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ABSTRACT 
 
Addressing real-time network security issues is paramount due to the rapidly expanding IoT jargon. The 

erratic rise in usage of inadequately secured IoT- based sensory devices like wearables of mobile users, 

autonomous vehicles, smartphones and appliances by a larger user community is fuelling the need for a 

trustable, super-performant security framework. An efficient anomaly detection system would aim to 

address the anomaly detection problem by devising a competent attack detection model. This paper delves 

into the Deep Deterministic Policy Gradient (DDPG) approach, a promising Reinforcement Learning 

platform to combat noisy sensor samples which are instigated by alarming network attacks. The authors 

propose an enhanced DDPG approach based on trust metrics and belief networks, referred to as Deep 

Deterministic Policy Gradient Belief Network (DDPG-BN).  This deep-learning-based approach is 
projected as an algorithm to provide “Deep-Defense” to the plethora of network attacks. Confidence 

interval is chosen as the trust metric to decide on the termination of sensor sample collection. Once an 

enlisted attack is detected, the collection of samples from the particular sensor will automatically cease. 

The evaluations and results of the experiments highlight a better detection accuracy of 98.37% compared 

to its counterpart conventional DDPG implementation of 97.46%. The paper also covers the work based on 

a contemporary Deep Reinforcement Learning (DRL) algorithm, the Actor Critic (AC). The proposed deep 

learning binary classification model is validated using the NSL-KDD dataset and the performance is 

compared to a few deep learning implementations as well. 
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1. INTRODUCTION 

 

Anomaly detection is one such viable area of research dealing with real-time detection of cyber-
attacks and threats. Anomalies can either bebased on the type of data (behavioural) or amount of 

data (volume) and can reflect as one of the following - an abnormality in data, unusual data 

patterns or faulty data packets, absurd increase in data packets, unusual unexpected behaviour of 
the network or change of distribution of packets at ports and speed variations. 

 

Anomaly detection-related contributions would be of great help in counterattacking powerful 

network attacks. Logical security measures - authentication, authorization, encryption 
mechanisms, protocols and algorithms must be made available at the core cloud, edge servers, 

edge networks and the edge devices [1]. The work referred to in this paper focuses on catering to 
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security at edge devices, which are intelligent nodes equipped with data-gathering sensors. Data 
samples received from sensors will be tested for malicious activity and undesired anomalies. 

Machine Learning (ML) tools techniques and algorithms are widely used in different  

 

domains and are capable of detecting network anomalies automatically [2]. Deep Learning (DL)is 
a well-suited fit to handle large-scale network traffic belonging to larger datasets. The related 

work in [3] states that the best deep learning models reduce the error rate by a considerably good 

percentage when compared to shallow machine learning models. DL is known for distributed 
computing and analysis of unlabelled and uncategorized data [4]. Reinforcement learning (RL) is 

an imposing type of DL technique which secures data transfer efficiently at the network edges. 

RL is fundamentally based on a “reward” function and the agent learns from the critic feedback 
post-environmental interaction. This concept of “dynamic feedback-oriented learning” is well 

suited for edge environments which handle real-time sensitive data. 

 

1.1. Contributions 
 

The contributions of the proposed work aim to propose the following: 
 

1. A binary indicative, robust adversarial attack detection model based on the posterior 

trust-based value in reward calculation. 

2. DDPG framework-based implementation for improved detection accuracy. 
3. Long Short-Term Memory (LSTM) network architecture-based model for temporal 

dynamics of the edge sensors. 

 

1.2.  Organization of the Paper 
 

Section 2 provides an overview of different edge attacks and proposed countermeasures followed 
by the role played by DL in Edge security. The section also opens up about the single- tailed 

function for anomaly detection using a Null Hypothesis based on Confidence Intervals. Section 3 

details correspond to the results of using Supervised and Unsupervised Learning algorithms on 
the selected dataset. Section 4 discusses how the DL algorithms are classified. The final 

subsection here throws more light on the DDPG framework which is the core framework for the 

proposed work. The System model design and equations, problem formulation and the Network 

Architecture for DDPG based on LSTM networks are part of Section 5. Section 6 reveals the 
underlying algorithm for implementation. Section 7 encloses all the related results which justify 

the authors’ work. Section 8 gives an outline of the concluding notes along with a proposal for 

the future. 
 

2. RELATED LITERATURE 
 

2.1.  Edge Attacks and Countermeasures 
 

The authors of [5] mention in their work a set of attacks which supposedly constitute edge 

computing attacks. The four main attack categories are discussed briefly. 
 

Distributed Denial of Service (DDoS) attacks are caused when the attacker sends an 

uncontrollable stream of data packets to the victim thereby draining its resources. In such 

situations, legitimate requests cannot be handled by the victim. Flooding-based DDoS attacks are 
practically prevalent in edge computing systems since most of the edge devices possess limited 

computational power and are easily targeted by attackers. One such attack was the Mirai [6] 

where compromised devices morphed as bots launched attacks on the edge servers, severely 
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impacting the network. The earlier proposals for Per-packet-based detection of flooding-based 
attacks identified the DDoS packets based on packet identifiers [7] and checked for legitimate IP 

addresses of the DDoS packets [8]. On the contrary, Statistics-based approaches did not either 

require monitoring per packet information or have a repository of IP addresses, unlike the former, 

which used packet entropy and/or machine learning tools. The authors propose the D-WARD 
defence system in [9]. Authors of [10] use monitored source IP addresses, Hidden Markovian 

models and RL in their solution. Solutions based on Support Vector Machines (SVMs) and 

Genetic algorithms (GA) also project themselves as a viable solution to DDoS detection [11]. 
Zero-Day attacks, another headstrong, advanced group of DDoS attacks can result in memory 

corruption and service shutdowns. The authors put forth a memory isolation extension module to 

defend against possible memory corruption attacks [12]. Other solutions include software-defined 
networking (SDN) based IoT firewall to reduce the attack surface of an exposed IoT device [13], 

and lightweight isolation mechanisms on access routers to mitigate the damage of edge devices 

[14]. A noticeable approach is mentioned in [15] where the work focuses on reducing False 

Positive Rate (FPR). The authors of [16] provide a deep learning- based “Deep-Defense” 
approach which is based on Recurrent Neural Networks (RNNs). Another noticeable work is the 

use of dynamic threshold value in a statistical approach to formulate a DDoS detection model 

[17]. 
 

Malware injection attacks are both server-sided and device-sided. ML-based solutions for SQL 

and XSS detection were discussed in [18] and [19] respectively. 
 

Side Channel attacks use publicly accessible information/ side channel information which is 

correlated with the privacy-sensitive data by the attacker. Solutions include data perturbation 

technique (differential privacy), a differentially private platform for data computation over the 
edge servers [20] and source code level discombobulation. 

 

Authentication and authorization attacks are executed by the attackers via unauthorized access. 
Possible defence mechanisms against authentication attacks have to ensure the security of the 

communication protocols used in edge computing (WPA/WPA2, OAuth and SSL/TLS).  

 
TABLE I: Overview of Network Attacks in Edge environments 

 
Edge 

Attac

k  

Categories Examples Countermeasures 

DDoS 

attack

s 

a)Application 

layer 

b)Volumetric 

Protocol 

GET/POST, Low-and-Slow POST, Single 

session/request, Fragmented HTTP flood, 

Recursive GET flood, Random Recursive 

GET flood 

UDP flood, CharGEN flood, ICMP flood, 

ICMP Fragmentation flood 

IP Null, TCP Flood, Session, Slowloris, Ping 

of Death, Smurf, Fraggle, Low Orbit Ion 

Cannon, High Orbit Ion Cannon 

Hidden Markov models, 

ML-based Defense 

mechanisms. 

Malw

are 

Inject

ion 

attack

s 

a)Server side 
b)Device side 

SQL injection, LDAP injection, Email 
injection, CRLF injection, Code injection, 

Cross-site scripting, OS Command injection, 

Host Header injection, XPath injection, 

wrapping attack, False Data Injection attacks 

Signature-based 
detection, Blocklisting 

file extension, malware 

honeypot, cyclic 

redundancy checks, 

entropy-based dynamic 

analysis. 
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Side 

Chan

nel 

attack

s 

a)Power 

consumption 

b)Electromagn

etic 

c)Timing 

d)Fault 
Analysis 

Wave signals, Data packets from sensors, 

acoustic, shared CPU caches, leakage from 

cryptographic devices 

Differential privacy 

techniques 

Authe

nticat

ion & 

Autho

rizati

on 

attack

s 

a)Insufficient 

Authentication 

b)Weak 

Password 

Recovery  

Spear Phishing, Broad-based Phishing, 

Credential stuffing, Password Spraying, Brute 

Force attack, Man-in-the-middle attacks 

Active jammers, Black 

box verification, public 

key cryptography, 

wireless packet injection, 

cross-layer 

authentication  

 

2.2. Role of Deep Learning in EC Security 
  
A Deep Neural network has several layers wherein each layer processes the intermediate 
characteristics of the previous layer and generates new characteristics [21]. Edge computing is 

efficient for deep learning tasks since the size of the extracted features is reduced by the filters in 

deep network layers. A detailed review of DL in Edge Computing (EC) security is provided by 
the authors in their work [22]. The related work in our paper focuses on security at the edge 

devices and therefore the discussion needs to touch upon the main reason for choosing DL in 

edge computing. Edge computing offloads computing tasks from the centralized cloud to the 
edge of IoT devices and pre-processing reduces the transferred data. The multi-layered, deep 

learning model helps in low-dimensioning or reducing data size, progressing over the network 

layers. Edge processing eases if the intermediate data size is smaller than the input data. 

Therefore, one can affirm that deep learning modelsare suitable for the edge computing 
environment wherein sections of the learning layers can be offloaded in the edge and the reduced 

intermediate data can then be transferred to the centralized cloud server [23]. The automated 

feature learning characteristic of the deep-learning-based models and choice of appropriate 
datasets significantly increases the detection rate accuracy compared to the preliminary ML 

algorithms [24]. 

 

We propose an effective Reinforcement Learning (RL) based security approach for edge security 
in comparison with the Supervised Learning (SL) and Unsupervised Learning (USL) 

counterparts. Q-learning enforced high-ambit issues in edge security solutions. The authors in 

[25] discuss an on-policy, Actor-Critic-based algorithm for anomaly detection in edge 
environments.  

 

2.3. Confidence Interval-based Anomaly Detection Systems 
 

Since the sensor samples are from a stochastic environment, it is suggested to coin the posterior 

trust metric () with a probability of an anomalous detection (ρ) which varies proportionally with 

(). It is also important to note that () affects the confidence interval as well. 

 

A reported confidence interval is a range between two numbers within which the probability of 
containing the right value of a parameter exists. The typical value of 95% refers only to how 

often 95% confidence intervals computed from very many studies would contain the true size if 

all the assumptions used to compute the intervals were correct [26]. The remaining 5% 
constitutes the level of significance which is discussed in the next subsection. 
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2.4. Null Hypothesis using Single-Tailed Function for Anomaly Detection 
 

Herman Chernoff proposed the active hypothesis test in 1959 [27]. The related work considers 

the processes (Pr) as the samples obtained from sensors. Sensor data is used to assess the 
believability and validity of a hypothesis. This is what is referred to as ”Hypothesis testing.”  The 

objective is to architecture a model which stands by or rejects the framed hypothesis for a set of 

observations/samples {O1, O2,.....OPr  (0,1)} from sample space S(t), samples being captured 

from a particular sensor at varying time instants (t1, t2, …..tz). The model has to then learn and 

master the optimal selection policy. 
                                                             

The hypothesis testing problem equivalent to the anomaly detection problem has a 2Pr 

hypothesis. The null hypothesis is a condition of the system that is not required i.e. system has 
encountered a network attack, it is a negation of the research question. As long as the null 

hypothesis test (Hi : i = 1,2,….2 Pr) is “false”, samples will be collected from the sensor else the 

supply chain has to be terminated. Real-time scenarios are such that the number of anomalous 
processes (Pr) is definitely lesser than the total number of processes (say K) i.e. (Pr  << K) thereby 

conceptualizing that anomalous processes are rare events in a larger scenario of processes. 

Poisson distribution models rare events, thereby motivating the researcher to go ahead with an 

asymmetric distribution skewed to the right, inhibited by the zero-occurrence barrier to the left 
and extending towards the right. Poisson distribution can be represented as below: 

 

P(X = x) = 
𝜆𝑥𝑒𝜆 

𝑥 !
                           (1) 

 

 P(x) = Probability of x successes given an idea of λ 

 λ= Average number of successes 

 e = 2.71828 

 x = successes per unit which can take values 0,1,2,3,... ∞ 

 

The statistical hypothesis tests to accept or reject the null hypothesis are formulated using tailed 

functions. We use One-tailed tests for asymmetric distributions that have a single tail. The tail in 
the hypothesis test refers to the tail end at either side of the distribution curve. The Level of 

significance (𝜶) needs to be fixed before the hypothesis since it conveys how wrong we are 

permitting the hypothesis to be, it is the probability of making wrong decisions when the null 

hypothesis is true. 𝜶 value is typically around 5%, as proposed by Fisher. However, this 

approach can be misleading for larger data samples, resulting in too frequent rejections of the null 

hypothesis. The level of significance depends on sample size, power of test, and expected losses 

from Type I and Type II errors. Also, an able mathematician Irving J. Good proposed a method 
for scaling the p-value cut-off according to sample size in 1982. It states a standardized p-value 

can be computed as p = p[c] √(n/c), where n is the sample size and c is a standardized sample 

size that p[c] is chosen against. The concern is that the real-time application is aiming at is for a 
“random number of sensor samples”. For simulation, considering the confidence interval as 95%, 

and alpha level as 5%, the cut-off would be approximately 1.645 based on the below formula in 

statistics. This implies that being 1.645 standard deviations away from zero implies entering the 
null hypothesis rejection region. 

 

cut_off = norm.ppf (1- 0.05)                                       (2) 

   

𝜌()  =  {
𝐻𝑜:   >  𝛼 −  𝑟𝑒𝑗𝑒𝑐𝑡 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝑎𝑡𝑡𝑎𝑐𝑘 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

   𝐻𝑜: 𝑚𝑖𝑛 ≤     <   𝛼 − 𝑎𝑐𝑐𝑒𝑝𝑡 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
                    (3) 

 

https://www.tandfonline.com/doi/abs/10.1080/00949658208810607
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Figure 1: Single Tailed Function Analysis 

 
Graphical justification of a one-tailed test in general and a right-tailed, on-tailed test in specific 

for the below mathematical equation is also provided in Figure 1. 

 

3. RELATED GROUNDWORK – AN EXPERIMENTAL DISCUSSION 
 

3.1. Exploring SL & USL Algorithms with NSL-KDD 
 
It is important to understand how few traditional machine-learning-based supervised learning 

algorithms) behave in an anomalous environment before we proceed to discuss RL-based 

approaches. The authors also have worked with K-Means Clustering, Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) 
and Autoencoders and recorded the metrics in TABLE II. 

 

3.2. Graphical Overview of RL based Algorithms 
 

The research work focuses on maximizing the trust/satisfaction metric based on Reinforcement 

Learning algorithms. RL helps the agent to learn from repeated trials and experiences in an 
interactive environment. Rewards and punishments mark the positive progressive behaviour and 

negative behaviour of the task respectively. All RL problems can be handled using Markovian 

Decision Processes (MDPs). Maximizing the reward, and minimizing the loss is the ultimate 
objective of a lucrative RL model. However, to be more specific, the fundamental goals of an 

agent are: (i) To maximize the average reward function, trust metric in this case (ii) To optimize 

latency (3) to reduce stopping time [28].  

 
There exists a plethora of RL algorithms. For analysis of RL models, we consider the following 

three RL models – the basic Actor-Critic model, RL in a multi-agent adversarial environment and 

Modified Actor-Critic with one tailed function. The anomaly detection accuracy graphs are 
provided in Figure 2 for the NSL-KDD dataset.  
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TABLE II: Overview of SL and USL algorithms & their Results on NSL-KDD dataset 

 
 Algorithm/ 

Classifier used 

Accuracy Precision Recall F1 score 

Supervised 

Learning 

Techniques 

KNN 0.99715 0.99678 0.99665 0.99672 

SVM 0.99371 0.99107 0.99450 0.99278 

Decision Trees 0.99662 0.99493 0.99732 0.99612 

Naïve Bayes 0.86733 0.98822 0.70308 0.82145 

Logistic Regression 0.99394 0.99093 0.99517 0.99305 

K-Means 
Clustering 

0.99942 0.99884 0.99942 0.99913 

Unsupervised 

Learning 

Techniques 

PCA 0.68074 0.62274 0.68074 0.63210 

LDA 0.77629 0.78901 0.77629 0.77215 

Autoencoders 0.89069 0.88045 0.93493 0.90687 

QDA 0.55161 0.62075 0.55161 0.50604 

 

 
 

Figure 2: Results of few RL algorithms 

 

4. METHODOLOGY 
 

4.1. DL Algorithms Algorithm Suite – choice Strategy 
 

Researchers have discussed the limitations of statistical and shallow machine learning methods 

and expressed that deep learning techniques are suitable to detect network attacks since these 

techniques are capable of executing both feature extraction and data classification. The map of 
DRL types is summarized in Figure 3. RL is considered to be one of the best solutions for IoT 

security since it banks on concurrent and corrective learning [29]. 

 

4.2. Literature Survey - Impact of RL Algorithms on Attack Detection 
 

4.2.1. Basic RL algorithms 
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The authors in [30] propose an RL agent to observe the traffic. Another Q-DRL approach is 
proposed in [31] to monitor the sensory nodes. Partially Observable Markov decision process 

(POMDP) is projected in [32] to tackle anomaly detection problems. This model-free online 

workable RL approach fights attacks even without the previous knowledge of any other attack 

model. Actor Critic-based approach [33] helps learn a strategy which defends against attacks. The 
authors of [34] have highlighted RL-based work against DoS attacks.  

 

 

 
 

Figure 2: Results of few RL algorithms 
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Figure 3: Classification of Deep Reinforcement Learning algorithms 

 

The authors of [35] utilize a hypothesis test to determine whether a packet is sent from a 

particular source or not, and use the RL algorithm to find the value of the test threshold above 

which the packet gets certified as a “spoofed packet”. The updated state-action function 
computed by the receiver is used in reward calculation. Furthermore, in [36], the work based on 

Reachability & Inverse RL predicts and detect the assailed sensors. The authors used a CNN- 

based Deep Q-Network (DQN) implementation to design a power control scheme [37]. Mobility 
of secondary users across locations is a strategy which is used in [38] to manage jamming attack 

mitigation. For huge SINR values, there is a recursive CNN-based work [39] which the authors 

claim is capable of encountering the dynamically changing jamming patterns. 
 

4.2.2. RL Actor-Critic Algorithms & its Variants 

 

Basic AC methods are sensitive to perturbations in data. Asynchronous Advantage Actor Critic 
(A3C) has each of its workers loaded with a different set of weights contrasting to Advantage 

Actor Critic (A2C). Speed and robustness were promising. A3C provided parallel training of 

actor-critic but suffered optimal agent update problems which were later handled by A2C. 
Updates not happening immediately resulted in agents using older versions of parameters. [40] 

has its authors implement a model for anomaly detection based on A3C with an adaptable deep 

neural network for reward functions. The asynchronous workers model has put efforts to better 
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the efficiency with the help of parallel computing. The authors of [41] proposed a DDQN & A3C 
coupled technique to convey the reduction of the number of simulation runs required to locate 

falsifying model inputs. The authors of [42] propose a classifier Adaptive Actor-Critic Neural 

network classifier to formulate an Intrusion Detection System (IDS). Another A3C-based IDS 

approach is highlighted in [43], automated network scan by service discovery. 
 

The authors of [44] have detailed their work with Soft Actor Critic (SAC) based DRL for alert 

prioritization which aims to maximize rewards as well as entropy. SAC is a good performer 
however, it is complex in its implementation. A possible approach that we intend to follow in this 

paper is DDPG whose inputs are taken from the sensors through a LSTM memory layer. There is 

yet another SAC-based model [45] that enforces its attack detection policies with acceptable 
metric values of detection time, detection accuracy and energy consumed in the process. A 

compound action actor critic-based federated learning detection framework (CA2C – AFL) [46] 

discusses a selection strategy fused into the Asynchronous federated learning framework. 

  
4.2.3. RL Policy Optimization Algorithms & its Variants 

 

Trust Region Policy Optimization (TRPO) uses a surrogate function to learn complex policies. 
The Kullback-Leibler (KL) divergence objective of TRPO makes it difficult to implement as 

well. The authors of [47] have proposed a Proximal Policy Optimization (PPO) based intrusion 

detection hyperparameter control system (IDHCS) with a good F1 score of 0.96552 for the 
CICIDS2017 dataset. TRPO+ is a combination of TRPO and PPO code level optimizations. PPO-

M refers to PPO without code level optimizations. Mikhail et.al. [48] discuss RL for attack 

mitigation in networks which revolves around DQN and PPO. The authors in [49] propose a 

PPO-based federated client selection scheme to optimize accuracy and system overhead as 
compared to their benchmark models. 

  

4.2.4. RL Policy Gradient algorithms & its Variants 

 

The training speed of PPO is impressive, however, Twin Delayed DDPG (TD3) has a much-

elevated general performance and ability to transfer learning to other markets. As compared to 

DDPG, TD3 trains the agent with two Q-value functions. TD3 random noise component to next-
state actions for smoothing while training a deterministic policy. TD3 completes the DDPG 

implementation with a smooth finish of clipped double learning, delayed policy updates and 

target policy smoothing. The authors of [50] have compiled the contributions of [51] which is 
DDPG based. Liu et al. have used the DDPG algorithm to train the agent to work against DDoS 

attacks and drop excess traffic overflood due to malicious data in SDNs. Wei et al. [52] in their 

work project the usage of DDPG to reclose transmission lines in cases of successful attacks. 
Sunghwan Kim et al. [53] propose a DDPG approach using real-time traffic analyzer monitoring 

results. The authors of [54] discuss a deep RL model to handle changing attack patterns which 

highlights good values of performance evaluation metrics. An upgrade of DDPG is accomplished 

as dynamic reward DDPG in [55] which shows 97.46% accuracy in detecting attackers. The 
authors of [56] propose a DDPG IDS approach to achieve a detection accuracy of 97.28% in the 

WUSTIL-IIOT-2021 test set. 

  

4.3. Deep Deterministic Policy Gradient (DDPG) Framework 
 

IDS can be classified as Learning-based mechanisms, Pattern-based mechanisms and Rule-based 
mechanisms [57]. The work discussed in the paper is based on IDS as a Learning-based 

mechanism. We use a DDPG approach which is model-free, policy-based and gradient-based for 

anomaly detection.  
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DDPG has the actor-network, critic network and replay memory. Both actor and critic have a 
dedicated target network for action evaluation and a current/ online network for action selection. 

Experience playback otherwise called memory replay is an added feature in DDPG. 

 

The off-policy actor-critic algorithm learns a deterministic target policy from a exploratory 
behaviour policy to ensure adequate exploration. The neural networks compute action prediction 

for the current state and generate ID error at each step. The Current state acts as input to the 

action network, output will be an action from state space. Furthermore, the Q-value of the current 
state will be the critic’s output. DDPG additionally supports an update rule to modify the weights 

of the actor-network. The obtained gradient will influence and update the critic network. The 

standard DDPG model with two separate neural networks for the actor and critic is shown in 
Figure 4. Deterministic modelling produces consistent outcomes for a given set of inputs, 

irrespective of the number of times the model is re-run or recalculated. One may notice the 

limitation of DDPG not fitting into a stochastic environment, unlike the SAC model. However, 

feeding inputs to the DDPG model through an LSTM network would make things better for data 
exploration. Overfitting limitations also can be handled with the help of auto encoders, ensemble, 

regularization, feature selection, cross-validation, increasing percentage of training data and 

additive noise in data. 
 

 
 

Figure 4: DDPG Framework 

 

5. SYSTEM MODEL & DESIGN 
 

5.1. Problem Formulation 
 
Let us consider the current state to be say st, which belongs to the state space S(t).All possible 

states are associated with a hypothesis highlighted in section 2.4. Posterior probabilities and 
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posterior trust value (t) are computed based on the hypothesis Hj at time (t). The observation 

information with the agent at any time (t) is given by: 

 

Ot  [Pr];  t: 1 to -1             (4) 
 

Agent adopts a sequence of actions depending on the critic’s feedback, mathematically  

represented as: 

 

At  [Pr];  t: 1 to -1                         (5) 
 

The trust vector can be expressed either as the probability of the state being ’0’, the posterior 

probability that the ith process is non-anomalous or as the probability of hypothesis Hjbeing true 
 at time (t). 

 

i(t) =  (si = 0 | Ot, At);  t: 1 to -1           (6) 

i(t) =  (H = j | Ot, At);  t: 1 to -1                       (7) 

 

Bayes rule is used to handle samples in real time. The probabilities are updated based on the 

sequence of actions. Bayes rule is formulated as: 
 

i(t) = 
 (H = j). (Z[A(t)] | (H=j)

∑ (𝐻=𝑗).𝐻
𝑗=1 (Z[A(t)]|(H=j)

                            (8) 

 

Now that we have considered the confidence interval, the design must ensure to abide by the 

defined confidence interval margins and not hop over the interval. Logit transformation can be 

used to quantify confidence levels [58]. Trust metrics and confidence intervals influence reward 
maximization. The trust metric is the Bayesian log-likelihood ratio of the hypothesis at time (t)  

given as: 

 

j () = log 
(j)

1−(j)
                        (9) 

 

The average Bayesian log-likelihood ratio is represented as below: 
 

avg () = ∑ j(𝐻
𝑗=1 ). j             (10) 

 

The instantaneous reward of the MDP is given by: 
 

r(t) =  avg ((t)) - avg ((t - 1))                        (11) 

 

We can further use r(t) to average the reward components. 

 

𝑅 (𝑡)  =  
1

𝜏
∑ 𝐸[ 𝑟 (𝑡)]𝜏 −1

𝑡 =  1                           (12) 

 
The asymptotic expected reward is based on the average rate of increase in the confidence level 

on the true hypothesis H and is defined as : 

 

Rt (st, at) = R() ∶=  lim
𝑂𝜏→∞

1

𝑂𝜏
𝐸  [ℑ((𝑂𝜏  +  1)  −  ℑ((1)]     (13) 
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The DDPG algorithm has a framework wherein the agent/ actor takes the current state as the 
information from the observation space, the environment. Accordingly, the actor performs a 

particular action based on the defined policy .  will be the network parameter of the policy . 

 

at A =  ((t-1)) + t (stochastic noise component)                                   (14) 

 

Also, the deterministic policy gradient models the policy as a deterministic decision. Therefore, 

we can also write; 
 

at A = ( st,  ) + t                             (15)  

 

The Critic network is optimized, and its parameters are updated by the difference between the 
two networks.The loss function is shown below. 

 

L(Q) = 
1

N
∑  yN

i=t i - Q (Si, ai, Q )) 2                     (16) 

 
The stochastic policy gradient concept of DDPG aims at adjusting the network parameter weights 

 of the policy   in the direction of the performance gradient  J(). 

 

The policy gradient does not depend upon the gradient of the state distribution even when it is 

factual that the state distribution  (s) depends on the policy parameters [59]. 

 

 J () =  s ~ , a ~  [ log  (a|s).Q (s,a)]                   (17) 

 

 J () = (1/N) {∑ 𝑁
𝑖=𝑡 a Q(s,a | Q ) | s=si, a = (si) }   {  .  (s, ) | s=si }               (18) 

 

The target policy network and target Q-network will be updated by using the respective online 

policy network and online Q-networks. The update equations are mentioned below: 
 

QQ + (1-) Q 

 + (1-)                        (19) 

 

It is to be noted that  is called the update coefficient which is usually small-valued to slow down 

the target. Hence, it is also termed as SOFT update coefficient. Typical values can be 0.1 or 0.01. 

 

5.2. LSTM-based Network Architecture for DDPG Implementation 
 

DDPG is deterministic and a complex algorithm like SAC which is inherently stochastic is not 
being used in our work. A possible approach is to use a neural network with a sequential 

information structure which can learn from long-term dependencies. The wrap-up,recurrent 

connections in RNNs aid the network in storing past information and hence handling temporal 
dependency issues. The loops in the layer connections store the state value and envision the 

sequential inputs. However, the vanishing gradient problem in RNNs during back propagation 

eye for a superior network called LSTM which is eventually a stack of memory cells.  

 
LSTM networks have memory blocks connected into layers instead of neurons. The memory cell 

constitutes 3 important gates – input, output and forget gates. 

 
(a) The “forget” gate determines what details are to be discarded from the cell state block 

with the help of the sigmoid function. it looks at the previous state(ht-2) and the content input (Xt-
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1) and outputs a number between 0 (to eliminate) and 1 (to retain) for each value in the cell 
state Ct−2. 

 

ft-1 =  (Wf. [ht-2, xt-1] + bf ) 

      =  (Wsf . xt-1 + Whf. ht-2 ) + bf )                     (20) 

 

(b) The “input” gate layer determines which value from input should be used to further do 

modifications in the cell state. This is followed by a “tanh” layer to create a vector of new 
candidate or potential nominee values C˜t-1to be included in the state. The cell state will be later 

updated to Ct-1 with the help of Ct-2, ft-1and it-1. 

 

 it-1 =  ( Wi . [ht-2, xt-1] + bi ) 

      =  ( Wih. ht-2  + Wix . xt-1) + bi )                       (21) 

 
           C˜t-1 = tanh (Wc [ ht-2, xt-1 ] + bc ) 

 

        = tanh (Wch . ht-2 + Wcx . xt-1 + bc )                                   (22) 
 

        Ct-1 = ft-1 * Ct-2 + it-1 * C˜t-1                                      (23) 

 

(c) The final gate is the “output” gate layer. A sigmoid layer checks, decides and what 
sections of the cell state will be redirected to the output. The system be implementing a cell state 

to the tanh function, and multiply it with the sigmoid gate output. 

 

ot-1 =  ( Wo [ ht-2, xt-1 ] + bo ) 

       =  ( Woh . ht-2 + Wox . xt-1 + bo )                  (24) 

 
ht-1 = ot-1 * tanh (Ct-1)                                     (25) 

 
To make understanding and reference equations easier, a tabulation of all used symbols 
corresponding to LSTM is provided in TABLE III. The internal structure an LSTM cell depicting 

all three gates is shown in Figure 5. Also, LSTM implementations are based on minimalistic pre-

processing. These models can also perform on sequential time series data to identify anomalies 

sometimes even without dimensionality reduction techniques. The collected sensor samples z0, … 

, z𝑡−1) are input into the LSTM neural network to extract the features, zt’ including the desired 

features favourable to detecting anomalies. The detection model along with the LSTM-based 

neural network in Figure 6 depicts a layered view of an input layer, four LSTM cascades, a dense 
layer of 512 neurons and a Softmax output layer.  

 

 
 

Figure 5: The LSTM Cell 
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TABLE III: Abbreviations used in LSTM 

 
SYMBOL UNDERSTANDING REFERRED GATE 

ft-1 Forgot gate Forgot 

 Sigmoid function All gates 

it-1 Input gate Input 

ot -1 Output gate  Output  

W(f,i,C,o) Weight matrix for respective gates All gates 

ht-2 Output of previous LSTM block All gates 

Ct-2 LSTM previous memory content Candidate values in input gate 

C˜t-1 LSTM current memory contents Candidate values in input gate 

Ct-1 LSTM new memory contents Candidate values in input gate 

b(f,C,o) Biases for respective gates All gates 

xt-1 Current input All gates 

 
We have taken into account the number of features (numb=42) available at the input and created 

a (numb x1) input vector. The single input layer will receive the data (legitimate + attacks) with 

42 features. A 42 x 1 input matrix or input vector will be formulated to fit the best of the 42 

features. Non-numeric features are avoided by label encoding them into numeric features. Input 
data has also been one-hot encoded as binary vectors. The input dataset matrix, in its pre-

processing stages, gets split into training and testing datasets, and one-hot encoding techniques 

have been used. The pre-processed data as input for LSTM. 512 units are used at each LSTM 
layer. The proposed model uses 2 LSTM layers and a timestep maintained at 4, a typical 4 times 

unroll. Therefore, the set of equations ranging from 20 to 25 will be computed four times for each 

timestep. However, the weight matrices and biases are used once in common for all timesteps 
since they are not time-dependent. A leaky ReLU activation layer is used to support accelerated 

learning. Normalization decreases error rates. Regularization (L2) layers help mitigate the effect 

of overfitting in our model. The output layer determines whether an anomaly has been detected or 

not. There will be no changes in neuron weights during backpropagation, system is stable. 
 

 
 

Figure 6: LSTM Model Overview 
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6. ALGORITHM OVERVIEW 
 

Preliminary Initialization: 
 

Initialization of Online Actor/ Policy Network:  ( St | 
) 

Initialization of Online Critic/ Q Network: Q ( St, a | C
Q
) 

Weights:  , 
Q 

Initialize target policy network and target Q network using online network parameters: 


Q’ 


Q 


’  


 

Initialize the Replay Buffer 

Core Steps:  

forepisode_index Ep = 1, 2, 3,….do 

     Set time_index t = 1 

     Sample data (Z0,Z1,….Zt-1), enter LSTM network to give Zt’. 

     Generate hypothesis (H) to be true according to a range of . 

     while min<do 

 

 Actor-network selects action according to decision policy: 

 at A =  (St’ |  ) + t (stochastic noise) 

 Observe reward rt and next state St+1’ 

 Store (St’, at, rt, St+1’) in Replay Buffer 

 if Buffer size > Minibatch size then 

 

o Sample (Z) from Buffer. 

o Reward calculation based on confidence interval: 

o 𝑹()  =  𝐥𝐢𝐦
𝑶𝝉→∞

𝟏

𝑶𝝉
𝑬  [𝕴((𝑶𝝉  +  𝟏)  −  𝕴((𝟏)]  

o Update critic network with minimized TD error: 

 

Loss L (
Q
) = ∑  [ #𝒁

𝒊=𝟏 Ri () – Q (Si, ai, 
Q
) ]

2 

 

 Update actor-network: 

 


 J () = ∑ #𝒁

𝒕=𝟏 aQ (s,a|
Q
) | S=Si, a = (Si) } . 

 .  (s, ) | S=Si 

end if 

 

end while 

 

 update target networks by using the updated networks, take  = 0.005. 

 


Q

Q
 + (1-) 

Q 

 + (1-) 
 

Finalize hypothesis status (anomaly detection status) 

Accept hypothesis (1) – Attack detected 

Reject hypothesis (0) – No attack detected 

end for 
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7. RESULTS AND DISCUSSION 
 

7.1. Underlying Neural Network 
 

We make a comparative analysis using RNN as well as LSTM along with their variants. The best 
model is chosen for model implementation to co-work with the DDPG-based algorithm. A 

comparative analysis of average values of accuracy is done alongside the number of epochs. For 

experimental study, we have chosen a train of 15 epochs, an optimal batch size of 32 and a 
validation split of the data as 0.33. Figure 7 provides a bar depiction of the result. The results 

have motivated the authors to proceed with LSTM1 as the base network model. The metric of 

accuracy has been used to determine the choice of LSTM in general or recurring LSTMs in 

specific over RNN. 
   

7.2. Selection of Dataset and Hyperparameters 
 
This research work makes use of NSL-KDD to compare our model with different intrusion 

detection models and frameworks. The workable ratio of training and testing data is taken to be 

approximately 67% and 33% respectively. Both training and testing datasets have 42 features 
which are also the inputs to the model. The dataset is being divided into separate datasets for each 

of the categories namely Normal, Denial-of-service (DoS), Probe, Remote-to-Local (R2L) and 

User-to-Root (U2R) attacks. 
  

RNN 1 model is a simple RNN with a learning rate of 0.01, an Adam optimizer, a sigmoid 

activation function and 80 hidden nodes. The next model namely RNN 2 has a modification 

concerning hidden nodes being a 100. The rest of the parameters remain the same. LSTM 1 
model uses an LSTM cascade with 512 neurons aided with the Leaky Relu activation function. 

The model uses 2 LSTM layers with dropout maintained at 20%, a single dense activation layer 

and one Softmax output layer. Also, each LSTM layer contains 80 hidden nodes.The final model 
analysed LSTM 2 has a variation of a number of hidden layers and activation function as 

compared to LSTM 1. 

 

 
 

Figure 7: Comparative Analysis of RNN and LSTM Models 
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TABLE IV: Hyperparameters with values 

 

Hyperparameters  Values Hyperparameters  Values 

Mini Batch size 32 Learning Rate of Critic 

network 

0.002 

Activation functions Leaky ReLu, Softmax Episode Count 50 

Optimizer Adam Neuron dropout 0.2 

Loss Function MSE Replay Buffer size 50000 

Discount factor 0.99 Soft target update tau 0.005 

Learning Rate of Actor 

network 

0.0001   

 

7.3. Metrics of Evaluation & Rewards Tally 
 

The variation of the values of Rewards concerning the number of epochs or episodes is shown in 

Figure 8. DDPG is purely Reinforcement Learning and finding the reward function is 
challenging, and depends on continuous state space. Figure 8 shows a reward tally of 

conventional DDPG versus DDPG-BN model. The proposed model reward calculation is 

different from its counterpart. The calculation is purely based on confidence interval. 

 
TABLE V: Performance Evaluation of Anomaly Detection models using NSL-KDD 

 
Reference Title Fundamental 

concept used 

Accuracy F1 score 

Actor Critic Approach based Anomaly 

Detection for Edge Computing 

Environments [25] 

Actor Critic 81 - 

A Deep Learning Approach for Intrusion 

Detection Using Recurrent Neural 

Networks [60] 

RNN-IDS 83.28 - 

Application of Improved Asynchronous 
Advantage Actor Critic 

Reinforcement Learning Model on 

Anomaly Detection [40] 

A2C 79.7 84.63 

PSO-Driven Feature Selection and 

Hybrid Ensemble for 

Network Anomaly Detection [61] 

feature selection 

with a hybrid 

ensemble 

approach 

90.39 90.7 

Network intrusion detection based on 

novel feature selection model and 

various recurrent neural networks [62] 

hybrid Sequence 

Forward Selection 

(SFS) algorithm and 

Decision Tree (DT) 

model 

96.9 - 

Wireless senor network 

intrusion detection 
system based on MK-ELM [63] 

Multi Kernel 

Extreme Learning 
Machine 

(MK-ELM) 

98.34 - 

Building an Effective Intrusion 

Detection System Using the Modified 

Density Peak Clustering Algorithm and 

Deep Belief Networks [64] 

modified density 

peak clustering 

algorithm 

(MDPCA) and deep 

belief networks 

(DBNs)- MDPCA-

DBN 

82.08 81.75 
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Attention based multi-agent intrusion 

detection systems using reinforcement 

Learning [65] 

Deep Q-Network 

logic in multiple 

distributed agents & 

attention 

mechanisms 

97.2 97.8 

Application of deep reinforcement 

learning to intrusion detection for 
supervised problems [66] 

DDQN 89.78 91.02 

DQN 87.87  

Policy gradient 78.73 79.09 

Actor Critic 80.78 81.11 

GAN-based imbalanced data intrusion 

detection system [67] 

Adversarial 

environment 

Reinforcement 

Learning (AE-RL) 

80.16 79.4 

A context-aware robust intrusion 

detection system: a reinforcement 

learning-based approach [68] 

DQN context aware 81.8 - 

Proposed DDPG-BN DDPG based 98.37 85.22 

 

 
 

Figure 8: Rewards Tally of Proposed Model 

 

A set of vital model evaluation metrics has been graphically analysed to document the 
performance of the DDPG-BN model. Refer to Figure 9. The results witness a noticeable 

improvement in rewards with the increase in episode number.  
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Figure 9: Comparative Analysis of Evaluation Metrics – DDPG-BN model 
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8. CONCLUSION AND FUTURE WORK 
 
The proposed work implements the LSTM-based DDPG algorithm for anomaly detection. LSTM 

framework has proven to be effective for temporal characteristic data. The work aims at 

providing an attack detection model or otherwise an Intrusion Detection model with relatively 

good evaluation metrics as compared to its counterpart models. The reward calculations are 
purely based on confidence intervals. We have banked upon the Trust metric and confidence 

interval to be impacting reward maximization. The trust metric we have considered is the 

Bayesian log-likelihood ratio of the hypothesis. The work demonstrates the DDPG-BN algorithm 
to iterate the temporal dataset chosen to demonstrate the validity of the reward function. The 

proposed model showcases a generic authentication protocol and finds its applications in 

detecting attacks in edge devices like sensor devices, actuators or even router switches and 

gateways. Domain-specific use includes the oil & gas industry, in-hospital data monitoring, 
autonomous driving, generic traffic management and even simple smart homing mechanisms. 

 

The results demonstrate that the reward values fluctuate between bad and good values as 
compared to the basic DDPG algorithm up to a few initial episodes of the exploratory stage. Later 

on, the learning curve becomes steeper. The proposed DRL approach in our work DDPG-BN 

provides an average detection accuracy of around 98.37 %. The proposed model performed better 
than the conventional Actor-Critic model and few other conventional ML model contributions by 

other researchers. However, the work is confined to the binary classification of attacks on a single 

dataset. Future work can be aligned to multiple datasets for detecting anomalies. Also, the use of 

ensemble classifiers and autoencoders in the design may bring in better reward values and 
valuable metric information. A stacking model [69] with classifiers, encoders and ensemble 

techniques can favour as an add-on to the model. 
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