di Scienze Politiche Universit`a della Campania ”L.Vanvitelli” - Italy

ABSTRACT

Content Delivery Networks (CDN), or ”content distribution networks” have been introduced to improve

performance, scalability, and security of data distributed through the web. To reduce the response time of a

web page when certain content is requested, the CDN redirects requests from users’ browsers to

geographically distributed surrogate nodes, thus having a positive impact on the response time and

network load.

As a side effect, the surrogate servers manage possible attacks, especially denial of service attacks, by

distributing the considerable amount of traffic generated by malicious activities among different data

centers. Some CDNs provide additional services to normalize traffic and filter intrusion attacks, thus

further mitigating the effects of possible unpleasant scenarios.

Despite the presence of these native protective mechanisms, a malicious user can undermine the stability of

a CDN by generating a disproportionate amount of traffic within a CDN thanks to endless cycles of

requests circulating between nodes of the same network or between several distinct networks. We refer in

particular to Forwarding Loops Attacks, a collection of techniques that can alter the regular forwarding

process inside CDNs. In this paper, we analyze the vulnerability of some commercial CDNs to this type of

attacks and then propose some possible useful defensive strategies.

1. INTRODUCTION

The content delivery network is a quite young technology. Some of the first experiments with this

approach were carried out in the mid-1990s by the NEXUS International Broad- casting

Association, an IT business incubator based in Milan, using it for the streaming distribution of
audio-video documents, as well as web services and ftp archives for NEXUS members. The first

commercial version of the Content Delivery Network was launched in 1995 by NEXUS itself and

its technological and financial potential was immediately un- derstood.

In the following years, the system was also exported to the United States and other Western

countries for local usage, but it was in the global Internet that it found more inter- esting

applications and greater margins for development. In 1998 a former Massachusetts Institute of
Technology student founded Akamai, a leading global provider of CDN ser- vices. Akamai, which

provides its performance to giants such as Adobe, Audi, Apple, IBM, Nintendo, IKEA, Reuters,

and many others, make a mirror copy of the content of the client company’s servers and saves

several copies on different servers in its network. Although the URL remains the same, the user is
automatically redirected to one of the Akamai servers, selected according to the type of file

requested and the geographical location of the user. All this happens in a transparent manner, that

is, without the user noticing it and, above all, without the quality of the services they want to use
being affected.

https://airccse.org/journal/ijc2023.html
https://doi.org/10.5121/ijcnc.2023.15508

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

128

The effective expansion of CDNs across the Internet, where a rising number of websites are being
put behind CDNs, has been attributed to CDN providers’ promotion of its capacity to defend

against DoS attacks. It is generally accepted that CDN suppliers offer good DoS protection for the

CDN-powered websites since the CDN absorbs distributed assault traffic with its enormous

bandwidth capacity [1] [2]. However, CDNs are exposed to a particular type of attack where
endless cycles of requests traveling between nodes of the same network or across multiple

different networks can jeopardize the stability of a CDN

by creating an excessive quantity of traffic within it. Such attacks, namely Forwarding Loop

Attacks [3], handle a single request repeatedly or endlessly, consuming unnecessary resources and

increasing the risk of DoS attacks. In this paper we survey the effects of four type of attacks, the
self loop attack, the intra-CDN loop attack, the inter-CDN loop attack, and the dam flooding, a

highly damaging type of loop attack. Novel type of attacks, aiming either at starving the

bandwidth or the connections of the origin server [4], as well as other type of DoS attacks are

recently arising as a possible threat for CDNs [5] [6] [7], and are out of the scope of this survey.

2. ARCHITECTURE AND OPERATION OF A CDN

Content Delivery Network means a network of computers and servers, connected to each other
via the Internet and used to distribute large files and data, such as movies, and live TV.

CDN is a network within the network: dozens of servers (sometimes even hundreds or thousands)

spread over five continents, hosting the same content (usually movies and other large multimedia
files), making it available to computers all over the world. The aim is to optimize the content

delivery process to the various nodes of the Network that request it, ensuring that any peaks in

requests do not have a negative effect on server performance[8][9].

Fig. 1. Load distribution between Edge Servers in a CDN

Especially when dealing with media files, such as live streaming of TV events or movies, centralized

systems based on a single distribution server can suffer significant performance degradation. This

inevitably has negative effects on the audio and video quality of the distributed content: thanks to CDN it is

possible to overcome this problem by diverting traffic to other servers, a perfect copy of the original, while

maintaining the performance of the Network and the quality of the distributed content[10].

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

129

The four parts that generally make up a CDN are:

– Content Delivery: source web server plus CDN’s set of Edge Servers;

– Request Routing: routes content requests to Edge Servers;

– Distribution: replicates content from Origin to Edge Server, and manages content con- sistency
(expiration, on-demand/periodic update, update propagation);

– Accounting: produces logs, statistics, and analysis for the site administrator.

The heart of a CDN, and also the part a webmaster has to deal with, is the Request Routing. In particular,

this part is of fundamental importance because it also establishes how the content is replicated, and

therefore also sent to users. The main Request Routing devices (including Edge Server), are nothing more

than authoritative Name Servers, with functions to control and monitor network traffic. By definition, a

name server is absolute for a host if it always has a DNS record that translates the hostname of the host to

the IP address of that host. When an absolute name server receives a request from a root name sever, it

gives a DNS response that contains the requested correlation. The root server then sends the correlation to

the local name server, which in turn runs it to the requesting host. Many name servers act as both local and

absolute name servers [11]. So, the Request Routing handles what content to replicate, then how to send it
to users[12].

3. VULNERABILITY OF A CDN

In this section, we present the key mechanisms that can be used to undermine a CDN by using
four different types of attacks that exploit the flexibility of CDNs in terms of configuration of

forwarding requests, and can compromise the stability of the entire system [13][14][15].

3.1. Collecting IP Addresses of Edge Servers

The identification of the edge servers of a CDN is based on the resolution of the hostnames from
URLs served by the CDN using for example public platforms like PlanetLab or DipZoom, which

allows to process a large amount of data in a short time [16]. To this purpose, if we consider the

Coral CDN, a free peer-to-peer content distribution network running on PlanetLab, we can draw
up a list of URLs served by it; then we randomly select a URL and resolve its hostname in its IP

address from each of the DipZoom measurement points located all over the world. You can repeat

this process for several hours to discover all 263 unique IP addresses of Coral’s servers. A similar

but much slower procedure exploits the nslookup command to find the IP address of an edge
server of the CDN assigned to our device as shown in the following figure.

Once the IP address of the edge server is retrieved, we describe the next step.

3.2. Overwriting the Selection of Edge Servers

In order to recruit a large number of edge servers for the attack, it is necessary to send HTTP

requests to them from a single device in order to override the selection of the server implemented
by the CDN for that host. In other words, it is required to bypass the default DNS resolution by

connecting to the desired edge server using its IP address, rather than the DNS hostname obtained

from the URL [19].

A simple HTTP command line download tool can be used to send a request using the correct DNS

hostname. For example, the following command will successfully download content from a

selected CloudFlare Edge server with IP address 104.31.66.228 by providing the expected host
header as the ”-H” command argument.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

130

3.3. CDN Caching

The key component of this type of attack is to make sure that the attacker’s HTTP request is

answered by the origin server rather than the edge servers’ cache memory. Normally, requiring an
edge server to obtain a given object from the origin server can be done using the HTTP Cache-

Control header [17]. Alternatively, in situations where some CDNs, i.e. Akamai, are protected

against this approach, so the following observation can be made. On one hand, modern caches use
the entire URL including search strings (the optional part of the URL after ”?”) as cache keys1.

For example, a request for foo.jpg?randomstring will be forwarded to the origin server because it

is unlikely that the cache already contains an object with this URL. On the other hand, origin

servers ignore unexpected search strings contained in other valid URLs. The above request will
then provide the ”foo.jpg” image directly from the origin server rather than the cache.

To verify the effectiveness of this technique, we ensure that we can download a valid object via
the CDN even if we add a random search string to its URL, e.g.,

ak.buy.com/db/_assets/large/_images/093/207502093.jpg?random.

Both Akamai, Coral, and Limelight are vulnerable to such a strategy. Then you measure the

throughput1 for downloading an object in the cache memory of an edge server. To this purpose,

we first send a request to an edge server with a regular URL, without search strings, and measure
its download throughput. We repeat the same procedure using the same URL to the same Edge

server, this time measuring the download throughput of the object present in the cache of the edge

server. Since the first request will cache the content on the edge server, the performance of
subsequent downloads will represent the actual performance of the content delivery from the

cache. Then, to verify that requests with search strings are processed by the origin server, we

compare the performance of the first download of a URL with a given random search string, with
repeated downloads from the same edge server using the same search string and downloading the

same object from the cache. Presumably, repeated downloads of the same content will be

performed by the edge server. Eventually, the modification of the search string results in

significantly lower performance when downloading, while repeated downloads show throughput
similar to that for cached objects. This will indicate that the initial request with the random search

string will always be processed by the Origin server.

Fig. 2. Throughput for downloading objects in cache memory (Kb/s) without search strings

Fig. 3. Throughput for first and subsequent downloads from Akamai (Kb/s) with search strings added to

URLs

Fig. 2 shows the throughput of ten repeated downloads of a selected object, with respect to

Akamai and Limelight. We need these results to provide an indication of the performance of

content downloads already in cache memory. Fig. 3 and 4 show the throughput for initial and
repeated downloads of the same object using ten different search strings. There

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

131

Fig. 4. Throughput for first and subsequent downloads from Limelight (Kb/s) with search strings added to

URLs.

Is therefore a clear difference between the download speed between the first request and the

subsequent ones related to the same content. The subsequent requests seem in fact to be 10 times
faster for Akamai, and about 7 times faster for Limelight. Furthermore, in any case, any download

with an always different search string achieves the performance of repeated downloads for the

same object. At the same time, the performance for repeated downloads with random search

strings seems to be similar to that obtained for cached content. All these statements lead us to the
conclusion that repeated downloads with a random search string are served by the cache while

appending a new search string to the URL overrides the caching system of the edge servers

forcing them to retrieve the requested content directly from the origin server.

In the case of the CloudFlare CDN, we checked its handling request policy with random search

strings on a website created for the test, We obtained the IP address of the edge server chosen by
CloudFlare for our client by simply resolving the hostname cachingtest- website.altervista.org.To

verify that CloudFlare puts the item in the cache memory, we requested the above image a few

times without search strings and checked from the log that the item was requested only once. We

then checked the difference in terms of through- put and download speed. It will provide us with
information on the source of the content requested. Subsequently, different searches were

executed with different search strings each time. This time, the website log will contain each

access to content for each of the requests submitted. We conclude that placing an always different
search string to the URL of a given content pushes the CloudFlare server to provide the object

from the Origin server rather than from the cache, regardless of its content, in the same way of

Akamai and Limelight.

4. AMPLIFYING THE ATTACK: DECOUPLED FILE TRANSFERS

We described how it is possible to manipulate an edge server so that it downloads a certain object

from the origin server regardless of its cache content, as well as how to bypass the DoS defense
mechanism of a CDN. Further methods are described in [2] [18]. We now present the methods to

”hire” an edge server to consume bandwidth resources from the source site without reducing the

attacker’s bandwidth. We highlight that an edge server downloads files from the origin server and

provides them to the client-server using two independent TCP connections, making the file
transfer speeds along these two connections roughly unrelated. This comes from the natural

implementation of an edge server and the desire to have a file available in the cache memory as

soon as possible to quickly serve future requests. Unfortunately, this mechanism has serious
implications for CDN security.

To verify the actual independence of the TCP connections, we arranged a simple testbed depicted
in Fig. 7 Two clients act as a ”probe” and a ”monitor”. The former can model its bandwidth or

close its connection right after sending the HTTP request. The latter works with the standard

TCP/IP network stack.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

132

Fig. 5. First and subsequent HTTP requests for the object at node 104.31.66.228, served by the origin

server.

The probe requests a CDN object from the Edge server ”E” using a random search string to make

sure it is downloaded from the origin server rather than the cache. The probe then adapts its band

so that it is very low or even cuts the connection completely after sending the HTTP request.
While the client is therefore making slow (if any) progress in downloading the file, the monitor

sends a request to the same URL with the same random search string used in the previous step to

E and measures the download throughput. If this is consistent with the results obtained in the
experiments described in the previous paragraph, this means that the edge server will have

processed the monitor client request from its cache memory. Therefore, the edge server must have

completed the file transfer from the origin server after the probe client accessed it, even if it has

almost downloaded it. On the other hand, if the measured throughput is comparable to the initial
download of content seen in section 3.3, this indicates that the edge server has not yet

downloaded the requested file and is acquiring it from the origin server. Therefore, this second

case will indicate that the edge server somehow approximates its download speed from the source
server to its upload speed to the applicant.

As the edge servers may react differently to different client behaviors, we plan these experiments
with the probe client: a) Reducing his connection; b) Silencing it, i.e. not send- ing any ACK

following the HTTP request; c) Completely cut the connection by sending the TCP reset segment

to the edge server as a response to its first data segment.

Since Akamai, Limelight, and Coral seem not to change their file download behavior in response

to any of the three modes mentioned above, we will illustrate a more aggressive technique that

sets the TCP input buffer to 256 bytes, so that the edge server will only send a small initial
portion of data (this cuts the payload in the first data segment from 1470 bytes to 256 bytes), and

then interrupts the TCP connection upon the transmission of the HTTP request (so that the edge

server does not try to retransmit the first data

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

133

Fig. 6. HTTP responses to requests with random search strings

segment after the timeout). The above tables show how Limelight and Akamai respectively

transfer the required content with a throughput that is between 100 and 200 Kb/s. Since both files
used in this example have a size of about 50Kb, we make sure that the request is sent from the

monitor client 0.5s after the probe client, so that if our hypothesis is correct, each edge server will

have already transferred in cache memory the entire file when the request from the monitor
arrives [12].

The table in Fig. 8 shows that the throughput for the monitor is comparable with that for repeated

downloads we have indicated in the figures on the previous pages. This means that the monitor
got its contents from the edge server cache memory. Since the edge server could provide the file

from its cache memory only upon a request from the probe client, which acquired a negligible

part of it, we have shown that, with the help of the edge server, the probe can consume (object
size)/0.5s, or approximately 100Kb/s, of the origin server’s bandwidth while consuming a small

portion of its own bandwidth.

5. FORWARDING-LOOP ATTACKS

Malicious CDN clients can deliberately manipulate the HTTP request submission process to

create an infinite loop between CDN nodes [19]. As already widely seen, access to the network

through a CDN requires two steps: first (Request Routing), a user’s request is forwarded to a
CDN server geographically close to the user; second, the CDN server obtains the requested

content which is then sent to the user. As far as the first step, it is

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

134

Fig. 7. Probe and Monitor clients

Fig. 8. Monitor client throughput in download (Kb/s)

possible to override the selection of a node CDN for the client by connecting to a network server

through its IP address rather than its hostname. For this purpose, platforms like PlanetLab help

retrieve such IP addresses by resolving subdomain names. Concerning the second step, i.e.

obtaining the required content from the CDN servers, we remind that there are available both
push and pull ways. The pull technique allows website owners to upload their content in advance

to the CDN servers. The pull mode is based instead on the caching mechanism operated by CDN

servers in advance, without sending further requests to the source server and therefore
considerably shortening the response time.

The vulnerabilities examined in this discussion are concerned with the pull mode. In fact, adding
the ”no-cache” header to the requests will ensure that the CDN will always re-evaluate the

responses from the source server instead of running them out of its cache. A similar result is

achievable by using POST requests that allow to write to the source server. In addition, many

CDNs provide the ability to configure the network so that some URLs do not go into cache
memory.

Forwarding-loops cause CDN nodes to repeatedly and indefinitely process a user’s request, thus
generating a considerable amount of traffic. In general, before a node on the CDN forwards an

HTTP request received from a client, it checks the Host field in the client for any forwarding

destination previously specified by the user. In general, the target server provides a response

which is then delivered by the CDN node to the client. However, if the forwarding destination is
intentionally changed to point at another CDN node other than the default, the forwarding process

may end up in a loop, causing detriment to device performance.

Fig. 9 illustrates this critical mechanism triggered between three distinct nodes that can be placed

on the same CDN or distributed among several CDNs [19].

The possibility to generate this type of attack is mainly caused by CDN customers flexible control

over the network forwarding configuration, and unfortunately CDNs lack an effective control

mechanism to ensure that these configurations - especially if they

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

135

Fig. 9. Scheme of a Forwarding-Loop attack

affect several customers or several CDNs - do not allow to process the requests more than

necessary.

There are four different types of forwarding-loops in a CDN:

– Self-loop: where a single node of a CDN is used;

– Intra-CDN loop: where more nodes than one CDN are used;

– Inter-CDN loop: which exploits nodes belonging to different CDNs;

– CDN Dam Flooding: which pairs infinite forwarding attacks with time control of HTTP
responses to significantly increase the damage to the affected network.

We consider these types of attacks in the following subsections.

5.1. Self-Loop Attacks

The self-loop attack occurs when requests are routed in a single CDN node. The attack is

replicated immediately: it simply needs the loopback address (127.0.0.1) or the IP address of a

specific node on the network as the destination address for HTTP requests. Self- loop attacks can
be particularly insidious because of the circulation of requests in the network is practically

without latency, potentially consuming resources very quickly. Many of the most common CDNs

are configurable to accept the loopback address or the IP address as one of the network nodes,

except for Baidu and CloudFlare as a destination for requests; CloudFront also does not allow to
directly enter an IP address or ”localhost” as a destination. It is important to stress that, to avoid

the emergence of such a mechanism be harmful to the network, the implementation of a blacklist

of prohibited destination addresses is not a sufficient defensive measure for CDNs that support
the use of domain names as a forwarding destination. For example, CloudFlare allows to specify

a CNAME domain (which allows to link one DNS name to another) as the forwarding address,

thus providing the possibility of modifying the DNS resolution later by entering the loopback
address or that of a CloudFlare network node.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

136

It is also possible to test the vulnerability of three open-source reverse proxies that are often used
by some commercial CDNs: Squid, Nginx and Varnish. The last two by default are completely

vulnerable to this type of threat and do not have any mechanism to preserve their integrity; Squid

instead prevents the establishment of forwarding loops by adding the Via header to the submitted

requests and rejecting incoming requests that contain the same hostname in their header. This
approach is similar to that adopted by CDN77, CDNlion, CDN.net, and CDNsun.

The syntax to prepare a Via header is as follows: Via: [¡ protocol-name¿ ”/”] ¡ protocol-version¿
¡ host¿ [”:” ¡port¿] or Via: [¡ protocol-name¿ ”/”] ¡ protocol-version¿

¡ pseudonym¿ [14]

Testing the feasibility of a self-loop attack on commercial CDN networks requires special care to

avoid service disruption to the network. To this purpose, a request with a slightly increased size

than the maximum accepted size can be sent to a node of the CDN, then observe its response (i.e.

400 Bad Request, Request Header Or Cookie Too Large) and then send another self-loop request
to the same node, but this time a little smaller (about 200 bytes less) than the maximum accepted

size. Proceeding in this way, if the CDN is vulnerable to self-loop attacks, the submitted request

will only bounce in the same node a few times before it reaches the maximum size allowed for
the header. At this point, it is easy to conclude that if both requests sent are matched by the same

response indicating that the maximum size has been exceeded, the CDN analyzed will be

vulnerable to attack under analysis. Otherwise, the CDN will prohibit the forwarding of requests
to the loopback address or your own address. Only the Azure network (China) was found

vulnerable to this type of attack.

5.2. Intra-CDN Loop

Attacks to a CDN can also be conducted so that loops are created among several nodes on the
same CDN. About 15 different CDN platforms allow to enter domain names as destination

addresses. When a request is submitted to a domain, 10 out of 15 CDNs under analysis (except

Azure China, Baidu, CloudFlare, Fastly, and Tencent) change the Host header to reflect the

destination domain. For each of them, attack among several nodes can be generated using several
different accounts and concatenating different target domains. For example, it can be set account

A1 to forward requests from domain D1 to D2, account A2 to go from D3 to D4 to the An

account, which closes the loop by forwarding the Dn domain to D1. This type of attack can be
arranged by dynamically changing the forwarding destinations using the DNS service. None of

the CDNs can enter domain names as forwarding destination share a global DNS cache. Different

CDN nodes will independently resolve the forwarding domain.

A malicious user can then create a loop between two nodes A and B of the same CDN by

checking the DNS resolution of their forwarding domains so that queries from A are provided

with the IP address of B, and vice versa. Depending on how a CDN handles for DNS resolution
the attacker may have to choose A and B from different datacenters or regions. This type of attack

does not affect the 9 CDNs that use loop detection headers. A summary of these considerations is

reported in Fig. 10

5.3. Inter-CDN loops

When an intra-CDN loop attack is extended to encompass multiple CDNs, it becomes possible to

bypass the network protection mechanism based on the use of particular headers

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

137

Fig. 10. Different approaches to change request header

in loop detection requests. This approach is based on the concatenation of loop-detection header

CDNs with other CDNs that inhibit their functionality.

As shown in Fig. 11, Fastly and MaxCDN provide customer-defined header filtering. The headers

filtering feature offered by Fastly does not make loop detection more difficult just because it adds

a non filterable loop detection header. Inserting a MaxCDN node in a chain makes this type of
attack possible because it allows an unlimited filtering of the headers and allows to affect their

regular operations.

The simple introduction of a MaxCDN node in the configuration of a forwarding loop is

sufficient to even cheat those CDNs having defense mechanisms against this type of attack.

Observing Fig. 11, we notice how some CDNs reset the header of the received requests. In

particular, CDN77, CDNlion, CDN.net, and CDNsun reset the Via header, discussed in the

previous paragraph, used by Alibaba, CloudFront, and Level3 to detect forwarding loops.

Therefore, to carry out the attack, it will be sufficient to link a node belonging to one of the first 4
CDNs with one or more nodes of the last 3.

Another consequence of filtering or resetting the headers is the ability to block the header size
increase so that the life cycle of a forwarding loop becomes independent of the normal header

size limits. For example, we could form a continuous loop including a CloudFront node, one of

CDN77, and one of KeyCDN. The CDN77 node, as we said, will reset the Via header used by
CloudFront. The KeyCDN node will reset the X-Forwarded- For node, which seems to be the one

whose size would constantly increase from CloudFront and CDN77. KeyCDN does not detect

loops or increase the size of headers. In addition, since CDN77 does not adopt mechanisms to end

forwarding-loops, the timeouts of the requests will not end the loop. This type of attack could last
indefinitely.

5.4. CDN Dam Flooding Attack

This type of attack is based on the HTTP streaming additional feature of CDN. HTTP streaming

was introduced in HTTPv1.1 protocol and is enabled by reporting the Transfer- Encoding
chunked field instead of the Content-Length field inside the header, thus allowing to establish a

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

138

persistent connection to transmit dynamically generated content on demand, without knowing its
size in advance. Focusing on the case of CDNs, a node compatible

Fig. 11. Vulnerability of several CDNs with respect to forwarding-loop attacks

with this technology will start forwarding requests or responses to the next node on the network
immediately after receiving the first ”chunk”, (chunk=piece), rather than waiting for the entire

content. This mechanism allows the data to circulate faster and thus make the attack even more

effective by completely saturating the connections.

As shown in Figure 2.20, Azure(China) is the only applicable target for streaming loops since it is

the only CDN that support streaming requests and does not integrate a loop detection system Fig.
14. Since all the CDNs in our analysis support HTTP streaming for responses, we can extend the

attack by using the responses rather than the requests to create a streaming loop.

This type of attack is so called because it is based on the two fundamental phases characterizing
the process of filling and flooding a dam.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

139

The attack evolves like the steps reported in diagram Fig. 15: 1) The Attacker Client sends a
request to node A; 2) Node A interrogates attacker.com to forward the request, and is then

directed to B; 3) The request circulates between nodes B and C and goes back to node A; 4) The

attacker points attacker.com to one of its servers; 5) The next query from A for attacker.com is

mapped to the attacker’s server; 6) A forwards the request to

Fig. 12. Headers size limitation

the attacker’s server; 7) This reacts with a streaming response; 8) The streaming response

circulates through C and B, then back to A, repeating the cycle several times; 9) Finally A

delivers the request to the Attacker Client.

In the first ”filling phase”, several forwarding loops are launched that can be of one of the above

types, using domain names as forwarding destinations. In the ”flooding phase”, the resolution of
these names is changed to direct the forwarding to a server of the attacker that responds to

incoming requests with a large file using HTTP streaming. As a result, for each forwarding-loop,

a streaming response flows between the CDN nodes in reverse order, several times, until a

connection is broken due to forwarding timeout or inside the client that originated the loop.
Similar to a dam, during the first phase a huge amount of data traffic is accumulated so that in the

second phase it exploded upon HTTP large chunks of continuous streaming. The effects are easily

visible in Fig. 16.

Note that being able to dynamically change forwarding destinations using DNS reso- lution is not

a necessary condition for creating streaming loops. In fact, if we follow the example reported in
subsection 5.3, rather than chaining the node An with A1, we can alter the cycle so that An points

to the server owned by the attacker so that after n jumps among the nodes of the CDN, a request

is forwarded to that server that, with a streaming response then sent back into the network. That

said, using DNS ensures more triggering control on the execution of the flood phase, thus causing
as much damage as possible.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

140

6. A SURVEY ON ADOPTED COUNTERMEASURES

Some of the providers analyzed in our discussion have become aware of the problem that could

afflict the CDNs and have introduced countermeasures to prevent attacks. We present the

approach adopted by some of them:

– CloudFlare: it recognized the problem, in particular the serious threat posed by the use of

gzip packages and potential consequences, they recommended a report to CERT/CC1 for

further discussion;

Fig. 13. Forwarding timeouts and adoption of forwarding abort

– Baidu: after discussing the problem, it admitted to having seen only a very small number
of cases similar to those analyzed here and therefore adopted as a preventive measure the

use of a special header for the detection of forwarding loops;

– Alibaba: Following a careful analysis of the issue, this CDN provider opted for a closer
network control and a limit on connections to stem the damage of any attacks;

– Tencent : admitted the high risk of this vulnerability, seeing it as a serious problem for the

CDN industry itself, and declared that he was working on his own to find a solution;
– Fastly : acknowledged and discussed the issue at length. In particular, it suggests the

usage of a uniform standard header among all CDNs as an ideal approach to combat the

issue of inter-CDN assaults and is committed to making a significant contribution in this

regard as well as to enhance performance in comparison to other forms of attacks.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

141

Fig. 14. List of CDNs supporting HTTP

7. AVAILABLE STRATEGIES TO MITIGATE THE EFFECTS OF ATTACKS

This section presents the available strategies to detect, or even avoid, the occurrence of malicious behavior

triggered within the network.

7.1. No-Strings-Attached

One of the vulnerabilities analyzed above is based on the use of random search strings that allow the

attacker to get past the defensive shield offered by the edge servers, and thus reach the origin server

directly. Content providers may consider changing the settings of their CDN service as described below to

defend themselves against attack. This method, however, does not apply to all CDN services; in those

instances, the content provider cannot protect themselves unilaterally and must give up these services or

rely on the mitigating options afterward suggested.

To protect itself from vulnerability to using random search strings to cross the cache, a content provider
may want to set its CDN service so that only URLs without search strings are accepted by the CDN. As a

further preventative measure, it would also be useful to

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

142

Fig. 15. Principles of a Dam Flooding attack

set the network origin server to report an error message for each request submitted by edge

servers containing argument strings. We remind that this procedure is managed and sent from the

central memory and consumes few network and server resources, so it seems to be a reasonable
solution. In the case of Akamai, for example, customers are allowed to specify a URL pattern to

ignore or reject. Therefore, content providers may consider adopting such a mechanism to ensure

that edge servers do not resolve any requests with additional strings, thus eliminating the threat

presented in the previous chapter. The only exception could be for search strings with a narrow
set of legitimate values that can be set on edge servers. This type of resolving approach could be

referred to as ”no-strings- attached”. Details on how the no-string-attached technique can be

implemented depend on individual websites. For example, to illustrate the general idea, let’s
consider a foo.com website that has some dynamic URLs that require apparently random

parameters. A possible implementation could concentrate content whose delivery is external to

the CDN in one sub-domain, e.g. outsourced.foo.com, and content requiring topic strings in
another, e.g. self.foo.com.

Referring to Fig. 17, the DNS for foo.com would return a CNAME record pointing to the CDN

only for queries from the first hostname and would respond instead by directly providing the
source IP address for the queries for the second hostname. Note, however, that the no-strings-

attached approach establishes an ”origin first” setup and eliminates the most popular option of a

”CDN-first” setup. As a result, this strategy sadly significantly reduces the flexibility of the CDN
settings, but it does enable the implementation of a firm defense against this kind of attack.

7.2. Unification and Standardization of Loop-Detection Header

As previously discussed, one potential solution is to add a loop-detection header to re- quests.

However, even if all CDNs implement this kind of preventive measure, it may still result in
endless loops of requests between different CDNs if some of them unintentionally give customers

a way to disable headers inserted by other CDNs. Therefore, using the same header across all

CDNs and forbidding editing activities on the latter would un-

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

143

Fig. 16. Traffic generated by three forwarding loops in a ”dam-flooding” attack. The flooding event occurs
after 50 seconds

doubtedly be more productive. The Via header is already employed by some CDNs with nodes

compliant with the current HTTP standard protocol. The Via header is appended when submitting
or returning HTTP requests, and can not be modified by proxies. This solution is better

formalized in RFC 8586 [20].

7.3. Blinding Self-Defined Loop Detection Headers

A simple and lightweight solution might be to implement a self-defined header so that it resists

tampering by attackers who might be setting a particular route or forwarding rules. To create such
a header, for instance, one method would be to encrypt some keywords with other names such

that they can be decoded by looking for them.

7.4. Monitoring and Limiting Data Traffic

Another form of mitigation that CDNs could implement is some kind of monitoring and possible

reduction of data traffic. For example, a CDN might decide to monitor traffic volume or
simultaneous connections per IP address or customer, thus rejecting or down- grading subsequent

requests from the same source/customer once their activity exceeds a certain threshold. In

particular, an effective strategy to differentiate between legitimate and malicious requests would
be to send a 302 error message to the sender where nec- essary, inviting him to try again later.

While a regular customer would be automatically redirected, any loops created within the

network would cease because all the CDNs we have previously tested, upon receipt of such an

error, would forward the response rather than follow the redirection process.

CloudFlare is keen to point out that it has already implemented a limit on simultaneous

connections per source IP address and will degrade the performance of the connection with a
strategy similar to the one proposed by sending the 302 error once a preset threshold has been

exceeded. However, it should be pointed out that any limiting threshold can be circumvented with

sufficient planning on the part of the attackers. In an extreme case, a forwarding loop could be

formed so that the traffic comes from different IP addresses and is therefore attributed to different
(fictitious) accounts. Moreover, the returning-with-302

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

144

Fig. 17. Content Delivery Network

strategy would not work in the case of the dam-flooding-attack. Monitoring and limiting traffic,
however, might make malicious forwarding loops more difficult and hence less common.

7.5. Imposition of Pre-Established Forwarding Addresses

Another possible mitigation would be to implement a blacklist-like policy for forwarding

destinations. For example, a CDN may reject requests if their forwarding destination belongs to
another CDN. However, more subtle and focused requirements could also be used to establish

such restrictions. For instance, CloudFlare discloses its rule that forbids nodes from accepting

requests if they originate from a specific CDN but have a different destination. Additionally,

CDN777 organization has expressed interest in putting into practice a blacklist-based fix.

The drawback of this strategy is that it takes a lot of resources to keep a comprehen- sive list of

CDN IP addresses. The usage of numerous CDNs in a chain would also be discouraged, despite
the fact that this strategy has its benefits.

8. CONCLUSIONS

In this work, we presented a survey on a particular type of attack against CDNs named
Forwarding loop attack. This attack leverages internal CDN flaws to originate infinite routing

cycles. These dynamics, whether deliberate or accidental, should be carefully con- sidered by

CDN vendors. Even though there are various mitigation strategies, mainly the introduction of a
CDN identifier to append to requests exchanged among edge servers, it still requires perfect

coordination among CDNs to be effective against attacks. The other solutions proposed in the

final paragraphs of this paper are far from definitive and com- pletely conclusive, so this
discussion focuses attention on the security issues of a service that is growing rapidly and is

becoming more vulnerable due to novel types of attacks that require further in-depth analysis in a

future work.

REFERENCES

[1] Mirkovic, J., Reiher, P.: A taxonomy of DDOS attack and DDOS defense mechanisms. ACM

SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)
[2] Guo Run, Li Weizhong, Liu Baojun, Hao Shuang, Zhang Jia, Duan Haixin, Shen Kaiwen, Chen

Jianjun, Liu Ying. (2020). CDN Judo: Breaking the CDN DoS Protection with Itself.

10.14722/ndss.2020.24411.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.5, September 2023

145

[3] Chen, J., Jiang, J., Zheng, X., Duan, H., Liang, J., Li, K., Paxson, V. (2016). Forwarding-Loop

Attacks in Content Delivery Networks. Proceedings 2016 Network and Distributed System Security

Symposium. https://doi.org/10.14722/NDSS.2016.23442

[4] Song Hengxian, Liu Jing, Yang Jianing, Lei Xinyu, Xue Gang. (2022). Two Types of Novel DoS

Attacks Against CDNs Based on HTTP/2 Flow Control Mechanism. https :
//10.1007/978−3−031−17140−623.

[5] Ghaznavi Milad, Jalalpour Elaheh, Salahuddin Mohammad, Boutaba R., Migault Daniel, Preda

Stere. (2021). Content Delivery Network Security: A Survey. IEEE Communications Surveys and

Tutorials. PP. 1-1. 10.1109/COMST.2021.3093492.

[6] Mai Dinh, Bao Pham, Truong Can, Tung Nguyen. (2023). DDoS Attacks Detection using Dynamic

En- tropy in Software-Defined Network Practical Environment. International journal of Computer

Networks and Communications. 15. 113-128. 10.5121/ijcnc.2023.15307.

[7] Oo Nan, Risdianto Aris, Ling Teck Chaw, Maw Aung Htein. (2020). Flooding Attack Detection and

Mitigation in SDN with Modified Adaptive Threshold Algorithm. International Journal of Computer

Networks and Communications. 12. 75-94. 10.5121/ijcnc.2020.12305.

[8] Zolfaghari Behrouz, Srivastava Gautam, Roy Swapnoneel, Nemati Hamid, Afghah Fatemeh,

Koshiba Takeshi, Razi Abolfazl, Bibak Khodakhast, Mitra Pinaki, Rai Brijesh. (2020). Content
Delivery Networks: State of the Art, Trends, and Future Roadmap. ACM Computing Surveys. 53. 1-

34. 10.1145/3380613.

[9] Desai Ankit, Parmar Jekishan, Chaudhary Sanjay. (2015). Content Delivery Networks Technology

Sur- vey and Research Challenges. 10.13140/RG.2.1.4805.7689.

[10] B. Zolfaghari, G. Srivastava, S. Roy, H. R. Nemati, F. Afghah, T. Koshiba, A. Razi, K. Bibak, P.

Mitra, and B. K. Rai, “Content delivery networks: State of the art, trends, and future roadmap”,

ACM Comput. Surv., vol. 53, no. 2, Apr. 2020

[11] Ramdas, Anju, Muthukrishnan, Ramakrishnan. (2019). A Survey on DNS Security Issues and

Mitiga- tion Techniques. 781-784. 10.1109/ICCS45141.2019.9065354.

[12] Triukose S., Al-Qudah Z., Rabinovich M. (2009). Content Delivery Networks: Protection or Threat?.

In: Backes, M., Ning, P. (eds) Computer Security – ESORICS 2009. ESORICS 2009. Lecture Notes
in Computer Science, vol 5789. Springer, Berlin, Heidelberg. 10.1007/978 − 3 − 642 − 04444 − 123

[13] Ghaznavi Milad, Elaheh Jalalpour, Mohammad Ali Salahuddin, Raouf Boutaba, Daniel Migault and

Stere Preda. “Content Delivery Network Security: A Survey.” IEEE Communications Surveys &

Tuto- rials 23 (2021): 2166-2190.

[14] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A survey of security attacks in information-

centric networking”, IEEE Communications Surveys and Tutorials, vol. 17, no. 3, pp. 1441–1454,

2015.

[15] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy, and access control in information

centric networking: A survey”, IEEE Communications Surveys Tutorials, vol. 20, no. 1, pp. 566–

600, Jan. 20

[16] Micah Adler, Ramesh K. Sitaraman, Harish Venkataramani, Algorithms for optimizing the

bandwidth cost of content delivery, Computer Networks, Volume 55, Issue 18, 2011, Pages 4007-
4020, ISSN 1389- 1286, https://doi.org/10.1016/j.comnet.2011.07.015.

[17] Triukose Sipat, Wen Zhihua,Rabinovich Michael. (2011). Measuring a commercial content delivery

network. Proceedings of the 20th International Conference on World Wide Web, WWW 2011. 467-

476. 10.1145/1963405.1963472.

[18] U. Rahamathullah and E. Karthikeyan, Distributed Denial of Service Attacks Prevention, Detec-

tion and Mitigation – A Review (May 25, 2021). Proceedings of the International Conference on

Smart Data Intelligence (ICSMDI 2021), Available at SSRN: https://ssrn.com/abstract=3852902 or

http://dx.doi.org/10.2139/ssrn.3852902

[19] Chen, Jianjun, Jiang, Jian, Zheng, Xiaofeng, Duan, Haixin, Liang, Jinjin Wan, Tao Paxson, Vern.

(2016). Forwarding-Loop Attacks in Content Delivery Networks. 10.14722/ndss.2016.23442.

[20] S. Ludin, M. Nottingham, and N. Sullivan, “Loop detection in content delivery networks (cdns)”,
RFC Editor, RFC 8586, Apr. 2019, pp. 1–6.

