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ABSTRACT 
 
Internet of things (IoT), is the interconnection via the Internet of computing devices embedded in everyday 

objects, enabling them to send and receive data. The communication is through the internet hence 
susceptible to security and privacy attacks. Consequently, authenticated key agreement (AKA) of 

communicating entities in IoT is of paramount importance as a security and privacy credential. However, 

IoT devices have resource-constrained feature, hence implementation of heavy security and privacy features 

becomes a challenge. Research on AKA in IoT has been done since year 2006. Current research trends on 

AKA are together with forward secrecy (FS) feasibility, which ensures that future SKs remain safe even if 

the long-term master keys get compromised. However, most of researches use public key cryptosystems to 

achieve FS, which requires heavy computations that is not good for the resource-constrained IoT 

environment. The main purpose of this Thesis is to devise a new machine AKA with FS for IoT, denoted as 

M2MAKA-FS. To design M2MAKA-FS, we devise a new lightweight FS framework first, which does not rely on 

the public key cryptosystem but based on a hash chain. The security and privacy building blocks of 

M2MAKA-FS and the FS framework are symmetric key cryptosystem, one-way hash function, fuzzy 

commitment and challenge-response mechanism. Results of formal security and privacy analysis show that 
M2MAKA-FS provides mutual authentication, SK agreement with FS, anonymity and unlinkability and is 

resilient against various active attacks. Performance analysis shows that M2MAKA-FS achieves the 

lightweight requirements for IoT environments compared to the related protocols. 
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1. INTRODUCTION 
 

The Internet of things (IoT) refers to the billions of physical devices around the world that are 

connected to the internet. Today, there are rapid developments of IoT technologies and it has led 

to enormous IoT applications, such as smart city, smart health, smart home, smart energy, smart 

industry, smart agriculture, etc. [1-7]. In all these applications, IoT devices collect and transmit 
data to different device or servers. In the accumulation and transmission of data, security and 

privacy must be ensured for users, resources, devices, and data. There are possibilities that IoT 

devices could provide a channel for attackers to penetrate residential and business networks [8]. 
Attackers could target connected devices to transmit harmful code or activate a malware message 

planted on a device, collect sensitive personal information across devices, or even extract 

information from the device. In March 2021, hackers broke into Verkada [9]. The attackers 
were able to browse live feeds of over 150,000 cameras installed in factories, hospitals, 

classrooms, jails, and other locations, as well as access sensitive material belonging to 
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Verkada software clients [10-12].  In 2016, Mirai malware attack infected approximately 2.5 
million inter-connected devices [13]. Mirai malware transforms connected devices, like baby 

monitors and doorbells, into an army that hackers can control remotely. Following Mirai malware 

attack, a huge number of IoT devices were hit by Reaper, Star Wars, WireX, Satori, Hajime, and 

Neris botnet attacks [14-15]. These incidents revealed how dangerous unprotected IoT could 
be, and also fueled continuing security and privacy disputes about how IoT technologies 

should be utilized, how sensitive data should be retained, and how access to this data 

should be handled.  

 

Providing security and privacy mechanisms for IoT is important. Authentication is the basic 

building block of any security services even in IoT environment. Also, to provide confidentiality, 
it is necessary to perform key agreement, which is a mechanism where two or more parties agree 

on a key to be used for cryptographic algorithms [16]. In 1976, Diffie and Hellman proposed the 

initial key agreement protocol that is taken as building block for most of the new key agreement 

protocols [17-18]. However, it is exposed to man in the middle (MITM) attack, which the 
attacker secretly intercepts and relays messages between two parties who believe they are 

communicating directly with each other. MITM attack is feasible in the Diffie and Hellman key 

agreement protocol because it does not provide authentication process. To solve this problem, 
there are many trials to combine the authentication and the key agreement, which is known as 

authenticated key agreement (AKA).  

 
IoT AKA protocols must be designed with the considerations on privacy, which can be provided 

by adopting mechanisms of anonymity and untraceability [19]. Anonymity is the concept of 

decoupling or removing the connection to a particular entity from the data collected [20], whereas 

untraceability requires that users and/or subjects are unable to determine whether the same user 
and/or object caused certain specific operations in the system by removing any relation between 

two observed items or pieces of data [15]. In Verkada and Mirai malware attacks, an adversary 

was able to get users identity. Furthermore, the attacker recorded live feed of users’ private 
activities and used against them. In these attacks, IoT devices were used to reveal user’s identity 

as well as to trace users’ whereabouts. Seliem et al. discussed the major IoT privacy issues and 

concerns such as identification, tracking, profiling and monitoring [21]. The lack of well-

designed IoT-oriented privacy techniques will inhibit the users’ adoption to any IoT technology 
[1]. 

 

Adopting the generalized security and privacy mechanisms could be a simple solution to IoT 
security and privacy issues. However, many IoT devices usually have limited memory, reduced 

computing power, small physical area to implement the assembly, low battery power or no 

battery and real-time response. Most of the IoT devices deal with the real-time application where 
quick and accurate response with essential security using available resources is a challenging task 

[23]. In these circumstances, if the conventional public key cryptographic mechanisms are 

applied to IoT devices, their performance may not be acceptable [24]. Conventional public key 

cryptography places a severe demand on computing capability, memory and battery consumption 
that cannot be met in typical IoT devices [25]. Symmetric key cryptography easily provides the 

lightweight property of IoT environment. This is so because symmetric key cryptosystems rely on 

XOR operations, permutations, substitutions, and some other simple operations, which are not 
heavy to compute [21].  

 

To design an AKA protocol for IoT environment, we need to consider both security and privacy 
as well as resource constraints of IoT objects. An IoT AKA protocol must not only be lightweight 

but also hold the following five required properties [28-29]:  

 

- Known key security where every protocol must create independent key 
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- Key-compromise impersonation resilience where compromise of the long-term key of a 
specific principal does not allow an adversary to establish a SK with that principal by 

masquerading as a different principal. 

 

- Unknown key-share (UKS) resilience where there should not be potential that a principal is 
tricked into sharing a key with unintended party 

 

- Key control where both principals specify the key together 
 

- Forward secrecy (FS) where if the long-term key of one or more of the parties is revealed, the 

secrecy of future SKs should not be affected. 
 

FS guarantees the secrecy of all the future SKs in the condition that long-term secret key is 

known somehow at some point [19]. In addition, a different SK for each session allows only a 

smaller number of messages encryption, making it more difficult for the attacker for the SK 
exposure attack. Moreover, even if the attacker is able to find a SK somehow, that SK is not 

useful in decrypting data of future sessions [30]. Some AKA protocols employing public key 

cryptography are designed to provide for FS [36, 38-40]. However, public key cryptography 
requires heavy computations, which make it too big overburden for resource-constrained IoT 

devices [38]. So, with the resource-constrained nature of IoT devices, designing lightweight 

protocols is a requirement. The challenge is how to design a lightweight AKA protocol that 
achieves FS.  

 

FS is a strong notion of security for an AKA protocol. Nevertheless, in the course of designing 

AKA protocols that provide FS, the other security and privacy concerns should not be ignored. 
Similarly, the resource-constrained environment for IoT has to be considered. From the literature 

available, it is imperative that we design a FS framework to provide SK agreement with FS and 

to design a new lightweight authenticated key agreement protocol that provides FS and the other 
security and privacy requirements for IoT environment. Thus the contributions of this paper are: 

 

- To propose a FS framework and an AKA protocol with FS for IoT environment. 

- To propose a new AKA protocol with FS basing on FS framework but having the other 
authentication and key agreement requirements for IoT environments. 

 

The rest of this paper is organized as follows; Chapter 2 provides cryptographic preliminaries. In 
Chapter 3, we propose a FS framework and a new AKA protocol for IoT environment. After that, 

we provide analysis of the proposed protocol focused on the security and performance in Chapter 

4. Finally, Chapter 5 concludes the paper. 
 

2. BACKGROUND AND PRELIMINARIES 
 

This section discusses the basic cryptographic primitives that the proposed AKA protocol, 

M2MAKA-FS relies on. 
 

2.1. Integrity Primitive 
 
The cryptographic concept of hash function is used to provide integrity check of the message in 

the FS framework and M2MAKA-FS. Furthermore, we discuss how a chain of hash values from 

hash function can be used as a security building block to a FS framework. [30]. We define a hash 
function as follows: 
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Definition 2.1. A hash function is a function ℎ(. ): 𝐷 → 𝑅 such that: 
 

1. The domain 𝐷 is a set that may be finite or infinite 

2. The range 𝑅 is a finite set 

3. The function is computationally easy to evaluate for any given input 𝑥 ∈ 𝐷 
4. The function has preimage resistance, second preimage resistance and collision resistance. 

 

The intractability of a hash function is based on the three properties, preimage resistance, 
second preimage resistance and collision resistance [41].  

 

Definition 2.2. A function ℎ(. ): 𝐷 → 𝑅  is preimage resistant if for a given 𝑦 ∈ 𝑅  it is 

computationally infeasible to find an 𝑥 ∈ 𝐷 such that ℎ(𝑥) = 𝑦. 
 

Definition 2.3. A function ℎ(. ): 𝐷 → 𝑅 is second preimage resistant if for a given 𝑥 ∈ 𝐷 it is 

computationally infeasible to find 𝑥′ ∈ 𝐷 with 𝑥′ ≠ 𝑥 such that ℎ(𝑥′) = ℎ(𝑥). 
 

Definition 2.4.  A function  ℎ(. ): 𝐷 → 𝑅 is collision resistant if it is computationally infeasible 

to find 𝑥 and 𝑥′ ∈ 𝐷 with 𝑥′ ≠ 𝑥 such that ℎ(𝑥) = ℎ(𝑥′). 
 
The input to a hash function is a message of arbitrary length but the output is of a fixed length. 

The messages returned by hash functions are called message digests or simply hash values. The 

sender will send both message x and its digest y, the receiver computes his message digest 𝑦 ′ =
ℎ(𝑥) with the x he received and verifies if it matches the digest y he received. If it matches, then 

the message has not been tampered. If we repeatedly apply hash function with an initial input 
(seed), we can generate a chain of hash values which can be used as OTS values. 

 

Definition 2.5. (Chain of hash values) A chain of hash values is a sequence of values derived via 
consecutive applications of a cryptographic hash function to a seed.  

 

A random value rk is selected as a seed and a hash of rk is computed, h(rk), to get a hash value di1. 

Then di2 = h(di1) is computed by using di1 as input to the hash function. This continues until a 
chain of n hash values is generated. The hash values dij are the vertices and the computations h(dij) 

are the edges. They all point in one direction such that one cannot obtain din-1 given din due to the 

hash function properties, definitions 2.2, 2.3 and 2.4. Figure 1, demonstrates how a chain of hash 
values can be generated. 

 

 
 

Figure 1. Hash chain secret values generation 

 

All the values in this chain, dij for j {1, 2, 3, …, n}  are then stored securely and will be used 

one by one from din to di1 to provide for FS to SKs through one time use of the hash values, 
which should be opposite sequence from the generation. For the chain of hash values to provide 

FS, we need the following definitions: 

 

Definition 2.7: (Negligible function) A function𝜔(𝑛)is negligible if for all𝑐 > 0, there exists 

𝑛0 ∈ ℤ
+

such that |𝜔(𝑛)| ≤
1

𝑛𝑐
 for all 𝑛 ≥ 𝑛0. 
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Definition 2.8: (Hash Chain FS Property) Given a hash function output ℎ(𝑑𝑖𝑗) of length n bits, it 

is computationally infeasible to find 𝑑𝑖𝑗 in polynomial time. 

 

Assumption 2.1: (FS assumption) Any probabilistic polynomial time adversary against the hash 

chain FS property of a hash function has a negligible advantage in finding the integer 𝑑𝑖𝑗 (input) 

for the given ℎ(𝑑𝑖𝑗) (output) of size n bits. 

 

𝐴𝑑𝑣𝒜
𝐹𝑆(𝑛) = 𝑃 𝑟[𝒜(1𝑛, ℎ(𝑑𝑖𝑗))] = 𝑑𝑖𝑗 ≤ 𝜔(𝑛). 

 

Definition 2.9: (FS collision resistance property) Given an input and a hash output (𝑑𝑖𝑗, ℎ(𝑑𝑖𝑗)) 

withℎ(𝑑𝑖𝑗)of length n bits, it is computationally infeasible to find 𝑑𝑖𝑙 in polynomial time such 

thatℎ(𝑑𝑖𝑗) = ℎ(𝑑𝑖𝑙) and𝑑𝑖𝑗 ≠ 𝑑𝑖𝑙. 

 
Assumption 2.2: (FS collision resistance assumption) Any probabilistic polynomial time 

adversary against the FS collision resistance property of the hash function has a negligible 

advantage in finding the integer 𝑑𝑖𝑙 for the given 𝑑𝑖𝑗 and ℎ(𝑑𝑖𝑗) of size n bits. 

 

𝐴𝑑𝑣𝒜
𝐶𝑅(𝑛) = 𝑃 𝑟[𝒜(1𝑛, 𝑑𝑖𝑗, ℎ(𝑑𝑖𝑗) = ℎ(𝑑𝑖𝑙))] = 𝑑𝑖𝑙 ≤ 𝜔(𝑛). 

 

The sender and receiver will both keep the last hash value they used. Sender sends a commit 
request, with a secret value dij-1 to the receiver. Receiver with dij, uses the secret value dij-1, to 

verify the sender by computing h(dij-1). If h(dij-1) is equal to dij, the commitment receiver has, then 

the sender is legit. The receiver will now take dij-1 as new commitment whereas the sender will 

send dij-2 in the next login. This is repeated n-times until all the hash chain secret values are 
exhausted. An adversary who gets the hash value dij for the current session, will not be able to use 

to access another session in future. The next session he will need to compute dij-1 such that dij = 

h(dij-1) which has a negligible probability of succeeding due to definitions 2.8 and 2.9 of hash 
chain FS. Since the adversary cannot use dij to log in, in the future session then we can use a 

chain of hash values as OTS values that can provide key agreement with FS. 

 

2.2. Confidentiality Primitive 
 

Confidentiality is the concept of hiding or scrambling information so that only the intended 
recipient has access. For confidentiality, we encrypt a message: given a message, we pair it with a 

key and produce a meaningless jumble that can only be made useful again by reversing the 

process using the same key. In the proposed FS framework and M2MAKA-FS, we have adopted the 
symmetric key cryptography (SKC) due to resource constrained nature of IoT environment. SKC 

uses a single shared secret to establish a secure channel between entities. Ciphers in this category 

are called symmetric because they use the same key to encrypt and to decrypt the data. 

 

Definition 2.10: SKC is formed with a triple of algorithms SKC = {G(k), EK(), DK()} where [42] 
- G(k), the key generation algorithm, that takes a security parameter k and returns a symmetric 

encryption key K. 

 

- EK(M), the encryption algorithm, is a deterministic algorithm that takes K and a message 

M{0,1}* to produce a cipher text C. 
 

- DK(C), the decryption algorithm, is a deterministic algorithm that takes K and cipher text C to 

produce either a message M{0,1}* or a special symbol ⊥ to indicate that the cipher text was 

invalid. 
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Thus, we require that for all 𝐾 that can be output by G(k), for all M{0,1}*, and for all C that can 

be output by EK(M), we have that M = DK(C). We also require that G(k), EK(M) and DK(C) can be 

computed in polynomial time. 
 

2.3. Machine Authentication Factor 
 
Most connections for IoT objects do not require human intervention for authentication, hence 

machine to machine authentication is necessary. Machine to machine authentication uses the 

following factors, what the machine is, i.e., biometric features, and what the machine has e.g. 
memory card. Machine fingerprinting is a technique to authenticate devices using unique features 

extracted from the machines’ distinctive characteristics. A machine’s radio frequency (RF) 

emission is used as the fingerprint for the authentication of the device [40]. Apparently each 
distinctive machine emits a unique RF signal which can be used to identify it. The machine’s 

unique RF signal can be captured and preserved in a template such that each time the machine 

wants connection, it can be verified by comparing the signal it is emitting with the previously 

recorded signal. The verification procedure uses a fuzzy commitment scheme 

𝐹: ({0,1}𝑛, {0,1}𝑛) → ({0,1}𝑙 , {0,1}𝑛), together with error correcting codes 𝐶 ⊆ {0,1}𝑛 , which 

can commit a codeword 𝑐 ∈ 𝐶 using a 𝑛 bit witness 𝑏𝑖 as 𝐹(𝑐, 𝑏𝑖) = (𝛼, 𝛿), where 𝛼 = ℎ(𝑐) and 

𝛿 = 𝑏𝑖⊕ 𝑐 . The commitment 𝐹(𝑐, 𝑏𝑖) = (𝛼, 𝛿)  can be opened using witness 𝑏𝑖 ′  which is 

relatively close to 𝑏𝑖, but no need to be the same as 𝑦 (Li et al. 2017). To open the commitment 

using 𝑏𝑖 ′, the receiver computes 𝑐′ = 𝑓(𝑏𝑖 ′⨁𝛿) = 𝑓(𝑐⨁(𝑏𝑖
′⨁𝑏𝑖), and checks 𝛼 =? ℎ(𝑐′). If they 

are equal, the commitment is opened successfully. Otherwise, the witness 𝑏𝑖 ′ is not valid. Due to 
the noisy characteristic, i.e., the input biometric information is not the same as the template 

exactly, it can be used in fuzzy commitment scheme. The biometric template can be seen as the 

witness 𝑏𝑖 and c can be opened by the input biometric 𝑏𝑖 ′, which is close to 𝑏𝑖[20, 38,40]. Here, 

F(.) is the commitment scheme while f(.) is a decoding function of the commitment scheme hence 

𝐹(. ) is used to register unique RF signals whereas f(.) is used to extract the distinctive features 

for comparison in the presence of the witness. 

 

2.4. CK Threat Model  
 
The Canetti & Krawczyk’s adversary model (CK-adversary model) can be used to evaluate the security of 

AKA protocols in IoT. Based on the CK adversary model, 𝓐 is supposed to have the following capacities: 

 

- 𝓐 has full control of the communication channel between the communicating parties, such as 

intercepting, eavesdropping, inserting, modifying, and deleting any transmitted messages 
over the public channel. 

 

- To characterize FS, 𝓐 may also be allowed to corrupt valid parties to attain a long-term 

secret key. 
 

- 𝓐 can extract the secret parameters stored in IoT device memory chip using side-channel 

attacks when the IoT device is stolen or obtained by 𝓐. 

 
- 𝓐 may be a legitimate but malicious user. 

 

- 𝓐 can launch multiple types of known attacks, such as user impersonation attack, replay 

attack and known session-specific temporary information attack. 

Given such capabilities to 𝓐, the design of an AKA protocol should be such, that will still 

provide session key security when attacked by 𝓐. Under the CK model a session key is security 
is defined as follows: 
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Definition 2.11: (Session-key security). A key-agreement protocol π is called Session Key secure 

(or SK-secure) if the following properties hold for 𝓐: 

 

C1: If two uncorrupted parties complete matching sessions, then they both output the same SK. 

 

C2:  The probability that 𝓐 can distinguish the session key from a random value is no more than 

1/2 plus a negligible fraction in the security parameter.  

 

3. MACHINE TO MACHINE AUTHENTICATED KEY AGREEMENT WITH 

FORWARD SECRECY FOR  IOT 
 
This chapter proposes a FS framework and a new machine to machine authenticated key 

agreement protocol, M2MAKA-FS, with FS in IoT environments. Firstly, we design a FS 

framework that can be adopted in any protocol to provide SK agreement, which uses a chain of 
hash values as OTS values. Then, we design M2MAKA-FS as an AKA protocol based on the FS 

framework for IoT environments. M2MAKA-FS emphasizes on SK agreement with FS in IoT 

environments that supports lightweight, machine to machine authentication, privacy-preserving 
and efficiency in performance. The security and privacy of the FS framework and M2MAKA-FS is 

based on symmetric key cryptography, hash function and fuzzy commitment. 

 

3.1. Network Model 
 
Figure 2 shows the network environment and its description is as follows: 

 

 
 

Figure 2. Network model 

 
IoT devices with MC: These are pieces of hardware, such as sensors, actuators, gadgets, 

appliance, or machines that are programmed for certain applications and can transmit data over 

the internet or other networks. They consist of software and hardware for generating sensing data, 
computing meta information, sending reports, receiving instructions, and acting accordingly. 

They are usually resource constrained due to their size hence they often have small battery power, 

processing capacity and storage space. Their main role is to collect data and send the data to SS 
through CS or directly to SS so that SS can take the necessary actions in real time. They are 

installed with some sensors that collect environment data required for the target services and a 

MC is installed for secure data storage.  

 
Central server (CS): A fully trusted server that is responsible for registration and login of IoT 
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devices and SS. It consists of software and hardware for identification and credentials, it stores 
unique identification and secret credentials such as keys. It facilitates communication and data 

exchanges between IoT device and SS and responsible for authentication of the entities. 

 

Service server (SS): It consists of software and hardware for receiving instructions, and acting 
accordingly. This supports various rich and convenient services to IoT device. Responsible for 

acting basing on data the IoT device collect and submit. Makes decisions basing on the data and 

can instruct IoT device accordingly. Nevertheless, it does not have authority and credential to 
directly communicate with IoT device, but rather through the CS. 

 

3.2. Design Goals 
 

To design an AKA protocol, we need to consider three aspects at the same time, which are the 

network environment, security goals and privacy goals. This subsection will consider them one 
by one. IoT offers numerous advantages and services to the users. An important aspect of 

pervasive IoT devices is its constrained resources. So, various energy efficient lightweight 

mechanisms should be designed to store, process and transfer the data as per application 
requirements and with an optimized resource management.  

 

AKA-Goal 1: Lightweight property: Given the constraints of IoT environment, it is desirable 

that the AKA protocol should be lightweight in computation and communication. AKA protocol 
primitives should consume fewer resources without compromising the required level of security 

and privacy. 

 
AKA-Goal 2: Mutual authentication: An unidirectional authentication is common for various 

network environments. However, an AKA protocol for IoT requires to provide much high-level 

security than the others due to their complicated applications for the real-life. 
 

AKA-Goal 3: SK agreement with FS: An important security feature of the SK agreement is to 

preserve security of future communications even if the long term secret key of the system is 

exposed to 𝓐. FS ensures that, if the system is breached, 𝓐 should not get further access to 
future communications.  

 

AKA-Goal 4: Resilience to various attacks: An AKA protocol should support all security goals 
and must resist against various security attacks, both passive and active. Such attacks may 

include: 

 

- Eavesdropping attack: It is a passive attack which aims to achieve data or scan open ports and 
vulnerabilities of the network [3, 16]. 

 

- Replay attack: It is an active attack in which 𝓐 interferes with a protocol run by insertion of 
some messages from previous protocol runs or parallel sessions. It can be considered as a 

combination of eavesdropping and modification attacks. A protocol is vulnerable to the 

replay attack if it fails to provide freshness of the message [21, 44]. 

 
- Impersonation attack: It is an active attack which aims to defeat the authenticity. In this attack, 

𝓐 tries to impersonate one or more legal entities [4, 12, 45]. 

 

- MITM attack: It is a variant of the impersonation attack, where 𝓐 resides between two 

entities, and convincingly impersonates both victims. MITM is feasible when a protocol lacks 

authentication [3, 46]. 
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- Unknown key share (UKS) attack: In a UKS attack, two entities share a SK, but they have 
different views about the identity of their peer. The UKS attack is feasible when a key 

exchange protocol fails to provide an authentication binding between the SK and identifiers 

of the legal entities [3, 12, 16, 46]. 

 
AKA-Goal 5: Anonymity: The property that provides device identity protection of IoT devices. 

𝓐 who has recorded past messages should not be able to discover the identities of IoT devices. 𝓐 

should not be able to tell what messages belong to what entity. We develop mathematical 
techniques that enable anonymity in M2MAKA-FS. 

 

AKA-Goal 6: Unlinkability: 𝓐 cannot distinguish whether two sessions are executed by the 

same IoT device or not. 
 

3.3. FS Framework 
 

A FS framework is designed to provide a platform for any two entities to agree on a fresh SK 

with provision of FS. It is based on a chain of hash values and the challenge-response mechanism, 

which is mentioned in definition 2.5. It uses a synchronized credential for each session between 
entities with session dependent random values, which satisfies definitions 2.2 and 2.3 properties. 

Note that the purpose of the FS framework is to achieve FS when any security protocol requires 

to agree on a SK that could be used as a basic security building block of M2MAKA-FS. It has two 
phases, credential setup and SK agreement. One is to set up credentials as OTS values between 

entities, which is based on a hash chain. The other is to agree on a SK based on the synchronized 

credential established in the credential setup. Random numbers are used for both phases to derive 
different secret values and to provide freshness of messages.  

 

3.1.1. Credential Setup Phase 

 
The aim of this phase is to set up the fresh security credentials for FS, which entities could use to 

synchronize with each other. These security credentials are generated as a chain of hash values as 

per definitions 2.5 and 2.6 and demonstrated in Figure 1. Figure 3 demonstrates the setup phase 
and its description is as follows: 

 

C1. For a credential setup with CS, IoT device sends a request message of its IDi and an MC to 
CS. 

 

C2. Upon receiving the request, CS generates a random number rk, uses it as a seed of a hash 

chain to compute n hash values as di1= h(rk), di2 = h(di1), …, din = h(din-1). Each value dik, 
1≤k≤n, in the hash chain is stored in MC together with the hash function h(∙). CS keeps 

both of IDi and di = din in its database as IoT’s starting credential and sends back MC to IoT 

device. 
 

C3. Upon receiving MC, IoT device generates a random number ai and makes MC to compute 

Di1 = di1⊕h(ai), Di2 = di2⊕h(ai), …, Din = din⊕h(ai), replace di1, …, din with Di1, …, Din in 

MC and keep ai in secret. MC sets and stores j = n. 
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IoT device with MC            Central server  (CS) 

Sends a credential setup request     

{IDi, MC} Generates a random rk 

Computes di1 = h(rk) 

di2 = h(di1) 

⁞ 
din = h(din-1) 

Stores di1, …, din, h(.) into MC 

Stores IDi, di = din into DB 

{MC} 

Generates a random ai 

Computes Di1 = di1⊕h(ai) 

Di2 = di2⊕h(ai) 

⁞ 

Din = din⊕h(ai) 
Replaces di1, …, dinwith Di1, …, Dinin MC 

Sets j = n and stores it in MC 

 
Figure 3. Credential setup phase of FS framework 

 
IoT device with MC     Central server (CS) 

{Di1, …, Din, j, ai}      {di} 

Computesdij′ = Dij⊕h(ai′) 

   dij-1′ = Dij-1⊕h(ai′) 

Generates a random ri2 

Computes M1 = dij⊕ri2 

  M2 = dij-1⊕ri2 

{IDi, M1, M2} 

Withdraws diby checkingIDiin DB 

Computes ri2′ = M1⊕di 

dij-1′ = M2⊕ri2′ 
Checks di? = h(dij-1′) 

Generates a random rC2 

Computes M3 = rC2⊕ri2′ 

SKCS = h(ri2′||rC2) 

M4 = h(IDi||di||SKCS) 

{M3, M4} 

Computes rC2′ = M3⊕ri2 

SKi= h(ri2||rC2′) 

Checks M4? = h(IDi||dij||SKi) 

Updates j = j-1 

 
Figure 4. SK agreement phase of FS framework 

 

3.3.2. SK Agreement Phase 
 

The aim of this phase is for the two entities that setup the FS framework credentials to agree on a 

SK between them basing on the settled credentials. This phase focuses on the basic notion design 
on how to agree on a SK with the provision of FS. To agree on a SK, each entity needs to check 

authenticity of the counterpart. The session dependent synchronized credential is used for that 

purpose. IoT device sends to CS the security credential it committed. CS authenticates IoT device 

by computing hash function of the received security credential and verifies if it matches the 
commitment CS has.  If it matches, then the security credential received came from a legit sender. 

After a successful verification, both IoT device and CS update their commitment for the next 

session. This ensures that each value of the hash chain is used for authentication only once. 
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Figure 4 demonstrates the FS framework SK agreement phase. 
 

3.4. M2MAKA-FS 
 
M2MAKA-FS is designed to provide a machine to machine authenticated key agreement with FS in 

IoT environments. The security of M2MAKA-FS is based on symmetric key cryptography and hash 

function to suit the lightweight environment of IoT. A fuzzy commitment scheme is adopted to 
verify validity of IoT devices basing on machine fingerprinting as authentication factor. Dynamic 

identity of IoT device has been used to provide for anonymity whereas random numbers provide 

unlinkability of IoT devices as well as for freshness of the SK. M2MAKA-FS has three parties, 

which are IoT device with MC, CS and SS. IoT device checks ownership of MC before sending 
login request message to CS. M2MAKA-FS has four phases which are: Initialization phase, IoT 

device registration phase, SS registration phase, and login and AKA phase. 

 

3.4.1. Initialization Phase 

 

In this phase CS defines the following required system parameters that are necessary for the 
execution of M2MAKA-FS as follows: 
 

Step 1 : First, a group Zp is selected and a code set C ∈ {0, 1}n. 
Step 2 : CS picks a long term private key KCS ∈ Zp and keeps it secret. 

Step 3 : CS selects a collision-resistant one-way cryptographic hash function ℎ(. ). 
Step 4 : CS defines two fuzzy commitment functions f(.) and F(.). 
Step 5 : CS selects two asymmetric key functions E(.) for encryption and D(.) for decryption 

based on AES. 

Step 6 : CS publishes the parameters {Zp, h(.), f(.), F(.), E(.), D(.)} to the targeted network. 

 

3.4.2. IoT Device Registration Phase 

 

Before IoT device communicates with SS, it needs to be registered to CS based on the FS 
framework so that it becomes a part of the system. Figure 5 shows the flow of this phase and the 

description of it is as follows: 

 
IoT device with MC    Central server  (CS) 

Generates a random number ai 

Computes DIDi= h(MACi∥ai) 

    Bi = (MACi) 

RBi= h(Bi∥ai) 

 {DIDi, RBi, MC}                 Chooses a codeword ciϵ C 

Computes (α, δ) = F(ci⊕RBi) 

 Ai= h(DIDi∥ci) 

EIDi= EKCS(DIDi) 

Ei = EIDi⊕h(ci) 

Generates rk 

Computes di1= h(rk) 

di2 = h(di1) 

⁞ 

din = h(din-1) 

Stores di1,…, din, α, δ, Ai, Ei, F(.), f(.), h(.) into MC 

Stores DIDi, di = din into DB 

{MC} 

Computes Gi=ai ⊕Bi 

   Di1= di1⊕h(ai∥Bi) 
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   Di2= di2⊕h(ai∥Bi) 

⁞ 

   Din = din⊕h(ai∥Bi) 

Stores Gi in MC 

Replaces di1, …, dinwith Di1, …, Din 
Sets j = n and stores it in MC 

 

Figure 5. IoT device registration phase of M2MAKA-FS 

 

R1. IoT device generates a random number ai and computes an amplified dynamic identity 

DIDi= h(MACi∥ai). After that, it derives its machine fingerprint Bi =  (MACi), secures the 

fingerprint by computing RBi= h(Bi∥ai) and sends the registration request message {DIDi, 
RBi} together with MC to CS via a secure channel. 

 

R2. Upon receipt of the registration request from IoT device, CS chooses a random code 

word ci ϵ C for IoT device and computes (α, δ) = F(ci, RBi), where α = h(ci) and δ = 

ci⊕RBi, Ai = h(DIDi∥ci), EIDi= EKCS(DIDi) and Ei= EIDi⊕h(ci) where E(.) is the 

symmetric encryption function as per definition 2.10 of SKC, and KCS is the master 

secret key of CS. CS generates a random number rk and computes a chain of hash values 
with the seed rk as di1 = h(rk), di2 = h(di1), …,and din = h(din-1). CS stores {di1, …,din, α, δ, 

Ai, Ei,  (.), f(.), h(.)} into an MC, sets di = din and stores DIDi and di in its database. CS 

sends MC to IoT device via a secure channel. 

 

R3. After MC installation, IoT device computes Gi= ai⊕Bi and secures the hash chain values 

by computing Di1 = di1⊕h(ai∥Bi), Di2=di2⊕h(ai∥Bi), …, Din = din⊕h(ai∥Bi). IoT device 

stores Gi, Di1, …, Din into MC and deletes di1, …, din from MC and sets counter j to n and 

stores it in MC. Now MC contains the parameters {Di1, …, Din, α, δ, Ai, Ei, Gi, (.), f(.), 
h(.), j}. 

 

3.4.3. SS Registration Phase 

 

Like IoT device, SS also needs to be registered with CS based on the FS framework before 

providing any service to IoT device. SS selects an identifier IDSS and sends it to CS via a secured 
channel, which is established based on the pre-relationship with CS. After receiving the 

registration request from SS, CS computes a secret key KCS-SS = h(IDSS∥KCS) for SS to be used for 

encryption and decryption as per  
 

definition 2.10 of SKC. CS generates a random number rp for FS framework credential setup. 

With seed rp, CS computes a chain of hash secret values ds1 = h(rp), ds2 = h(ds1), …, dsm= h(dsm-1) 
and sends {IDSS, KCS-SS, ds1, ds2, …, dsm} to SS securely and CS keeps IDSS and ds = dsm in its DB. 

SS sets l = m and stores {IDSS, KCS-SS, ds1, ds2, …, dsm, l} in its DB. 

 

3.4.4. Login and AKA Phase 
 

When and IoT device would like to get services from SS, it firstly checks the ownership of MC 

and requests to login and agree on SK with SS through CS. CS checks authenticity of IoT device 
as well as of SS. This is achieved through verification of credentials basing on both the 

confidentiality and integrity primitives as defined in definitions 2.10 and 2.1. SK is agreed when 

the two have been mutually authenticated. Finally, all the parties update their security credentials 
to ensure that the next login is unique from others. Figure 6 shows the detailed conceptual flow of 

this phase and its description as follows: 
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A1.  IoT device imprints its machine fingerprint Bi′=(MACi) and MC derives ai′=Gi⊕Bi′, 

computes RBi′=h(Bi′∥ai′) and ci′=f(δ⊕RBi′), and validates whether h(ci′) is equal to α. MC 

terminates the sessionif the validation is failed. Otherwise, IoT device passes the fingerprint 

verification and MC computes Ei′=h(MACi∥ai′) and Ai′=h(DIDi′∥ci′), and validates if Ai′ is 

equal to Ai. MC terminates the sessionif it fails. Otherwise, MC generates random numbers ri1 

and ri2and computes EIDi′=Ei⊕h(ci′), M1=h(DIDi′∥EIDi′)⊕ri1 and M2 = h(EIDi′∥ri1)⊕IDSS. 

MC retrieves the hash chain secret values by computing dij′=Dij⊕h(ai′∥Bi′) and dij-1′=Dij-

1⊕h(ai′∥Bi′). IoT device computes M3=dij⊕ri2,M4=dij-1⊕ri2 and M5=h(DIDi∥IDSS∥dij-1∥ri1∥ri2) 

and sends the login and key agreement request message {EIDi′, M1, M2, M3, M4, M5} to CS. 

 
A2. On receiving the login and key agreement request, CS computes DIDi′′= 

DKCS(EIDi′),ri1′=M1⊕h(DIDi′′∥EIDi′) and IDSS′=M2⊕h(EIDi′∥ri1′), ri2′=M3⊕di and dij-

1′=M4⊕ri2′ and validates di?=h(dij-1′). If it does not hold, the session is terminated. Otherwise, 

CS validates M5 ?= h(DIDi′′∥IDSS′∥dij-1′∥ri1′∥ri2′). If not, the session is terminated. Otherwise, 

CS generates a random number rCSϵ Zn
⃰ and computes KCS-SS′=h(IDSS′∥KCS), M6=DIDi′′⊕KCS-SS′ 

and M7=h(DIDi′′∥KCS-SS′)⊕rCS. CS then uses the hash chain value of SS to secure ri2 by 

computing M8=ri2′⊕dS. CS computes M9=h(DIDi′′∥KCS-SS′∥dS∥ri2′∥rCS). After that, CS sends a 

message {M6, M7, M8, M9, M10} to SS. 
 

A3. On receiving the message from CS, SS retrieves DIDi′′′=M6⊕KCS-SS, rCS′=M7⊕h(DIDi′′′∥KCS-

SS) and ri2′′=M8⊕dSl, and validates M9?=h(DIDi′′∥KCS-SS′∥dSl∥ri2′′∥rCS′). SS terminates the 
session if the validation fails. Otherwise, SS generates two random numbers rS1 and rS2 and 

computes M10=rS1⊕KCS-SS and SKSS = h(DIDi′′′∥IDSS∥ri2′′∥rCS′∥rS2). Then SS computes 

M11=dSl⊕rS2, M12=dSl-1⊕rS2 and M13=h(KCS-SS∥SKSS∥rS1). SS returns to CS with a message 

{M10, M11, M12, M13}. If SS does not reject failure message in ∆Ttime, SS updates its 
commitment by updating l=l-1. 

 

A4. After getting the message from SS, CS retrieves rs1′=M10⊕KCS-SS′, rS2′=M11⊕dSl and dSl-

1′=M12⊕rS2′. CS validates dS? =h(dSl-1′). If not, the session is terminated and a reject message 

is sent to SS. Otherwise, C Scomputes SKCS = h(DIDi′′∥IDSS′∥ri2′∥rCS∥rS2′) and validates M13 ?= 

h(KCS-SS′∥SKCS∥rS1′). CS computes M14=ri1′⊕rCS, M15=rCS′⊕rS2′, M16=EKCS(DIDi′′⊕rCS)⊕ri1′ 

and M17=h(DIDi′′∥SKCS∥rCS∥rS2′∥M16). Finally, CS 

 
IoT device with MC 

Derives Bi′ = (MACi) 

Computes ai′ = Gi⊕Bi′ 

RBi′ = h(Bi′∥ai′) 

    ci′ = f(δ⊕RBi′) 

Checks h(ci′) ?= α 

Computes Ei′ = h(MACi∥ai′) 

    Ai′ = h(DIDi′∥ci′) 

Checks Ai′ ?= Ai 

Generates ri1,ri2ϵ Zn
⃰  

Computes EIDi′ = Ei′⊕h(ci′) 

    M1 = h(DIDi′∥EIDi′)⊕ri1 

    M2 = h(EIDi′∥ri1)⊕IDSS 

dij′ = Dij⊕h(ai′∥Bi′) 

    dij-1′ = Dij-1⊕h(ai′∥Bi′) 

    M3 = dij⊕ri2 

    M4 = dij-1⊕ri2 

    M5 = h(DIDi∥IDSS∥dij-1∥ri1∥ri2) 

           {EIDi′, M1, M2, M3, M4, 

M5} 

Central server (CS) 

 
 

 

 

 

 

 

 

 

 

 

Computes DIDi′′ = DKCS(EIDi′) 

     ri1′ = M1⊕h(DIDi′′∥EIDi′) 

     IDSS′ = M2⊕h(EIDi′∥ri1′) 

     ri2′ = M3⊕di 

dij-1′ = M4⊕ri2′ 

Checks di ?= h(dij-1′) 

M5 ?= h(DIDi′′∥ IDSS′∥din-j-1′∥ri1′∥ri2′) 

Generates rCSϵ Zn
⃰ 

Service server (SS) 
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Computes rCS′′ = M14⊕ri1 

rS2′′ = M15⊕rCS′′ 

SKi= h(DIDi′∥IDSS∥ri2∥rCS′′∥rS2′′) 

Checks M17? = h(DIDi′∥SKi∥rCS′′∥rS2′′∥M16) 

IfM17 ≠ h(DIDi′∥SKi∥rCS′′∥rS2′′∥M16) 

 Rejects EIDi 

Otherwise, updates j = j-1 

Computes EIDi_new= M16⊕ri1 

Ei_new=EIDi_new⊕h(ci) 

Ai_new=h(DIDi′⊕rcs′′∥ci) 

Gi_new= Gi⊕rcs′′ 

Replaces Ei_new, Ai_new, Gi_new into Ei, Ai, Gi 

Computes KCS-SS′ = h(IDSS′∥KCS) 

     M6 = DIDi′′⊕KCS-SS′ 

M7 = h(DIDi′′∥KCS-SS′)⊕rCS 

M8 = dS⊕ri2′ 

M9= h(DIDi′′∥KCS-SS′∥dS∥ri2′∥rCS) 

                          {M6, M7, M8, M9} 

 

 

 

 

 

Computes rS1′ = M10⊕KCS-SS′ 

 rS2′ = M11⊕dS  

    dSl-1′ = M12⊕rS2′ 

Checks dS? = h(dSl-1′) 

Computes 

SKCS = 

h(DIDi′′∥IDSS′∥ri2′∥rCS∥rS2′) 

Checks M13? = h(KCS-

SS′∥SKCS∥rS1′) 

If M13 ? ≠ h(KCS-SS′∥SKCS∥rS1′) 
                               Rejects IDss 

Else updates dS= dSl-1′ 

Computes M14 = ri1′⊕rCS 

M15 = rCS⊕rS2′ 

M16 = EKCS(DIDi′′⊕rCS)⊕ri1′ 

M17 = 

h(DIDi′′∥SKCS∥rCS∥rS2′∥M16)  

{M14, M15, M16, M17}  
 

 

 

 

If does not receive any message after ∆𝑇 

Updates di= dij-1′ 

Computes DIDi′′′ = M6⊕KCS-SS 

rCS′ = M7⊕h(DIDi′′′∥KCS-SS) 

ri2′′ = M8⊕dSl 

Checks M9 ?= h(DIDi′′′∥KCS-SS∥dSl∥ri2′′∥rCS′) 

Generates rS1, rS2ϵ Zn
⃰ 

Computes M10 = rS1⊕KCS-SS 

KSS = 

h(DIDi′′′∥IDSS∥ri2′′∥rCS′∥rS2) 

M11 = dSl⊕rS2 

M12 = dSl-1⊕rS2 

M13 = h(KCS-SS∥SKSS∥rS1) 
{M10, M11, M12, M13} 

 

 

 

 

 

 

 

 

 

If does not receive any message after ∆𝑇 
Updates l = l-1 

 

 

Figure 6. Login and AKA phase of M2MAKA-FS 

 

sends a message {M14, M15, M16, M17} to IoT device. If CS does not receive reject message 

from IoT device within ∆Ttime, CS updates its commitment values di=dij-1 and dS=dSl-1. 

 

A5. Upon receiving the message from CS, MC computes rCS′′=M14⊕ri1, rS2′′=M15⊕rCS′′. MC 

computes the SK, SKi=h(DIDi′∥IDSS∥ri2∥rCS′′∥rS2′′) and validates 

M17?=h(DIDi′∥SKi∥rCS′′∥rS2′′∥M16). If it does not hold, IoT device sends a reject message to 

CS and the session is terminated. Otherwise, the authentication process is successful and MC 

updates its parameters by computing j=j-1, EIDi_new=M16⊕ri1, Ei_new=EIDi_new⊕h(ci), Ai_new= 

h(DIDi′⊕rCS′′∥ci) and Gi_new=Gi⊕rCS′′and replaces Ei_new, Ai_new and Gi_new into Ei, Ai and 

Gi,respectively. 

 

Finally, IoT device can access SS on MC for any communication via CS, and a SK, SKi= (SKCS = 
SKSS) with FS property is shared among IoT device, CS and SS. 
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4. SECURITY AND PERFORMANCE ANALYSIS  
 

In this section we provide security and performance analysis of M2MAKA-FS. Firstly, we prove the 
security correctness of M2MAKA-FS by using BAN Logic. Then based on CK threat model, we 

demonstrate how M2MAKA-FS achieves the five AKA protocol properties as well as the security 

and privacy goals. Finally, we compare the performance of M2MAKA-FS with those of five earlier 

protocols: [2, 21, 36, 37, 40], Shuai et al., Kapito et al., Xiong et al., Yang et al. and Li et al. 

 

4.1. Formal Analysis 

 

With the formal validation BAN logic, we provide the proof of correctness of M2MAKA-FS. We 

demonstrate that a SK with FS can be agreed successfully after the process of mutual 

authentication among MC and SS. Now, the basic notations of BAN-logic are given below: 
 

 P |≡ X: P believes X. 

 P⊲X: P sees X. i.e., P has received message containing X. 

 P|~ X: P said X. i.e., P has sent message containing X. 

 #(X): X is fresh. i.e., X is usually a temporary value. 

 P|⟹X: P has jurisdiction over X. 

 (X, Y): X or Y is part of message (X, Y). 

 〈𝑋〉𝑌: X is encrypted with Y. 

 𝑃
𝐾
↔𝑄:  P and Q can communicate with the shared secret key K. 

 
Next, we introduce some BAN logic rules as follows:  

 

1. Message meaning rule: 
𝑃|≡Q

𝐾
↔𝑃,   P⊲〈𝑋〉𝐾

P|≡Q|~𝑋
 

If P believes that K is a shared secret key between P and Q and P has received messages 
X containing K, P believes that Q has sent message X. 

 

2. Nonce-verification rule: 
𝑃|≡ #(𝑋),   P|≡𝑄|~𝑋

𝑃|≡𝑄|≡𝑋
 

If P believes that X is a fresh message and Q has sent messages containing message X, P 

believes that Q believes message X. 
 

3. Jurisdiction rule: 
P|≡Q|⟹𝑋,P|≡𝑄|≡𝑋

𝑃|≡𝑋
 

If P believes that Q controls message X and Q believes message X, P believes message 

X. 

 

4. Freshness rule: 
P|≡ #(𝑋)

𝑃|≡ #(𝑋,𝑌)
 

If P believes that X is a fresh message, P believes (X, Y) is fresh message.  

 

5. Belief Rule: 
P|≡ (𝑋,𝑌)

𝑃|≡ (𝑋)
 

If P believes message (X, Y), P believes message X. 
 

M2MAKA-FS needs to satisfy the following goals to ensure its security under BAN logic, using the 

above assumptions and postulates.  

 
a. AKA-goals 
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AKA-Goal 1: AKA goals𝑀𝐶|≡(𝑀𝐶
𝑆𝐾
↔ 𝑆𝑆) 

AKA-Goal 2: 𝑆𝑆|≡(SS
𝑆𝐾
↔ 𝑀𝐶) 

AKA-Goal 3: 𝑀𝐶|≡𝑆𝑆|≡(SS
𝑆𝐾
↔ 𝑀𝐶) 

AKA-Goal 4: 𝑆𝑆|≡𝑀𝐶|≡ (𝑀𝐶
𝑆𝐾
↔ 𝑆𝑆) 

 

b. Key agreement with FS goals 

AKA-FS-Goal 1: CS|≡(𝐶𝑆
𝑑𝑖
↔𝑀𝐶) 

AKA-FS-Goal 2: CS|≡(𝐶𝑆
𝑑𝑠
↔ 𝑆𝑆) 

 

Idealized form: The arrangement of the transmitted messages among IoT device with MC, CS 

and SS in M2MAKA-FS to the idealized forms is as follows:  

 

Message 1. 𝑀𝐶 → CS: < 𝐸𝐼𝐷𝑖′ >𝐾𝐶𝑆 , < 𝑀1 >𝐾𝐶𝑆  , < 𝑀2 >𝐾𝐶𝑆< 𝑀3 >𝑑𝑖𝑗′< 𝑀4 >𝑑𝑖𝑗−1′<

𝑀5 > 𝑑𝑖𝑗−1′ 

Message 2. CS→SS:< 𝑀6 >𝐾𝐶𝑆−𝑆𝑆′,< 𝑀7 >𝐾𝐶𝑆−𝑆𝑆′, < 𝑀8 >𝑑𝑠 , < 𝑀9 >𝐾𝐶𝑆−𝑆𝑆′ 

Message 3. SS→CS: < 𝑀10 >𝐾𝐶𝑆−𝑆𝑆, M< 𝑀11 >𝑑𝑠𝑚 ,< 𝑀12 >𝑑𝑠𝑚−1,< 𝑀13 >𝐾𝐶𝑆−𝑆𝑆 

Message 4. CS→ 𝑀𝐶: M14, M15, < 𝑀16 >𝐾𝐶𝑆 , < 𝑀17 >𝑆𝐾𝐶𝑆 ,  

 
Assumptions: The following are the initial assumptions of M2MAKA-FS:  

 
A1: 𝑀𝐶|≡#(ri1, ri2, dij-1) 

A2: CS|≡#(rcs) 

A3: SS|≡#(rs1, rs2, dsm-1) 

A4: 𝑀𝐶|≡(𝑀𝐶
𝐾𝐶𝑆
↔ 𝐶𝑆) 

A5: CS|≡(𝐶𝑆
𝐾𝐶𝑆
↔ 𝑀𝐶) 

A6: CS|≡(𝐶𝑆
𝐾𝐶𝑆−𝑆𝑆
↔    𝑆𝑆) 

A7: SS|≡(𝑆𝑆
𝐾𝐶𝑆−𝑆𝑆
↔    𝐶𝑆) 

A8: 𝑀𝐶|≡𝑆𝑆|⟹𝑀𝐶
𝑆𝐾
↔ 𝑆𝑆 

A9 SS|≡𝑀𝐶|⟹ 𝑆𝑆
𝑆𝐾
↔𝑀𝐶 

A10: CS|≡(𝐶𝑆
𝑑𝑖𝑗
↔ 𝑀𝐶) 

A11: CS|≡(𝐶𝑆
𝑑𝑠𝑚
↔ 𝑆𝑆) 

 
Proof: In the following, we prove the test goals, to show that M2MAKA-FS provides a secure AKA 

with FS, using the BAN logic rules and the assumptions.  

 
Based on message 1, we could derive:  

 

Step 1. CS⊲ (< 𝐸𝐼𝐷𝑖 >𝐾𝐶𝑆< 𝑀1 >𝐾𝐶𝑆< 𝑀2 >𝐾𝐶𝑆< 𝑀3 >𝑑𝑖𝑗< 𝑀4 >𝑑𝑖𝑗−1< 𝑀5 >𝑑𝑖𝑗−1) 

 

If step 1 holds according to assumptions A5 and A11 and message meaning rule, we can infer 

thatCS believes the message is from MC:  
 

Step 2. CS|≡𝑀𝐶|~(< 𝐸𝐼𝐷𝑖 >𝐾𝐶𝑆< 𝑀1 >𝐾𝐶𝑆< 𝑀2 >𝐾𝐶𝑆< 𝑀3 >𝑑𝑖𝑗< 𝑀4 >𝑑𝑖𝑗−1< 𝑀5 >𝑑𝑖𝑗−1)  

 
According to assumption A1 and freshness rule, we get that CS believes the freshness of the 

message:  
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Step 3: CS|≡#(< 𝐸𝐼𝐷𝑖 >𝐾𝐶𝑆< 𝑀1 >𝐾𝐶𝑆< 𝑀2 >𝐾𝐶𝑆< 𝑀3 >𝑑𝑖𝑗< 𝑀4 >𝑑𝑖𝑗−1< 𝑀5 >𝑑𝑖𝑗−1)  

 

According to steps 2 and 3 and nonce verification rule, we get that CS believes that MC believes 

the message:  
 

Step 4. CS|≡𝑀𝐶|≡(< 𝐸𝐼𝐷𝑖 >𝐾𝐶𝑆< 𝑀1 >𝐾𝐶𝑆< 𝑀2 >𝐾𝐶𝑆< 𝑀3 >𝑑𝑖𝑗< 𝑀4 >𝑑𝑖𝑗−1< 𝑀5 >𝑑𝑖𝑗−1)  

 
According to step 4, assumptions A4 and A10 and belief rule, we get that CS believes that MC 

believes the established keys, KCS and dij with CS: 

 

Step 5. CS|≡𝑀𝐶|≡(𝑀𝐶
𝐾𝐶𝑆
↔ 𝐶𝑆) and CS|≡𝑀𝐶|≡(𝑀𝐶

𝑑𝑖𝑗
↔ 𝐶𝑆) 

    

According to jurisdiction rule, we get that CS believes the established keys,  KCS  and dij with MC:  

 

Step 6. CS|≡(𝐶𝑆
𝐾𝐶𝑆
↔ 𝑀𝐶) and CS|≡(𝐶𝑆

𝑑𝑖𝑗
↔ 𝑀𝐶)    (AKA-FS-Goal 1) 

 
Based on message 2, we derive 

 

Step 7. SS⊲ (< 𝑀6 >𝐾𝐶𝑆−𝑆𝑆< 𝑀7 >𝐾𝐶𝑆−𝑆𝑆< 𝑀8 >𝑑𝑠< 𝑀9 >𝐾𝐶𝑆−𝑆𝑆) 

 

According to assumption A7 and message meaning rule, we get that SS believes the message is  
from CS:  

 

Step 8. SS|≡𝐶𝑆|~(< 𝑀6 >𝐾𝐶𝑆−𝑆𝑆< 𝑀7 >𝐾𝐶𝑆−𝑆𝑆< 𝑀8 >𝑑𝑠< 𝑀9 >𝐾𝐶𝑆−𝑆𝑆) 

 
According to assumption A2 and the freshness rule, we get that SS believes the freshness of the 

message:  

 

Step 9: SS|≡#(< 𝑀6 >𝐾𝐶𝑆−𝑆𝑆< 𝑀7 >𝐾𝐶𝑆−𝑆𝑆< 𝑀8 >𝑑𝑠< 𝑀9 >𝐾𝐶𝑆−𝑆𝑆)  

 
According to steps 8 and 9 and the nonce verification rule, we get that SS believes that CS 

believes the message:  

 

Step 10. SS|≡CS|≡(< 𝑀6 >𝐾𝐶𝑆−𝑆𝑆< 𝑀7 >𝐾𝐶𝑆−𝑆𝑆< 𝑀8 >𝑑𝑠< 𝑀9 >𝐾𝐶𝑆−𝑆𝑆)  

 

According to step 10, assumption A6 and belief rule, we get that SS believes that CS believes the 

established key KCS-SS with SS:  

 

Step 11. SS|≡CS|≡(𝐶𝑆
𝐾𝐶𝑆−𝑆𝑆
↔    𝑆𝑆)         

 

According to jurisdiction rule, we get that SS believes the established key KCS-SS with CS:  
 

Step 12. SS|≡(𝑆𝑆
𝐾𝐶𝑆−𝑆𝑆
↔    𝐶𝑆)          

 

According to steps 8, 9 and 10 and nonce verification rule, we conclude that SS believes that MC 
believes the established session key SK with SS: 

 

Step 13. 𝑆𝑆|≡𝑀𝐶|≡ (𝑀𝐶
𝑆𝐾
↔ 𝑆𝑆)        (AKA-Goal 4) 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023 

44 

According to assumption A8 and the jurisdiction rule, we get that SS believes the established 
session key SK with MC: 

 

Step 14. 𝑆𝑆|≡(SS
𝑆𝐾
↔ 𝑀𝐶)        (AKA-Goal 2) 

 

Based on message 3, we derive 
 

Step 15. CS⊲ (< 𝑀10 >𝐾𝐶𝑆−𝑆𝑆< 𝑀11 >𝑑𝑠𝑚< 𝑀12 >𝑑𝑠𝑚−1< 𝑀13 >𝐾𝐶𝑆−𝑆𝑆) 

 

According to A6 and message meaning rule, we get that CS believes the message is from SS: 

 

Step 16. CS|≡SS|~(< 𝑀10 >𝐾𝐶𝑆−𝑆𝑆< 𝑀11 >𝑑𝑠𝑚< 𝑀12 >𝑑𝑠𝑚−1< 𝑀13 >𝐾𝐶𝑆−𝑆𝑆)  

 

According to assumption A3 and freshness rule, we get CS believes the freshness of the message: 

 

Step 17: CS|≡#( < 𝑀10 >𝐾𝐶𝑆−𝑆𝑆< 𝑀11 >𝑑𝑠𝑚< 𝑀12 >𝑑𝑠𝑚−1< 𝑀13 >𝐾𝐶𝑆−𝑆𝑆)  

 

According to steps 16 and 17 and nonce verification rule, we get CS believes that SS believes the 

message:  

 

Step 18. CS|≡SS|≡(< 𝑀10 >𝐾𝐶𝑆−𝑆𝑆< 𝑀11 >𝑑𝑠𝑚< 𝑀12 >𝑑𝑠𝑚−1< 𝑀13 >𝐾𝐶𝑆−𝑆𝑆)  

 

According to step 18, assumptions A7 and A13 and belief rule, we get that CS believes that SS 

believes the established keys, KCS-SS and ds with SS: 
 

Step 19. CS|≡SS|≡ (𝑆𝑆
𝐾𝐶𝑆−𝑆𝑆
↔    𝐶𝑆) and CS|≡SS|≡ (𝑆𝑆

𝑑𝑠
↔𝐶𝑆)   

According to steps 16 and 17 and nonce verification rule, we get that CS believes that SS believes 

the established key SK with SS: 
 

Step 20. CS|≡SS|≡ (S𝑆
𝑆𝐾
↔ 𝐶𝑆)       

 

According to assumptions A6 and A11 and the jurisdiction rule, we get that CS believes the 

established keys, SK and ds with SS: 
 

Step 21. CS|≡ (𝐶𝑆
𝑆𝐾
↔ 𝑆𝑆) and CS|≡ (𝐶𝑆

𝑑𝑠
↔𝑆𝑆)   (AKA-FS-Goal 2) 

 

Based on message 4, we could derive 
 

Step 22. 𝑀𝐶 ⊲(M14M15< 𝑀16 >𝐾𝐶𝑆< 𝑀17 >𝑆𝐾𝐶𝑆) 

 

According to assumption A4 and message meaning rule, we get that MC believes the message is 

from CS: 
 

Step 23. 𝑀𝐶|≡CS|~(M14M15< 𝑀16 >𝐾𝐶𝑆< 𝑀17 >𝑆𝐾𝐶𝑆)  

 

According to assumption A2 and freshness rule, we get MC believes the freshness of the message: 
 

Step 24: 𝑀𝐶|≡#(M14M15< 𝑀16 >𝐾𝐶𝑆< 𝑀17 >𝑆𝐾𝐶𝑆)  

 



International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023 

45 

According to steps 23 and 24 and nonce verification rule, we get MC believes that CS believes 
the message: 

 

Step 25. 𝑀𝐶|≡CS|≡(< 𝑀10 >𝐾𝐶𝑆−𝑆𝑆M< 𝑀11 >𝑑𝑠𝑚< 𝑀12 >𝑑𝑠𝑚−1< 𝑀13 >𝐾𝐶𝑆−𝑆𝑆) 

 

According to step 25 and A5 and belief rule, we get that MC believes that CS believes the 
established key KCS with MC: 

 

Step 26. 𝑀𝐶|≡CS|≡(𝐶𝑆
𝐾𝐶𝑆
↔ 𝑀𝐶)         

 

According to steps 23, 24 and 25 and nonce verification rule, we get that MC believes that SS 

believes the established session key SK with MC: 

 

Step 27.  𝑀𝐶|≡SS|≡(𝑆𝑆
𝑆𝐾
↔ 𝑀𝐶)  (AKA-Goal 3) 

 

According to assumption A8 and the jurisdiction rule, we get that MC believes the established 

session key SK with SS: 

 

Step 28. 𝑀𝐶|≡(𝑀𝐶
𝑆𝐾
↔ 𝑆𝑆)      (AKA-Goal 1) 

 

4.2. Informal Security Analysis 
 
In this subsection we give informal proof of the security of M2MAKA-FS basing on CK security 

model. Firstly, we show that the protocol M2MAKA-FS is SK secure under CK SK security and 

that it satisfies the AKA protocol properties as well as the security and privacy goals. 
 

Proposition 1: M2MAKA-FS is SK secure under the CK model. 

 

Proof: To show that M2MAKA-FS is SK secure under CK model, we need to show that M2MAKA-
FS satisfies the two conditions of definition 2.11. 

 

Case1: Two uncorrupted parties output same SK 
 

In the authentication and login phases of M2MAKA-FS, IoT device and SS establish a SK, SK = 

h(DIDi∥IDSS∥ri2∥rCS∥rS2) with the help of CS, which is used for future communication. The SK 
contains values DIDi, ri2, rcs and rs2 which are protected by secret materials KCS, KCS-SS, dij, and dsl. 

The secret materials KCS, KCS-SS, dij, and dsl can be computed and shared by legit parties only. 

Without these secret materials KCS, KCS-SS, dij, and dsl a corrupted party cannot output a correct 

SK. Hence only legit IoT device and SS can compute the same SK, SK = 

h(DIDi∥IDSS∥ri2∥rCS∥rS2). 
 

Case 2: 𝓐 computes correct SK with a negligible advantage.  

For 𝓐 to compute SK = h(DIDi∥IDSS∥ri2∥rCS∥rS2), 𝓐 needs to compute DIDi= DKCS(EIDi), which 
requires the master key KCS known to CS only, dij-1 such that dij=h(dij-1) to get ri2 which is 

computationally infeasible basing on definition 2.8 and assumption 2.1 of hash function 

properties, dsl-1 to get rs2 which is computationally infeasible basing on definition 2.8 and 
assumption 2.1 of hash function properties and rcs which requires KCS-SS known by CS and SS 

only. Since the hash function has a negligible advantage in finding the integers dij-1 for the given 

dij= h(dij-1), i.e.,  𝐴𝑑𝑣𝒜
𝑂𝑊(𝑛) = 𝑃 𝑟 [𝒜 (1𝑛, ℎ(𝑑𝑖𝑗−1))] = 𝑑𝑖𝑗−1 ≤ 𝜔(𝑛) then 𝓐’s advantage of 

computing correct SK in M2MAKA-FS protocol, is negligible.  
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Proposition2.M2MAKA-FSprovides key control property of CK SK security. 
 

Proof: In M2MAKA-FS, the session key SK is formulated by parameters SK = 

h(DIDi∥IDSS∥ri2∥rCS∥rS2) which has parameters DIDi and ri2 contributed by IoT device, IDSS and 

rS2 contributed by SS and rCS contributed by CS. Hence no entity forces SK to be preselected. 

 

Proposition 3. M2MAKA-FSprovides UKS resilience. 

 

Proof: In M2MAKA-FS the session key SK = h(DIDi∥IDSS∥ri2∥rCS∥rS2) has an authentication 
binding between SK and the identifiers of legal entities. The parameters DIDi, IDSS in EIDi and 

M2 can only be computed by CS using the long-term key KCS. Only after successful authentication 

of the IoT device, SS agrees a key with the IoT device. Hence, SS cannot be coerced to be sharing 

a key with 𝓐 impersonating the IoT device. 

 

Proposition 4. M2MAKA-FS provides known key security property. 

Proof: In M2MAKA-FS each session key SK = h(DIDi∥IDSS∥ri2∥rCS∥rS2) is formulated with 

independent random numbers ri2,rCSand rS2 which ensure that each session key is independent 
from the other. Hence the compromise of the past session keys does not guarantee compromise of 

the future session keys. 
 

Proposition 5. M2MAKA-FSprovides key compromise impersonation resilience. 
 

Proof: In M2MAKA-FS, if 𝓐 gets the long-term key KCS of CS𝓐 may use it to obtain the real 

identity of IoT Device, 𝓐 will still not be able to impersonate IoT Device to CS, due to the 
parameters did and did-1 in M3 and M4 that require inverse computation of hash function which is 

impossible as in assumption 2.1of the hash function. Similarly, the compromise of the long-term 

key KCS-SS will not be enough for 𝓐 to impersonate SS to CS since 𝓐 will not be able to compute 

M11 and M12 which requires the hash chain secret values of SS. Hence, M2MAKA-FS provides key 
compromise impersonation resilience. 
 

Proposition 6. M2MAKA-FS provides mutual entity authentication. 

 
Proof: In M2MAKA-FS, CS is a trusted party and a bridge of communication between the IoT 

device and SS, and the mutual authentication among the three parties is achieved explicitly. 

Particularly when receiving login request message {EIDi, M1, M2, M3, M4, M5}, CS first restores 
DIDi using secret key KCS. Then CS retrieves ri1, IDSS, ri2, dij-1 and M5and verifies the validity of 

IoT device by checking M5′? = M5. In step 3 of section 3.4, when receiving message {M6, M7, M8, 

M9} from CS, SS first retrieves DIDi, rcs and ri2 by using KCS-SS and verifies the validity of the 

message by checking M9?= h(DIDi′′′∥KCS-SS∥dSl∥ri2′′∥rCS′). In step 4 when getting the response 
message {M10, M11, M12, M13} from SS, CS retrieves rs1 and rs2 using KCS-SS, calculates SKCS and 

M13and authenticates SS by checking M13 ?= h(KCS-SS′∥SKCS∥rS1′). Similarly, when obtaining 

message {M14, M15, M16, M17} from CS, the IoT device retrieves rcs and rs2 and calculates SKi and 
M17. Finally, the validity of the message can be affirmed by the IoT device if M17 ?= 

h(DIDi′∥SKi∥rCS′′∥rS2′′∥M16). 

 

Proposition 7. M2MAKA-FS provides IoT device anonymity. 
Proof: In M2MAKA-FS, the plaintext of IoT device real identity DIDi is not contained in any 

message and 𝓐 cannot get IoT device identity from the communication messages directly. IoT 

device real identity DIDi is implied in message {EIDi, M6}. When receiving the login request 
message {EIDi, M1, M2, M3, M4, M5} from the IoT device, with the master key KCS, CS can 

recover real identity by computing DIDi = DKCS(EIDi). When receiving message {M6, M7, M8, M9} 
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from CS, SS recovers DIDi = M6⊕KCS-SS by using KCS-SS. Without knowing KCS and KCS-SS, 𝓐 
cannot reveal the IoT device’s real identity from the communication messages. 

 

Proposition 8. M2MAKA-FS provides unlinkability. 

 
Proof: In M2MAKA-FS, the random numbers ri1 and ri2 are generated by the IoT device for each 

session, which makes the login request message {EIDi, M1, M2, M3, M4, M5} of one session 

different from those of other sessions. Furthermore, M2MAKA-FS uses encrypted amplified 
dynamic identities EIDi with the one-way hash function. Only CS can get the real identity of IoT 

device hence there is no way for 𝓐 to link any relationship between different sessions even if 𝓐 

could capture the messages {EIDi, M1, M2, M3, M4, M5}, {M6, M7, M8, M9}, {M10, M11, M12, M13} 

and {M14, M15, M16, M17} during the protocol run of M2MAKA-FS due to the computation hardness 
of a one-way has function.  

 

Proposition 9. M2MAKA-FS provides a SK agreement with FS. 
 

Proof: To prove this proposition we will prove it in two parts. Firstly, we show that M2MAKA-FS 

provides a SK agreement secondly we show that the SK agreed is FS secure. 
 

[SK agreement] Proof: In the authentication and login process of M2MAKA-FS, the IoT device and 

SS establish a SK, SK = h(DIDi∥IDSS∥ri2∥rCS∥rS2) with the help of CS, which is used for future 

communication. The SK contains the IoT device’s contribution to DIDi and ri2 and SS’s 
contribution to IDSS and rS2. Without these private values, any third party cannot predetermine the 

SK. Therefore, M2MAKA-FS provides a SK agreement. 

 
[Forward Secrecy] Proof: FS is provided by ensuring one-time use of the secret parameters 

employed in the login and AKA phase. In M2MAKA-FS, OTS values are dij and dsl. For 𝓐 who 

captures dij and dsl will not be able to use these secret values to get future SKs, since in the next 

login the protocol will use dij-1 and dsl-1 as secret authentication credentials. But dij-1 and dsl-1 

cannot be computed in polynomial time since it requires computing dij-1 and dsl-1 such that h(dij-1) 

= dij and h(dsl-1) = dsl which is computationally infeasible as per definitions 2.8 and 2.9. Thus the 

probability of 𝓐 getting future SKs having known the present secret parameters is negligible. 

 

Proposition 10. M2MAKA-FS resists against replay attacks. 

 

Proof: Suppose 𝓐 eavesdrops valid messages and then resends it at his discretion. In M2MAKA-FS, 

if 𝓐 resends {EIDi, M1, M2, M3, M4, M5}, CS checks did -1 from M4 and checks whether di?=h (dij-

1). Since dij-1 is new in each session as per the design of the FS framework, it will not be equal, 

hence the session will be terminated. Similarly, the random numbers ri1, ri2,rcs, rs1 and rs2 used in 

first, second, and third messages, are always new in each session, if 𝓐 replays the recorded 

message, it will not match with the message freshness support M5, M9, M13, and M17. Thus 

M2MAKA-FS resists against replay attacks. 

 
Proposition 11.  M2MAKA-FS  resists MITM attack. 

 

Proof: M2MAKA-FS is secure against MITM attacks as the 𝓐 cannot fake the IoT device, CS and SS 

without the knowledge of KCS, KCS-SS, dij and dsl. If 𝓐 can capture the first message {EIDi, M1, M2, 

M3, M4, M5} to impersonate the IoT device, 𝓐 will still not be able, since it requires knowledge of 

true IoT device identity which is secured by a master secret key KCS. Furthermore, 𝓐 needs to 

know the one-time hash chain secret value dij which is not possible due to definition 2.8 FS 

property of a hash function. Similarly, if 𝓐 captures the second message {M6, M7, M8, M9}𝓐 still 

will not be able to impersonate CS since only one who has the secret material KCS-SS can 
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successfully compute the second message. If 𝓐 captures the third message {M10, M11, M12, M13}, 

𝓐 will still not be able to impersonate SS since 𝓐 will need the secret material KCS-SS which is only 

known to SS and CS, and dij and dsl cannot be obtained due to definition 2.9 FS property of a hash 

function. 
 

4.3. Complexity Analysis 
 

This section provides various comparisons among M2MAKA-FS and well-known related protocols 
including Shuai et al.’s protocol, Xiong et al.’s protocol, Kapito et al.’s protocol, Yang et al.’s 

protocol and Li et al.’s protocol. First of all, we will focus on feature comparisons to know the 

distinctive feature differences among them. After that, computation and communication analysis 

follows, to show IoT environmental fitness of them.  

 

4.3.1. Features Comparison 

 
In this section, we give a detailed examination of the protocol features to see how much it 

satisfies the protocol design goals. The requirements for the design of M2MAKA-FS are compared 

with those of the five earlier protocols, Shuai et al., Xiong et al., Kapito et al., Yang et al. and Li 
et al. as shown in Table 2. 

 

4.3.2. Computational Overhead Analysis 

 
In this subsection, we analyze the computational overheads in terms of time taken for each step in 

the protocol run. To facilitate the evaluation of computation costs, we use a scale provided by 

Shuai et al. [2]. They provided computation costs as in Table 3 .Table 4 shows the computational 
cost comparisons of M2MAKA-FS and the related protocols. Results from Table 4 show that 

M2MAKA-FS is more efficient than Shuai et al.’s protocol and Li et al.’s protocol. Kapito et al.’s 

protocol is slightly more efficient than M2MAKA-FS but their protocol lacks SK agreement with 
FS feature which is very important in IoT environment. Although two protocols of Xiong et al. 

and Yang et al. are very efficient in computation cost, their protocols lack the security and privacy 

features as explained inTable 2. Yang et al.’s protocol does not provide anonymity and 

unlinkability and is also not resistant to various attacks whereas Xiong et al.’s protocol does not 
provide unlinkability. 

 
Table 2. Features comparison 

 
Feature 

Protocol 

AKA 

Goal 1 

AKA 

Goal 2 

AKA 

Goal 3 

AKA 

Goal 4 
AKA Goal 5 AKA Goal 6 

Shuai et al. No Yes Yes Yes Yes Yes 

Xiong et al. No Yes Yes Yes Yes Yes 

Kapito et al. Yes Yes No Yes Yes Yes 

Yang et al. Yes Yes Yes No No No 

Li et al. Yes Yes No No Yes Yes 

M2MAKA-FS Yes Yes Yes Yes Yes Yes 

 

AKA Goal 1: Lightweight property, AKA Goal 2: Mutual authentication, AKA Goal 3: SK 
agreement with FS, AKA Goal 4: Resilience to various attacks, AKA Goal 5: Anonymity, AKA 
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Goal 6: Unlinkability 
 

Table 3. Computation cost 

 
Entity 

Protocol 
IoT device CS SS Total 

Shuai et al. 
TM +TQR+7Th 

(1.17452) 

TQR+7Th 

(1.17383) 

TM+5Th 

(0.00414) 

2TM+2TQR+19Th 

(2.3524) 

Xiong et al. 
2TE/D+9Th 

(0.00729) 

2TE/D+ 11 Th 

(0.00867+(N-

1)*0.00069) 

4Th 

(0.00276) 

4TE/D+24Th 

(0.01872) + (N-

1)*0.00069 

Kapito et al. 
1Tfe+9Th 

(0.51421) 

2TE/D+9Th 

(0.00729) 

4Th 

(0.00276) 

Tfe+2TE/D+22Th 

(0.52426) 

Yang et al. 
3TE/D+8Th 

(0.00714) 
5TE/D+14Th 

(0.01236) 
TE/D+7Th 

(0.00537) 
8TE/D+27Th 

(0.02295) 

Li et al. 
2Texp+8Th 

(1.02152) 

Texp+9Th 

(0.51421) 

4Th 

(0.00276) 

3Texp+21Th 

(1.53849) 

M2MAKA-FS 
Tfe+11Th 

(0.51559) 

2TE/D+11Th 

(0.00867) 

4Th 

(0.00276) 

Tfe+2TE/D+26Th 

(0.52702) 

 

Regardless of M2MAKA-FS having computation cost slightly higher than the protocols of Xiong et 
al., Yang et al. and Kapito et al., M2MAKA-FS is still the most suitable protocol for IoT 

environment since it provides the required features like SK agreement with FS, provides 

anonymity and unlinkability, and is also resilient to various attacks. Thus the amount of 

computation cost is compensated by the high security and privacy features that M2MAKA-FS offers.  
 

4.3.3. Communication Overhead Cost 

 
To facilitate the analysis of communication overhead, we assume the length of the IoT device’s 

identity, user’s identity, pseudonym identity and the corresponding password are all 128 bits. The 

length of the secret key, the random number, the output of hash function and message 

authentication code (MAC) are all 160 bits. The length of the time stamp, the ECC point 
multiplication and the cipher text block in symmetric encryption/decryption are 32 bits, 320 bits 

and 256 bits respectively. To provide sufficient security, 1024-bits modulus is used for modular 

exponentiation and inversion operations. Therefore, the length of modular squaring is 1024-bits. 

In M2MAKA-FS, the transmitted messages {EIDi, M1, M2, M3, M4, M5}, {M6, M7, M8, M9}, {M10, 

M11, M12, M13} and {M14, M15, M16, M17} require {256+160+160+160+160+160} = 1,056 bits, 

{160+160+160+160} = 640 bits, {160+160+160+160} = 640 bits and {160+160+160+256} = 
736 bits, respectively. Therefore, the cumulative communication overhead of M2MAKA-FS is 

3,072 bits. The cumulative overheads of Shuai et al.’s protocol, Xiong et al.’s protocol, Kapito et 

al.’s protocol, Yang et al.’s protocol and Li et al.’s protocol are shown in Table 4. 

 
Although there is advantage in the communication overhead of the other protocols, it is justifiable 

because M2MAKA-FS offers better security and more functionality features as compared to these 

protocols shown in Table 2. We always believe that security is at least as important as efficiency 
for an AKA protocol and thus it is not advisable to significantly reduce security to increase 

marginal efficiency [46]. 
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Table 4. Communicational cost comparison 

 
Entity 

Protocol 
IoT device CS SS Total 

Shuai et al. 
1,024+160+32 

(1,216 bits) 
1,024+4*160+32 

(1,696 bits) 
1,024+2*160 
(1,344 bits) 

(4,256 bits) 

Xiong et al. 
2*160+128+256 

(704 bits) 

2*256+2*160+128 

(960 bits) 

256*160 

(416 bits) 
(1,824 bits) 

Kapito et al. 
256+3*160 

(736 bits) 

7*160+256 

(1,376 bits) 

2*160 

(320 bits) 
(2,432 bits) 

Yang et al. 
2*160 

(320 bits) 

3*160 

(480 bits) 
(160 bits) (960 bits) 

Li et al. 
5*160 

(800 bits) 

7*160 

(1,120 bits) 

2*160 

(320 bits) 
(2,240 bits) 

M2MAKA-FS 
256+5*160 

(1,056 bits) 

7*160+256 

(1,376 bits) 

4*160 

(640 bits) 
(3,072 bits) 

 

5. CONCLUSION  
 
In this paper, we have designed a new machine-to-machine authenticated key agreement with FS 

for IoT environment M2MAKA-FS . Firstly, we drew the lightweight property of IoT environment 

and the required features that authenticated key agreement protocols should satisfy by reviewing 
and analyzing some previous protocols. Secondly, we designed an FS framework based on hash 

chain OTS values. Thirdly, designed a machine-to-machine authenticated key agreement protocol 

with FS (M2MAKA-FS) for IoT environment by adopting the FS framework. The building block of 
M2MAKA-FS is based on the intractability of one-way hash function, symmetric cryptosystem, 

fuzzy commitment scheme, bitwise XOR and concatenation operations to complete the protocol 

successfully. We finally analyzed the design of M2MAKA-FS in three ways, formal security 

analysis by using BAN logic, informal analysis by using cryptanalysis and complexity analysis 
by comparing computation and communication overhead with earlier protocols. It was 

determined that the complexity, security and privacy of M2MAKA-FS was better than in earlier 

related protocols. 

 

Future research should focus on the implementation of M2MAKA-FS over the real IoT environment 

for optimization of the protocol. Furthermore, the proposed FS framework should be applied to 

the various AKA protocols by applying various requirements for the environments. 
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