
International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

DOI:10.5121/ijcnc.2023.15604 77

UNVEILING ADVANCED PERSISTENCE

TECHNIQUES THROUGH APPLICATION SHIMMING

AND COUNTERMEASURES

Akashdeep Bhardwaj1,Naresh Kumar2, and Shawon S. M. Rahman3

1Professor of Cybersecurity & Digital Forensics, University of Petroleum and Energy

Studies, Dehradun, India
2Computer Science, DMPS,College of Arts and Sciences, University of Nizwa, Oman

3Professor, Department of Computer Science, University of Hawai‘i at Hilo

200 W. Kawili St., Hilo, HI 96720, USA

ABSTRACT

In the arms race between attackers and defenders, the significance of proactive security measures was

evident. The implementation of well-considered countermeasures, which may encompass stringent access

controls, regular system updates, intrusion detection systems, and behavioral analysis, emerged as vital

strategies to thwart the ever-evolving landscape of APTs. Application Shimming is a tool in the Windows

Application Compatibility framework that lets programs work on versions of the operating system they

weren't originally made for. Due to this architecture, most programs that previously operated on Windows

XP can now operate on Windows 10. Shimming takes parts from a Windows Application Compatibility

database after parsing it. Shims, which were created for malware investigators, examine any entry that
might have been exploited to compromise a Windows system. This research presents a framework that can

compromise the target operating system along with the proposed mitigation techniques.

KEYWORDS

APT, Application Shimming, Persistence Attack, Exploit Windows, OS Pen Testing.

1. INTRODUCTION

A key characteristic that has been a part of Windows' core functionalities ever since Microsoft

Windows' earliest versions is ‘Backward Compatibility’ [1]. This feature enables the use of

software that was created in the past, such as when Windows XP was in use. However, since
Windows 10 has been released, developers are concerned about whether Windows will still be

able to run such older software. Here is where Backward Compatibility is useful. It enables

software that wasn't created for the Windows OS to operate on that OS. Along with performance,
stability, and manageability, one of the essential foundations of the development of Microsoft

Windows operating systems is application experience and compatibility. Microsoft ensures broad

software compatibility, integrating compatibility into the engineering and release process to save
deployment costs and speed uptake. One such potent technological solution is the Microsoft

Windows Application Compatibility Infrastructure (Shim Infrastructure) [2]. Application Shims

were developed to enable backward compatibility, ensuring that programs continued to operate

correctly even after modifications to Windows and its APIs [3]. These Shims give programmers
the ability to repair apps that were made for earlier Windows versions and guarantee that they

will function with the most recent Windows version without having to rewrite the code.

https://airccse.org/journal/ijc2023.html
https://doi.org/10.5121/ijcnc.2023.15604

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

78

Older apps experience issues as new Windows releases and system API updates are made. Some
will not install or run because their code is limited to checking for compatibility with older

operating systems, such as Windows 95 [4], and they have no other option except to declare

Windows 7 [5] version strings incompatible. Some depend on old paths that aren't available in

more recent iterations of Windows, as evidenced by the difference between Windows XP [6] and
Windows 7 paths to the user's home directory. On a case-by-case basis, some suppliers may offer

firms prolonged support for these outdated products, but the majority become abandonware.

Because of this problem, Microsoft developed the Application Compatibility Toolkit (ACT) [7],
which the researchers can install to build repair packages for apps. One or more application fixes

are compiled into a database. Following that, the fixes are installed on the target system after

being read out of the database. The solutions perform a wide range of actions, including
deceiving the application about the OS version, rerouting accessible paths, favoring older API

functions over more recent ones, and even denying it read/write access to resources that it has

access to (which can lead to some fun application sand-boxing scenarios). The application is

completely unaware of what is happening.

Application Shims were created to support compatibility problems, guaranteeing that programs

continued to run properly even after changes to Windows and its APIs [8]. By using the Shims,
programmers can guarantee that older Windows versions will work with newly created programs

without having to completely rewrite the code. The Microsoft Windows Application

Compatibility Infrastructure, or ‘Shim Infrastructure’ [9] as they like to call it at the big house,
assisted its user in obtaining such backward compatibility. The important thing to remember is

that Windows maintained the same fundamental architecture during all those years of

development. Microsoft continued to operate within the same framework as when it first began

in the early 1990s. This indicates that some portions of the Windows 10 code that date back to
Windows 95 are still present.

Application Programming Interface (API) hooking is a technique used by Shim Infrastructure. It
explicitly forces linking, forcing Windows' API requests to be forwarded to other code—the

Shim—by the linking mechanism. Under the Windows Portable Executable (PE) [10] and

Common Object Format (COFF) [11] Specification, the data locations in this header serve as an

intermediary layer between the application and the linked file. The Import Address Table is used
to make calls to external binary files (IAT). As a result, a call into Windows appears to the

system as the picture displayed below, as depicted in Figure 1a. Researchers may replace a

reference to a procedure in the equivalent Shim code with the location of the Windows method
identified in the import table, as shown in Figure 1b. When the program is loaded, this indirection

takes place for files that are statically linked to.dll files. Dynamically linked.dll files can likewise

be Shimmed by hooking the ‘GetProcAddress’ API. Initially, as seen in Figure 2. Even though
the program was routed to the Shim before reaching Windows, the software that executes within

the Shim still lives outside of Windows. Shim code is consequently subject to the exact security

restrictions [34] as application code under Windows. The Shim code really looks like application

code to Windows. Therefore, unable to utilize Shims to get around any security features built into
Windows[32]. For instance, there isn't a Shim available to execute the program with elevated

rights while avoiding the User Account Control (UAC) [12] questions in Windows 7. The user

will have to authorize the elevation to gain administrator access with UAC enabled, regardless of
whether the Shim program to demand or not demands administrator rights. The same is true for

custom-written code.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

79

Figure 1a: App Calls reference the OS

Figure 1b: App redirects to Shim prior to

Windows OS

Application Shimming is a malicious technique that targets Microsoft Windows operating

systems and makes use of Application Shims to elevate privileges, inject DLLs, and establish

persistence, among other things. Shim Database (.sdb) files, which are typically used to resolve
software compatibility issues, can be created using the Microsoft Windows Application

Compatibility Framework, but they can also be abused for sinister purposes. It is possible to

modify the location of the Windows function that is fixed in the import table and then replace it
with a pointer to a different function in the alternative Shim code. When the program is loaded,

statically linked.dll files cause this indirection. By connecting it with an API, Shim dynamically

linked.dll files. Shims work as user-mode code within a user-mode application process; they
cannot be used to fix kernel-mode code. For example, compatibility issues with debugging tools

or other kernel-mode programs cannot be resolved with Shims. For example, several antispyware,

firewalls, and antivirus software programs run in kernel mode [30][33].

Ultimately, the insights gleaned from this study shed light on the intricate interplay between

attack techniques and defense strategies within the realm of APTs. As the digital landscape

continues to evolve, the knowledge gained from this research serves as a steppingstone towards a
more secure and resilient cybersecurity posture, ensuring the confidentiality, integrity, and

availability of sensitive information and critical systems.

2. LITERATURE SURVEY

The private and business sectors have now been added to the list of targets for threats that have

previously primarily targeted nation-states and the organizations that are linked to them. Each

country and well-established institution dread and seeks protection against this category of
dangers, often referred to as advanced persistent threats (APTs). The sophistication of nation-

sponsored APT assaults will always be a defining characteristic, but the sophistication of APT

attacks in the business sectors does not lessen the difficulty for the companies. We hope that this

survey paper [13] will help us to learn about all the numerous APT assault stages that may be
detected, as well as the threat detection techniques that should be employed to make the

architecture smart and impenetrable to APT attackers that can adapt. In a technologically reliant

culture, where computer devices and data have been and will remain targets of cyberattacks,
especially APT actors, the requirement for cyber resilience is becoming more and more crucial.

APT and nation-state attackers frequently have access to substantially greater time and resources

to assist their assaults, which are typically not monetarily motivated, in contrast to normal
cybercriminals. These actors also tend to be more intelligent. For instance, these threat actors

frequently employ a wide variety of physical and/or cyber assault channels and continuously

improve their attack strategies [29][33]. The Cyber Kill Chain concept is used in this study to

Windows OS

Alternate Shim Code

Import Address Table (IAT)

Application Function Calls (API)

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

80

decompose any complicated assault and pinpoint the pertinent traits of such attempts. To create
the taxonomy, the authors thoroughly investigated more than 40 APT operations.

To make attacks more expensive and reduce risks, proactive dynamic defenses offer a

comprehensive and all-encompassing security system [28][34]. The dynamic game system
proposed in this study may simulate a long-term engagement between a covert attacker and a

proactive defense. The multi-stage [14] game of imperfect data, in which each participant has his

or her private knowledge that is kept secret from the other players, captures the sneaky and
dishonest actions. Each player plays tactically following the views they have acquired as a result

of extensive observation and education.

APTs [15] enable the bulk of hacking attacks and disruption. APTs are incredibly resourceful and

discreet, and work up until the victim is exploited. APTs [16] aim to inject specific automated

spyware into a network or a host so that they may initiate an attack whenever they feel like it

based on continuing surveillance. Due to improved, complex attack tactics and encrypted covert
contact, the identification of APTs is more challenging.

A new normal is being faced by businesses of all sizes and in all sectors. More so than ever
before, adversaries are savvy and relentless. Every network is subject to constant assaults[31].

However, as the first line of protection against modern, cutting-edge assaults, many businesses

continue to rely on reactive threat detection and response solutions that are signature-based. This
research [17] focuses on the actions and routines of the attackers that, when matched with

adversarial profiles rather than only IoCs, can yield better and more durable outcomes. The

article offers a novel architecture for behavior-based organized threat hunting that enables quick

and reliable malware and threat cleanup on networks and systems.

APT is a sophisticated and focused assault technique that is often planned by a hacking group. An

attack on a particular objective often follows a lengthy period of strategic preparation and
information gathering. Focus is placed on a certain item, and tailored, precise tactics are

employed to infect computers and seize sensitive data. The attack detection technique provided

by this study [18] permits early identification of APT attacks.

Different adversary models are used by organizations to evaluate the risk and possible effects of

attacks on their systems. Attack graphs show weaknesses and possible attacks an attacker can use

to locate and exploit an organization's assets. Attack graphs make it easier to depict attack
situations visually and analyze attack pathways algorithmically. MulVAL is an open-source,

general framework for building logical attack graphs that have been extensively utilized by both

academics and practitioners, who have also added more attack scenarios to it. This study [19]
analyzes all the current MulVAL extensions and estimates the coverage of attack scenarios by

mapping all MulVAL operations to MITRE ATT&CK [20] approaches.

Due to the low-and-slow attack tactics and frequent exploitation of zero-day flaws, APTs are
challenging to identify. The authors introduced a data provenance analysis-based anomaly-based

APT detection. From modeling to detection, the model particularly adapts its design to the special

traits of APTs. To comprehend long-term behavior as the system develops, this uses a unique
modeling method to enhance its detection capabilities. The authors [21] analyzed and

demonstrated that the proposed model outperforms the current state-of-the-art APT detection

mechanism and accurately detects real-world APT events.

In this study, the authors [22] suggested Advanced Blackholing and Stellar, the system that

implements it. By improving the granularity of blackholing, enhanced blackholing improves its

scalability while reducing collateral harm. Additionally, Stellar lowers the necessary amount of

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

81

collaboration to increase the efficiency of mitigation. The authors tested Stellar's flexibility and
efficiency at a sizable IXP that links more than 800 networks, transfers more than 6 Tbps of data

per second, and often experiences numerous network attacks. The findings demonstrated that the

network attacks, such as DDoS magnification attacks, may be effectively handled while the

targeted systems and applications continue to function without interruption.

Huang and Zhu [23] examined and compared two PBNEs with both whole and partial

information. The findings highlight the advantages of deception for certain private assailant
categories and encourage defenders to employ deception strategies to tip the knowledge

imbalance in their favor. The analytical conclusions of our methodology have been supported by

numerical data that demonstrate the efficacy of defensive design in effectively mitigating APTs
and preventing attacks. A new type of cyber assault called APT has presented a danger to

contemporary enterprises. When an APT is discovered, the organization must cope with the APT

reaction issue, which entails allocating the response resources that are available to patch her

unsecured hosts to lessen her possible loss.

In this work, the authors [24] proposed a unique risk management strategy to handle the APT

response issue. An APT attacker might achieve its hostile objective by learning knowledge about
a network's architecture and profiting from it financially. Using network traffic is one way to

identify a potential APT assault. It is challenging to identify this kind of assault because of the

APT attack's long-lasting nature on the network and the possibility that the system would crash
owing to the enormous traffic. Therefore, in this research deep learning, Bayesian networks [25],

and C5.0 decision trees are utilized to quickly identify and categorize APT assaults on the NSL-

KDD data.

3. RESEARCH METHODOLOGY

Application Shimming can perform many functions, but we will be focusing on gaining a

persistence shell on the Target System for now. This practical was tested in a lab-controlled
environment where we have the configurations set for minimum interference. The actual real-life

scenario can differ. Application Shimming has been observed being used by the financially

motivated threat group FIN7 [26] (also known as the Carbanak Group) to maintain persistence

with the ‘Pillowmint’ malware that targets point of sale (POS) systems. Additionally, ‘ShimRAT’
malware from the alleged Chinese-based threat actor group known as ‘Mofang’ makes use of

Application Shimming persistence techniques. This research implemented the application

Shimming framework to showcase this attack and mitigation as per the below-described setup
and this is presented in Table 1 for other researchers to replicate and perform further research.

Table 1: Attacker & Target Setup

Attacker OS Kali Linux version 2019.4

Tools MSFVenom, Metasploit Framework

Target OS Windows 10 (Build 1909)

Target Tools Windows Assessment and Deployment Kit (Windows ADK), PuTTY.exe

The authors propose the below-mentioned research steps as illustrated in Figure 2, the framework

starts by creating a malicious Dynamic Linking Library and injecting that DLL into a 32-bit
binary program which is selected in step three. The infected binary is then installed on the target

operating system. Once executed the attacker gains access to the target, this further results in a

backdoor shell, which further leads to persistent access. Now the attacker has full control of the

target system. Step six proposes and presents anti-Shimming techniques to mitigate such sim-

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

82

related attacks on legacy target systems. These steps are further illustrated, and detailed research
is presented in the next section.

Figure 2: Proposed steps to perform Application Shimming attack

The authors also present the pseudo code to perform the application Shimming used in this
research.

 Step 1: Determine the target application to be Shimmed.

 Step 2: Create a Shim database and specify the application to be Shimmed.

 Step 3: Identify the compatibility issue with the target application.

 Step 4: Write a Shim to resolve the compatibility issue.

 Step 5: Test the Shim to ensure it resolves the issue.

 Step 6: Deploy the Shim using the Shim database.

 Step 7: Monitor the target application for any further compatibility issues.

The algorithm for the pseudocode for the application Shimming is as follows:

 Initialize the target application to be Shimmed.

 Create a Shim database and add the target application to it.

 Identify the compatibility issue with the target application.

 Write a Shim to resolve the compatibility issue by intercepting calls or modifying the
behavior of the target application.

 Test the Shim by running the target application and verifying that the compatibility issue is

resolved.

 Deploy the Shim by adding it to the Shim database.

 Monitor the target application for any further compatibility issues. If any are found, repeat

the process starting from step 3.

This algorithm provides a general outline for how application Shimming can be used to resolve

compatibility issues in software. The specific implementation details will depend on the

compatibility issue and the target application being Shimmed.

4. RESEARCH PERFORMED

When researching the application Shimming, some of the key areas we can focus on include:

 Understanding the concept of application Shimming and its use cases. This includes learning
about compatibility issues, Shim databases, and the process of writing and deploying Shims.

 Familiarizing ourselves with different Shimming techniques and tools. There are several

methods for application Shimming, including hooking, interception, and modification of

executable code. It's also important to learn about the tools and libraries that are available for
creating and deploying Shims.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

83

 Researching the history and evolution of application Shimming. This can help understand

how Shimming has been used in the past, and how it has evolved to meet new challenges and
requirements.

 Learning about the security implications of the application Shimming. Shimming can provide

a way for attackers to introduce malicious code into a system, so it's important to understand

the security risks involved and how they can be mitigated.

 Studying case studies and real-world examples of application Shimming. This can help

determine how Shimming has been used in different contexts, and what challenges and
successes have been encountered.

Overall, the goal of our research should be to gain a thorough understanding of the application
Shimming, including its benefits, limitations, and best practices, so that anyone can effectively

implement it in their research and projects. The proposed application Shimming framework is

executed and illustrated in detail in this section.

Step 1: Malicious DLL Creation

A decision was made to use the ‘MSFVenom’ [27] tool to construct a payload to start the
exploitation. To obtain a shell, reverse TCP payload with Windows System as the target is

utilized. The target port (LPORT) on which to receive the session from the target system after

defining the LHOST for the IP address of the attacker machine. This payload was produced as a
Dynamic Link Library, or DLL, with the filename inject.dll.

Figure 3: Msfvenom tool to create malicious DLLs (Inject.dll)

The target OS requires Windows Assessment and Deployment Kit which can be downloaded and

installed as a service called Compatibility Administrator. From the Attacker Machine, the
recently created DLL is transferred to the Target system. Although there are several ways to send

the malicious DLL, this research used Simple HTTP Server to launch the malicious file in a

website accessed by the tete system as displayed in Figure 4.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

84

Figure 4: Send process using Simple HTTP Server

The attacker uses an attack tool (Metasploitable framework) and initiates a multi/handler exploit,

with target IP and Port 8585, which waits for the DLL to be clicked on the target system as

presented in Figure 5.

Figure 5: Multi Handler exploit initiated on attacker system

Step 2: Injecting Malicious DL

Now the attention is diverted to the target Windows 10 OS. After browsing the web server
running on the Attacker Machine, it auto-downloads the malicious DLL file. In this research, the

authors used a 32-bit version as it is easier to bind the DLL to it and created a new custom

Database as displayed in Figure 6. The first access to the application fixes is restricted when the
application compatibility toolkit is launched. These are the most popular and address several

needs for legal adjustments. However, there is an undocumented command line option (/x) that

unlocks the remaining patches, giving the 32-bit compatibility toolkit slightly under 900 options
to choose from. The management interface enables the creation, management, and updating of

Shim databases after it has been launched.

Figure 6: Compatibility Administrator Database

Now the process starts for binding the safe and original binary without malicious DLL file. On
the newly created Database – right click to choose the First option in the Dropdown Menu called

Create New. This leads to opening a sub-drop-down menu. Application Fix option is chosen and

the Config Window Titled ‘Create New Application Fix’ is obtained. For this research, the

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

85

authors used the name of the Program to be fixed as ‘putty’ as shown in Figure 7 and the path of
the executable to the program to inject the malicious DLL into.

Figure 7: Creating Application Fix with the malicious program

Step 3: Select the program to infect

The unsaved Shim database hits the Fix button at the top of the window with New Database

chosen (the default). The prompt for creating a new application repair will then be displayed.

Here, some fundamental areas are filled in with details on the patch that is being made. Except
for the path of the executable that must be Shimmed, they are filled in with false information. The

compatibility modes are presented in Figure 8. If an actual executable had needed fixing, this

would have been crucial. or legitimately applying the Shimming. This step can be skipped since
this research isn't doing any of that; simply click the "Next" button to continue. On the following

screen, there are compatibility modes. These provide ways to make older programs run on more

modern hardware by fabricating the environment (OS Version, graphics modes, etc). By selecting

next, skip those that are not pertinent to this example.

Figure 8: Compatibility Modes

Now compatibility fix which is required to be applied to the executable is done. This research

chooses the ‘InjectDll’ option from the list as shown in Figure 9. After checking the box, the

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

86

‘Parameters’ button provides the path of our malicious DLL that had been created at the start of
the exploitation.

Figure 9: Various Compatibility Fixes

Select and check the box for ‘Injectdll’, then click the Parameters button to configure the

behavior. These fixes do not have customized parameter dialogs, by moving the mouse over the
fixed name, the basic description of parameters can be obtained. InjectDLL fix takes a list of

paths to DLLs to be loaded during application startup. This research dropped the file on the root

of the drive just

Figure 10: Options for ‘Injectdll’

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

87

as an easy way as displayed in Figure 10. This opens a new window prompting the Command
Line, where the path of the malicious DLL is provided.

On the config window, the Matching Information panel is clicked for the ‘Unselect All’ Button as

no additional configurations are required to out payload, and click the Finish Button as illustrated
in Figure 11.

Figure 11: Unselect all configuration options

This closes the config window and back on the Compatibility Administrator window, the Save

button is clicked to inject the DLL into the PuTTY executable. Once this process is completed,

click Save to save and name the Shim database, which will be a .sdb file as shown in Figure 12.
This Shim database is portable and can be dropped and installed on new systems, so long as the

parameters that are set are fulfilled. The Shim database is named ‘puttyShim’. In real-life

attacking situations choose the less conspicuous name. After naming the database, the location is

decided to save the AppCompat Database or the .sdb file of the complete configuration.

Figure 12: Saving Shim Database

Step 4: Installing Infected Executable

Now that this is done, the now infected executable is installed on the target system as displayed
in Figure 13. This can be done by right-clicking on the name of the database and choosing the

Install option from the drop-down button. This process initiates an installation process that will

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

88

install the infected executable as a service. From the Programs and Features section inside the
Control Panel this can be verified.

Figure 13: Installing infected executable

Keep in mind that administrative rights are necessary for this to function, therefore UAC should

not have been applied. It's not especially difficult to find UAC bypasses. To show the DLL

preload, the authors launched Putty as shown in Figure 14. The code must execute (popping the
message box). Execution of the programme will resume normally after the DLLMain method

completes.

Figure 14: Launching Putty application.

This is a useful method to add to the persistence toolkit. Shim applications that are part of the

daily routine for the target (parts of the Microsoft Office Suite, web browsers, etc) for reliable

callbacks. This method does have a strong caveat, however, which needs to account for. The
Shim name will show up in the list of installed applications on the target system if using the

default Shim installation utility as shown in Figure 15.

Step 5: Gaining Persistent Shell

Now when we execute the service that we just Shimmed and installed. As soon as we have the
program executed on the target machine, we will receive a shell on our attacker machine as

shown in Figure 16 below. We can add the infected service in the startup service list to receive

the shell every time the Target system reboots.

Step 6: Anti-Shimming techniques

There are many tools available that can detect the applications that have been Shimmed.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

89

 Shim-File-Scanner: Scans Files/Folders for non-default Shims and checks registry for
installed Shims

 Shim-Process-Scanner: Will search all processes for Shim flags and also check for the

Shim App Helper

Other than that the process of Shimming creates a bloody trail that leads right to the smoking gun

aka the Shimmed application. Shimming creates a trial inside the Registry at the following

locations.

 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom

HKLM\SOFTWARE\Microsoft\Windows

Figure 15: Shim Name displayed in list of apps

Figure 16: Shell received on attacker system

 NT\CurrentVersion\AppCompatFlags\InstalledSDB

Apart from the registry, we have some locations on the Drives where we can find evidence of the

Application Shimming.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

90

 C:\Windows\AppPatch\Custom\
 C:\Windows\AppPatch\Custom\Custom64\

We can also create custom Yara Rules and snort rules that could detect Application Shimming.

There are many tools available that can detect the applications that have been Shimmed.

 Shim-File-Scanner: Scans Files/Folders for non-default Shims and checks registry for

installed Shims
 Shim-Process-Scanner: Will search all processes for Shim flags and check for the Shim

App Helper

Other than that, the process of Shimming creates a bloody trail that leads right to the smoking

gun aka the Shimmed application. Shimming creates a trial inside the Registry at the following

locations.

 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom

 HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\AppCompatFlags\InstalledSDB

Apart from the registry, we have some locations on the Drives where we can find evidence of the

Application Shimming.

 C:\Windows\AppPatch\Custom\

 C:\Windows\AppPatch\Custom\Custom64\

We can also create custom Yara Rules and snort rules that could detect Application Shimming. If

PS Logging is enabled, the first PowerShell command is logged with Event ID 1, and the second

PS command is logged with Event ID 4104, using Sysmon to inspect events reported for this
activity.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

91

Figure 17: Anti-Shimming PowerShell techniques

The strange Firefox process that loaded our DLL and performed the payload - the calculator is

displayed in Figure 17.

Figure 18: Malicious process loaded by Firefox

We observe an event like the one below if the attacker used sdbinst.exe to carry out the

installation as displayed in Figure 18. An entry for the outbound connection made by PowerShell

is also visible in the network connection event log.

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

92

Figure 19: Attacker’s process tool sdbinst.exe

The detection of abnormal DLL load events is another method of detection in this case. Now

observe Firefox loading our malicious.dll in this situation. A great technique to identify
suspicious DLL loading may be to use the path, name, hash, or a mix of these. The following

registry locations will always have entries made if a customized Shim is installed:

HKLM  SOFTWARE  Microsoft  Windows NT  CurrentVersion AppCompatFlags
Custom

HKLM  SOFTWARE  Microsoft  Windows NT  CurrentVersion

AppCompatFlagsInstalledSDB

The 'DatabasePath' value from the '..InstalledSDB' registry entry contains the location of the

custom SDB file. Registry key creation may be detected by Sysmon and will be noted with Event

ID 12 as illustrated in Figure 19.

Figure 20: Registry key creation detected by Sysmon

These keys may be retrieved at scale using PowerShell, and DatabasePath's least frequency

analysis can be used to identify suspicious sdb files. Using a program like "python-sdb," it is

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

93

feasible to extract the data from the SDB file for analytical purposes. By using InjectDll and
referring to malicious.dll in the%PROGRAMDATA% directory from the output as presented in

Figure 20 below.

It is important to note that several sorts of Shim may be employed. Our malicious DLL was
injected into a 32-bit process using InjectDLL, but several real-world threats, like BlackEnergy,

Gootkit, and Dridex, have utilized "RedirectEXE" to launch different processes in their place.

Additionally, the FIN7 APT group has utilized Shims in the past, which, when activated, would

patch the Services Control Manager ("services.exe") process in order to run a secondary payload

saved in the registry. This topic is covered in greater detail here.

Figure 21: Ppython-sdb program output

5. CONCLUSIONS

This research paper delved into the realm of cybersecurity by investigating Advanced Persistence

Techniques (APT) through the innovative use of Application Shimming, while simultaneously
exploring effective countermeasures to mitigate such threats. The experimental environment,

featuring Kali Linux as the attacker and Windows 10 as the target, provided a comprehensive

platform to analyze the intricate dynamics between attack and defense. Using tools such as
MSFVenom, Metasploit Framework, Windows ADK, and PuTTY.exe, this study unveiled the

potential vulnerabilities within modern computing systems. The findings underscore the critical

importance of vigilance in safeguarding against APTs, as the demonstrated techniques
highlighted the ability of malicious actors to exploit hidden pathways within applications for

persistent unauthorized access.

Furthermore, this research underscored the necessity of collaboration between cybersecurity
professionals and application developers to enhance the robustness of software against potential

exploitation. By embracing a holistic approach that encompasses secure coding practices, threat

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

94

modeling, and continuous vulnerability assessments, organizations can effectively fortify their
defenses and preemptively address vulnerabilities that could be leveraged by APT actors.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] “Microsoft Excel | Microsoft Wiki | Fandom.” https://microsoft.fandom.com/wiki/Microsoft_Excel

(accessed: Aug. 16, 2023).

[2] “Demystifying Shims - or - Using the App Compat Toolkit to make ..”

https://techcommunity.microsoft.com/t5/ask-the-performance-team/demystifying-Shims-or-using-

the-app-compat-toolkit-to-make-your/ba-p/374947 (accessed: Aug. 07, 2023).

[3] “Quick introduction to Windows API, A. M. Steane.”

https://users.physics.ox.ac.uk/~Steane/cpp_help/winapi_intro.htm (accessed: Jul. 07, 2023).

[4] “Windows 95 - NETWORK ENCYCLOPEDIA.” https://networkencyclopedia.com/windows-95/

(accessed: Jul. 16, 2023).

[5] “Windows 7: Getting Started with Windows 7.” https://edu.gcfglobal.org/en/windows7/getting-

started-with-windows-7/1/(accessed: Jul. 07, 2023).
[6] “Windows XP: The Windows XP Desktop.” https://edu.gcfglobal.org/en/windowsxp/the-windows-

xp-desktop/1/ (accessed: Jul. 25, 2023).

[7] “Application Compatibility Toolkit (ACT) - Win32 apps | Microsoft Learn.”

https://learn.microsoft.com/en-us/windows/win32/win7appqual/application-compatibility-toolkit--

act- (accessed: Jul. 07, 2023).

[8] “Hunting for Application Shim Databases - F-Secure Blog.” https://blog.f-secure.com/hunting-for-

application-Shim-databases/ (accessed: Jul. 16, 2023).

[9] “About Microsoft Windows Application Compatibility Infrastructure ..”

https://docs.flexera.com/adminstudio2019/Content/helplibrary/ASAppCompatInfrastructure.htm

(accessed: Jun. 07, 2023).

[10] “PE Format - Win32 apps | Microsoft Learn.” https://learn.microsoft.com/en-
us/windows/win32/debug/pe-format (accessed: Jun. 25, 2023).

[11] “Common Object File Format (COFF).” http://osr507doc.sco.com/en/topics/COFF.html

[12] “How User Account Control works - Windows Security | Microsoft Learn.”

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-

account-control/how-it-works(accessed: Jun. 16, 2023).

[13] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A Survey on Advanced Persistent

Threats: Techniques, Solutions, Challenges, and Research Opportunities,” IEEE Communications

Surveys and Tutorials, vol. 21, no. 2, pp. 1851–1877, Apr. 2019, doi:

10.1109/COMST.2019.2891891.

[14] L. Huang and Q. Zhu, “A dynamic games approach to proactive defense strategies against Advanced

Persistent Threats in cyber-physical systems,” Comput Secur, vol. 89, p. 101660, Feb. 2020, doi:

10.1016/J.COSE.2019.101660.
[15] K. Kaushik, S. Tayal, A. Bhardwaj, and M. Kumar, “Advanced Smart Computing Technologies in

Cybersecurity and Forensics,” Advanced Smart Computing Technologies in Cybersecurity and

Forensics, Nov. 2021, doi: 10.1201/9781003140023/Advanced-smart-computing-technologies-

cybersecurity-forensics-keshav-kaushik-shubham-tayal-akashdeep-bhardwaj-manoj-kumar.

[16] S. SibiChakkaravarthy, D. Sangeetha, and V. Vaidehi, “A Survey on malware analysis and

mitigation techniques,” Comput Sci Rev, vol. 32, pp. 1–23, May 2019, doi:

10.1016/J.COSREV.2019.01.002.

[17] A. Bhardwaj, K. Kaushik, A. Alomari, A. Alsirhani, M. Mujib Alshahrani, and S. Bharany, “BTH:

Behavior-Based Structured Threat Hunting Framework to Analyze and Detect Advanced

Adversaries,” Electronics (Basel), vol. 11, no. 19, p. 2992, Sep. 2022, doi:

10.3390/ELECTRONICS11192992.
[18] W. L. Chu, C. J. Lin, and K. N. Chang, “Detection and Classification of Advanced Persistent

Threats and Attacks Using the Support Vector Machine,” Applied Sciences 2019, Vol. 9, Page 4579,

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

95

vol. 9, no. 21, p. 4579, Oct. 2019, doi: 10.3390/APP9214579.

[19] D. Tayouri, N. Baum, A. Shabtai, and R. Puzis, “A Survey of MulVAL Extensions and Their Attack

Scenarios Coverage,” Aug. 2022, doi: 10.48550/arxiv.2208.05750.

[20] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “UNICORN: Runtime Provenance-Based

Detector for Advanced Persistent Threats,” Jan. 2020, doi: 10.14722/ndss.2020.24046.
[21] “MITRE ATT&CK®.” https://attack.mitre.org/ (accessed: May 07, 2023).

[22] C. Dietzel, M. Wichtlhuber, G. Smaragdakis, and A. Feldmann, “Stellar: Network Attack Mitigation

using Advanced Blackholing,” CoNEXT 2018 - Proceedings of the 14th International Conference

on Emerging Networking EXperiments and Technologies, pp. 152–164, Dec. 2018, doi:

10.1145/3281411.3281413.

[23] L. Huang and Q. Zhu, “Analysis and computation of adaptive defense strategies against advanced

persistent threats for cyber-physical systems,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11199

LNCS, pp. 205–226, 2018

[24] L. X. Yang, P. Li, X. Yang, and Y. Y. Tang, “A Risk Management Approach to Defending Against

the Advanced Persistent Threat,” IEEE Trans Dependable Secure Comput, vol. 17, no. 6, pp. 1163–

1172, Nov. 2020, doi: 10.1109/TDSC.2018.2858786.
[25] J. H. Joloudari, M. Haderbadi, A. Mashmool, M. Ghasemigol, S. S. Band, and A. Mosavi, “Early

detection of the advanced persistent threat attack using performance analysis of deep learning,”

IEEE Access, vol. 8, pp. 186125–186137, 2020, doi: 10.1109/ACCESS.2020.3029202.

[26] “FIN7, GOLD NIAGARA, ITG14, Carbon Spider, Group G0046 ..”

https://attack.mitre.org/groups/G0046/ (accessed: Jun. 25, 2023).

[27] “MSFvenom - Metasploit Unleashed.” https://www.offsec.com/metasploit-unleashed/msfvenom/

[28] Porche, Joshua and Rahman, Shawon S. M., “Security Culture, Top Management, and Training on

Security Effectiveness: A Correlational Study with CISSP Participants”, International Journal of

Computer Networks & Communications (IJCNC), Vol.15, No.2, March 2023, DOI:

10.5121/ijcnc.2023.15205, https://aircconline.com/ijcnc/V15N2/15223cnc05.pdf

[29] Phibbs, Christina L., and Rahman, Shawon S. M. 2022. "A Synopsis of “The Impact of Motivation,
Price, and Habit on Intention to Use IoT-Enabled Technology: A Correlational Study”, Journal of

Cybersecurity and Privacy, Special Issue Cyber-Physical Security for Critical Infrastructures, 2, no.

3: 662-699. https://doi.org/10.3390/jcp2030034

[30] Roberts, Gerrianne and Rahman, Shawon S. M., “Does Digital Native Status Impact End-User

Antivirus Usage?” (May 19, 2021). International Journal of Computer Networks & Communications

(IJCNC), Vol.13, No.2, March 2021, DOI: 10.5121/ijcnc.2021.13207,

https://ijcnc.com/2021/04/15/ijcnc-07-16/

[31] Vaishnavi D., Mahalakshmi D., Shawon Rahman M.S. “Digital Image Forgery Detection Using

Ternary Pattern and ELM”; In: Jeena Jacob I., Kolandapalayam Shanmugam S., Piramuthu S.,

Falkowski-Gilski P. (eds) Data Intelligence and Cognitive Informatics. Algorithms for Intelligent

Systems. Springer, Singapore. pp 77-86, 2021https://doi.org/10.1007/978-981-15-8530-2_5

[32] Loukaka, Alain and Rahman, Shawon; “Security Professionals Must Reinforce Detect Attacks to
Avoid Unauthorized Data Exposure”; International Journal of Information Technology in Industry

(ITII), Web of Science (Thomson Reuters) Indexed Journal, vol. 8, no.1, 2020

https://doi.org/10.17762/itii.v8i1.76

[33] Dharmalingam, Vaishnavi and Rahman, Shawon; “Towards Cloud of Things from Internet of

Things”; International Journal of Engineering and Technology, Vol. 7, No 4.6, 2018, Pages: 112-

116

[34] Schneider, Marvin and Rahman, Shawon; “Identifying Protection Motivation Theory Factors that

Influence Smartphone Security Measures”; IEEE BigData 2021, Workshop on Big Data for

CyberSecurity (BigCyber- 2021), December 15-18 2021, DOI:

10.1109/BigData52589.2021.9671882 https://it-in-industry.com/itii_papers/2021/9121itii01.pdf

International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023

96

AUTHORS

Akashdeep Bhardwaj: Dr. Akashdeep Bhardwaj is working as Professor (Cyber

Security & Digital Forensics) and Head of Cybrsecurity Center of Excellence at

University of Petroleum & Energy Studies (UPES), Dehradun, India. An eminent IT

Industry expert with over 27 years of experience in areas such as Cybersecurity, Digital

Forensics and IT Management Operations, Dr. Akashdeep mentors graduate, masters

and doctoral students and leads several IT Security projects. Dr. Akashdeep has Post-

Doctoral from Majmaah University, Saudi Arabia, Ph.D. in Computer Science, Post
Graduate Diploma in Management (equivalent to MBA), and an Engineering Degree in Computer Science.

Dr. Akashdeep has published over 120 research publications (including research papers, patent, copyrights,

authored & edited books/chapters) in international journals. Dr. Akashdeep worked as Technology Leader

for various multinational organizations during his time in the IT industry. Dr. Akashdeep is certified in

Cybersecurity, Complance Audits, Information Security, Microsoft, Cisco and VMware technologies.

Naresh Kumar Dr Kumar is an assistant professor at Computer Science, DMPS,

University of Nizwa, Oman. He received his Master's and Ph.D. degrees from the

Indian Institute of Technology India in 2012 and 2019 respectively. He holds 7+ years

experience of teaching Graduate, Master's, and Ph.D. students at various reputed

universities around wide globe. He has researched for 10 years and visited reputed

international organizations (NTU Singapore, ECE Paris) to deliver presentations on
his research domain. In his master's degree, he achieved a thorough knowledge of Computer Science and

its applications. He has a good knowledge of applied Mathematics. His Ph.D. area was focused on

Computer Vision and Artificial Intelligence Problems. He published in Q1 and Q2 journals in Elsevier and

Springer. He has been a reviewer in International journals and IEEE Transactions and delivered expert

lectures at many international conferences and seminars. His research area belongs to Computer Vision,

Artificial Intelligence, Data Science, and Video and Image analysis with various spectrums.

Shawon Rahman: Dr. Shawon Rahman is a tenured Professor in the Department of

Computer Science and Engineering at the University of Hawaii-Hilo (UH Hilo). Dr.

Rahman has over 17 years of teaching experience (bot h in-class and online format)in
undergraduate and graduate courses. He has published over 130 peer-reviewed papers

and conducted numerous professional activities in conferences and journals. Dr.

Rahman has published over 70 peer-reviewed papers (including over 40 journal

articles) in the area of Cybersecurity and related domains. He has awarded and

managed several federal and other grants including NSF, USDA, DOE, etc. Dr. Rahman’s research

interests include Cybersecurity, Information Assurance and security, STEM Outreach, Digital Forensics,

Cloud Computing, Internet of Things Security, Web Accessibility, Robotics, Software Testing, and Quality

Assurance. He has served as the dissertation chair and main supervisor, produced 15 Ph.D. graduates, and

mentored numerous students. He is serving a few journals in the capacity of editor-in-chief, editor, guest

editor, or associate editor. Dr. Rahman has served many conferences as the program chair, local chair, or

session chair. He is a member of many professional organizations including IEEE (senior member), ACM,

CSTA, ASEE, ASQ, ISCA, and ISACA. For more info please visit https://hilo.hawaii.edu/faculty/rahman/

	Abstract
	In the arms race between attackers and defenders, the significance of proactive security measures was evident. The implementation of well-considered countermeasures, which may encompass stringent access controls, regular system updates, intrusion dete...
	Keywords
	APT, Application Shimming, Persistence Attack, Exploit Windows, OS Pen Testing.
	The authors also present the pseudo code to perform the application Shimming used in this research.
	 Step 1: Determine the target application to be Shimmed.
	 Step 2: Create a Shim database and specify the application to be Shimmed.
	 Step 3: Identify the compatibility issue with the target application.
	 Step 4: Write a Shim to resolve the compatibility issue.
	 Step 5: Test the Shim to ensure it resolves the issue.
	 Step 6: Deploy the Shim using the Shim database.
	 Step 7: Monitor the target application for any further compatibility issues.
	The algorithm for the pseudocode for the application Shimming is as follows:
	 Initialize the target application to be Shimmed.
	 Create a Shim database and add the target application to it.
	 Identify the compatibility issue with the target application.
	 Write a Shim to resolve the compatibility issue by intercepting calls or modifying the behavior of the target application.
	 Test the Shim by running the target application and verifying that the compatibility issue is resolved.
	 Deploy the Shim by adding it to the Shim database.
	 Monitor the target application for any further compatibility issues. If any are found, repeat the process starting from step 3.
	Step 1: Malicious DLL Creation
	Step 2: Injecting Malicious DL

