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ABSTRACT  
 

The continuous increase in the user demands fornew-generation communication systems, is making the 

wireless channel more complex and challenging for estimation, developing a simulation model for the 

channel,and evaluating the performance of different MIMO systems. In this work, a simulation model 

for multipath fading channels in wireless communication is performed. The model  includes a selection 

of typical Tapped-Delay-Line channel models that can be implemented to reproduce the effects of 
representative channel distortion and interference. Based on the simulation results, the proposed method 

exhibits accurate channel estimation performance for frequency-selective fading channels. The proposed 

work employed LS, MMSE, and ML methods for channel estimation, using 16 and 32 pilots and fixed pilot 

locations in each frame. Results are obtained for 4x4, 8x8, 16x16, 16x8, and 16x4 MIMO systems and 

tapped delay line systems.  
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1. INTRODUCTION 
 

In the generation of mobile networks, the latest standard for wireless communication have 

evolved substantially over the years. Current and future networks is to provide improved data 

transfer speeds, reduced latency, and increased capacity compared to the preceding generations of 
mobile networks[1]. These features are achieved through various advanced technologies like, 

Multiple antenna technology, network slicing to deliver faster and more reliable connectivity [2] 

mm wave frequencies. 5G networks are supposed to play a pivotal role in industrial internet of 
things (IIoT) which supports continuous connectivity to large number of devices with minimum 

latency and higher reliability. The 5G technology in combination with Industry 4.0 can bring a 

huge transformation across industries, enabling better productivity, efficiency and advanced 

automation [3, 4]. This makes a highly precise and efficient manufacturing as well as 
constructive monitoring and control of equipment and systems [5]. 

 

The attractive features of 5G, comes with various challenges while implementing them. These 
challenges are present at various levels or stages of communication systems. At physical layer, 

modulation schemes at higher frequencies and impact of channel state on the data transmitted 

using these techniques are the main thing which need to consider [6]. Various researchers are 
exploring the effect of these modulation schemes and channel behavior. Based on the 

observations, it is found that if channel state/behavior is previously known for certain scenario, 
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effective communication can be achieved. In these systems, advanced techniques such as 
beamforming, massive MIMO, and network slicing heavily rely on accurate channel knowledge 

in order to achieve high spectral efficiency and reliable communication [7]. 

 

Channel estimation is the process of estimating the characteristics of a communication channel 
between a two points [8]. In wireless communication systems, channel estimation is essential to 

optimize the transmission parameters and improve the quality of the communication [9].Channel 

estimation can be done using various techniques, including pilot-based methods, blind estimation, 
and channel prediction. Pilot-based methods involve transmitting pilot symbols, along with the 

data symbols. These are used to estimate the channel behavior which includes the frequency 

response, phase, and delay spread [10]. This information can then be used to optimize the 
transmission parameters, such as the modulation scheme, coding rate, and transmit power. Blind 

estimation, on the other hand, involves estimating the channel characteristics without using any 

known reference signals. This can be done using statistical techniques, such as maximum 

likelihood estimation or least squares estimation, based on the received data symbols [11]. 
 

The motivation for the work is the need for accurate channel estimation in wireless 

communication systems. As the user demands for new communication systems, wireless channels 
become more complex and challenging for estimation. The objective of the work is to develop a 

simulation model for multipath fading channels in wireless communication that can accurately 

estimate the channel parameters. The contribution of the work is the proposed simulation model 
that includes typical Tapped-Delay-Line channel models, can be used to reproduce the effects of 

channel distortion and interference. The simulation results show that the proposed system can 

accurately estimate channel parameters for frequency-selective fading channels using LS, 

MMSE, and ML methods. Additionally, tested the system using various MIMO systems and 
tapped delay line systems to show its flexibility and applicability. 

 

The article is organized into six chapters. The first chapter provides an introduction to the topic 
and the significance of channel estimation in wireless communication systems. The second 

chapter discusses the relevant literature on channel estimation and classical techniques that have 

been developed over the years. The third chapter presents the proposed system and channel 

models, including a discussion of the channel impulse response and its computation. The fourth 
chapter focuses on the implementation of the Channel Estimator (CE), discussing the various 

classical techniques used in channel estimation. The fifth chapter presents the simulation results 

and analysis of the proposed system, including a discussion of their implications. The sixth 
chapter provides a summary of the key findings of the study, limitations of the proposed system, 

and recommendations for future research. Finally, the reference section contains a list of all the 

sources cited in the article. 
 

2. RELATED WORK 
 

Y. Song et al. has proposed a channel estimation algorithm for MIMO-OFDM systems in time-

varying channels. The algorithm uses a time-domain training sequence that considers correlation 
between antennas and subcarriers into account. Channel estimation is achieved through 

maximum likelihood estimator and Kalman filter to track the time-varying channels. The method 

is tested with existing algorithms, namely, the LS and the MMSE estimator. Results show that the 
proposed algorithm outperforms the existing algorithms in terms of mean square error and bit 

error rate. [12]. 

 

Y. Wang et al. proposed a low-complexity channel estimation algorithm for MIMO-OFDM 
systems. The algorithm utilizes the inherent sparsity of the channel impulse response (CIR) to 

reduce the number of pilot symbols required for accurate channel estimation. The algorithm 
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consists of two stages: 1) sparse CIR estimation using a Bayesian compressive sensing algorithm 
and 2) CIR interpolation using a low-complexity Kalman filter. Results reveal that the proposed 

algorithm outperforms the conventional LS and LMMSE channel estimation methods in terms of 

both mean squared error (MSE) and bit error rate (BER) under various channel conditions. 

Moreover, the proposed algorithm is shown to achieve comparable performance to the 
computationally intensive AMP algorithm while requiring significantly lower complexity [13]. 

Z. Shen et al., proposed a new channel estimation method for MIMO-OFDM systems in time-

varying frequency-selective channels. The method uses a combination of a deep neural network 
(DNN) and a channel prediction algorithm to estimate the channel. The DNN is used to extract 

the channel features from the pilot signals, and the channel prediction algorithm predicts the 

channel in the data transmission phase. The method was compared to several existing methods, 
including the least squares (LS) method and the minimum mean square error (MMSE) method. 

The study concludes that the proposed method is a promising solution for channel estimation in 

MIMO-OFDM systems in time-varying frequency-selective channels [14]. 

 
Y. Cai et al., proposed a joint pilot decontamination and channel estimation algorithm for 

massive multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing 

(OFDM) systems in frequency-selective fading channels. The algorithm uses a low-rank matrix 
completion (LRMC) method to eliminate the effect of pilot contamination and a sparse Bayesian 

learning (SBL) algorithm to estimate the frequency-selective channel [15]. 

 
Rezaeiet.al., proposed a novel low-overhead channel estimation technique for frequency-selective 

multiple-input multiple-output (MIMO) systems. The method employs a differential evolution 

algorithm (DEA) to optimize the pilot pattern and estimate the channel response. The DEA-based 

approach can efficiently estimate the channel in time-varying environments and alleviate pilot 
contamination issues in MIMO systems. The method achieves high estimation accuracy with a 

lower pilot overhead than conventional techniques, making it more efficient for practical 

applications [16]. 
 

Ashraf et al. proposed a new frequency-selective channel estimation technique for 5G 

communication systems. The method utilizes a sparse Bayesian learning (SBL) algorithm to 

estimate the channel response in frequency-selective environments. The method is evaluated 
using numerical simulations, and the results show that the SBL-based approach can achieve 

higher accuracy in estimating the channel response compared to other existing methods. Also, the 

method reduces the pilot overhead and enhance the spectral efficiency of the 5G system. The 
authors also provide a comprehensive analysis of the performance of the proposed method under 

different scenarios, such as different channel conditions, Doppler frequencies, and channel 

coherence times [17]. 
 

H. Zhou, et.al., proposed a low-complexity channel estimation algorithm for OFDM-based 

cooperative communication systems. The algorithm is based on the pilot-aided least squares 

(PALS) algorithm, which uses the pilot symbols transmitted by the source and relay nodes to 
estimate the channel frequency response. The algorithm uses a low-complexity scheme to reduce 

the number of required pilot symbols, which is achieved by dividing the pilot symbols into 

groups and using them in a cyclic manner. The algorithm provides a practical solution for low-
complexity channel estimation in OFDM-based cooperative communication systems, which can 

effectively reduce the overhead of pilot symbols and improve the system performance [27]. 

 

3. SYSTEM AND CHANNEL MODELS 
 
Wireless systems performance evaluation typically involves modeling or emulating the physical 

radio channel. The enormous evolution is seen in channel models due to increase complexity and 
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various amendments and user demands in communication systems. The Channel Impulse 
Response (CIR) contains crucial details about a channel that enable the examination of any 

wireless transmission that traverses it. This is because, under certain circumstances, the radio 

channel can be modeled as a linear filter. Eq (1) [18] can be employed to express the time-

varying impulse response of the multipath channel in baseband. This involves computing the 
amplitudes and time delays of multiple waves that arrive at distinct intervals and adding them up 

to derive the CIR. 

ℎ(𝑡, 𝜏) = ∑ 𝑐𝑖𝑒𝑗2𝜋.𝑓𝑑𝑖𝑡

𝑁−1

𝑖=0

. 𝛿(𝜏

− 𝜏𝑖)                                                                                                                                  (1) 

 

At the receiver, every path i has an amplitude of ci, a delay of τi, and a Doppler shift of fdi. The 
Doppler shift arises due to the motion of the mobile station and environmental changes, causing a 

change in the frequency of the radio signal. The amount of Doppler shift is proportional to both 

mobile speed and carrier frequency. The difference between the maximum and minimum 
frequency shifts resulting from multipath is referred to as frequency spread. Depending on the 

statistical distribution of the angle of arrival in each path. The CIR can be expressed using simple 

Tapped-Delay-Line (TDL) or Cluster-Delay-Line (CDL) models [19]. More advanced models 

and the latest trends in channel models fund in [20-23].  
 

The TDL (tap delay line) model characterizes the wireless channel between a transmitter and 

receiver by using statistical parameters, rather than incorporating the physical layout of the 
environment. This model represents the time-domain CIR as a series of discrete taps, where each 

tap has its own time-varying amplitude, delay, and coefficient values, as shown in eq(2): 

 

ℎ(𝑡, 𝜏) = ∑ 𝑐𝑖(𝑡)

𝑁−1

𝑖=0

. 𝛿(𝜏 − 𝜏𝑖)                                                                                                               (2) 

 

The tap in the wireless channel is modeled as a Dirac delta function, and the overall time-varying 

channel impulse response h (t, τ) is represented as a sum of delayed taps. The model assumes that 
there are N paths in the channel, where ci(t) is a complex amplitude coefficient that varies with 

time, δ is the Dirac delta function, and τi represents the delay of the ith path. Each tap is 

associated with a Doppler spectrum that determines how the coefficients change over time. 
 

The proposed model defines the channel impulse response as a finite sum of taps, which is 

restricted by a maximum of N paths. The separation between two adjacent paths is dependent on 
the system's bandwidth, and if the coefficients ci are stable, eq (3) can be utilized to express the 

output signal of the channel. The block diagram of a tapped-delay channel model as shown in 

Figure.1 illustrates components signal flow.  The input signal represents the transmitted signal in 

the wireless communication system. It can be a continuous-time analog signal or a discrete-time 
digital signal. Taps represent the individual delay paths in the channel model. Each tap represents 

a different propagation path or reflection, and it has associated attenuation and phase shift 

parameters. The number of taps corresponds to the number of multipath components or echoes 
considered in the model. Each tap is followed by a delay element that introduces a specific time 

delay corresponding to the propagation delay of the associated path. The delays account for the 

differences in arrival times of the multipath components. Attenuation elements are placed after 

the delay elements to scale the signal strength of each tap. The attenuation factor represents the 
loss or attenuation experienced by the signal in the specific propagation path. Phase shift 

elements introduce the phase shifts experienced by the signal due to the propagation path. These 

phase shifts are caused by differences in path lengths and reflections. The adders combine the 
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delayed and scaled tap signals to produce the overall channel output. The channel output 
represents the received signal after passing through the tapped-delay channel model. It 

incorporates the effects of multipath propagation, including delays, attenuations, and phase shifts. 

 

𝑆(𝑡) = ∑ 𝑐𝑖(𝑡)

𝑁−1

𝑖=0

. 𝑠(𝜏 − 𝜏𝑖) + 𝑛(𝑡)                                                                                                      (3) 

 

 

 
 

Figure 1. Block diagram of a tapped-delay channel model. 

 
However, not all of the models are suitable for real-time physical emulation and to ensure 

accurate and reliable emulation, it is necessary to have specific information about the channel. 

Therefore, in this study, we have chosen a TDL-based model that provides a detailed description 
of the channel in each scenario. Consider the MIMO channel that experiences frequency-selective 

block fading. The channel has L + 1 tap discrete-time channel impulse response (CIR) denoted as 

𝐻 = 𝐻1 , 𝐻2 − −, 𝐻𝐿−1, 𝐻𝐿  and it involves 𝑁𝑇 transmitters and 𝑁𝑅 receivers. 
 

A block diagram of a MIMO (Multiple-Input Multiple-Output)OFDM (Orthogonal Frequency 

Division Multiplexing) system represents the structure and signal flow of a communication 

system that utilizes multiple antennas at both the transmitter and receiver, combined with OFDM 
modulation as shown in Figure. 2 the  Source Signals: Multiple source signals or data streams are 

generated from different sources or data inputs. The source signals are then processed by a 

MIMO encoder, which combines them with appropriate weights and spatial multiplexing 
techniques to exploit the spatial diversity provided by multiple antennas at the transmitter [35]. 

The processed signals are then modulated using OFDM, which converts the data streams into 

parallel subcarriers. An Inverse Fast Fourier Transform (IFFT) is applied to each subcarrier to 

convert the frequency domain symbols into time-domain OFDM symbols. A cyclic prefix (CP) is 
added to each OFDM symbol to mitigate the effects of multipath interference. : Known pilot 

symbols are inserted into the transmitted OFDM symbols at regular intervals. The transmitted 

OFDM symbols propagate through a wireless channel, which introduces fading, multipath 
effects, and noise.  

 

In a MIMO system, the wireless channel consists of multiple paths with different gains and 
phases for each transmit-receive antenna pair [35]. At the receiver, the CP is removed from each 

OFDM symbol.The received pilot symbols are used to estimate the channel conditions, including 

channel gains, phases, and other parameters. The estimated channel information is interpolated or 

extrapolated to obtain channel estimates for the entire OFDM symbol.The estimated channel 
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parameters are used to construct the channel matrix, which describes the relationship between 
transmitted and received signals in a MIMO system. A Fast Fourier Transform (FFT) is applied 

to each OFDM symbol to recover the frequency domain representation. The received signals 

from multiple receive antennas are processed by a MIMO decoder, which separates and extracts 

the transmitted data streams using spatial processing techniques. Each separated data stream may 
undergo channel decoding to correct errors introduced during transmission. The channel-decoded 

signals are further processed to recover the original source signals. The recovered source signals 

represent the reconstructed data streams at the receiver's output[36]. 
 
 

 
 

Figure 2. MIMO OFDM System           

 

In a MIMO OFDM system, the data (X) is transmitted simultaneously over multiple subcarriers 
using orthogonal frequency division multiplexing. The subcarriers are orthogonal to each other, 

which reduces the interference between them and allows more data to be transmitted over the 

same bandwidth.  

 
Consider that there are NT transmit antennas and NR receive antennas as shown in fig 2, the 

channel matrix can be represented as eq (4). Each element Hl= hijrepresents the complex channel 

gain between the ith transmit antenna and the jth receive antenna. 

 

𝐻𝑙 = [

ℎ1,1(𝑙) ⋯ ℎ1,𝑁𝑇
(𝑙)

⋮ ⋱ ⋮
ℎ𝑁𝑅,1

(𝑙) ⋯ ℎ𝑁𝑅,𝑁𝑇
(𝑙)

] , 𝑙

∈ [0, 𝐿]                                                                                                                                           (4) 

 

Channel estimation is necessary to estimate the frequency response of the multiple channels 

between each transmit and receive antenna pair. The channel estimation process in MIMO 
OFDM systems. Pilot symbols are transmitted from each transmit antenna to each receive 

antenna.The pilot symbols are usually arranged in a grid pattern, called a pilot matrix that spans 

the frequency-time grid of the OFDM symbols. The cyclic prefix 𝐶𝑃𝑛𝑡 is used to separate the 

data and training symbols in the training sequence transmitted by the 𝑛𝑖
𝑡ℎ antenna. The length of 

𝐶𝑃𝑛𝑡 is set to L, and it is defined as [𝑆𝑛𝑡 (𝑁𝑠 − 𝐿), . . . , 𝑆𝑛𝑡(𝑁𝑠 − 1)], where 𝑆𝑛𝑡represents the 

transmitted signal and 𝑁𝑠is the total number of samples in the signal. The received training signal 

on 𝑁𝑅 receive antennas.  The pilot symbols are designed to be orthogonal to each other and to 

the data symbols, so that they can be easily distinguished at the receiver as shown in Fig 2. 

The received pilot symbols are used to estimate the channel frequency response for each 
transmit-receive antenna pair. There are several methods for channel estimation in MIMO OFDM 
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systems. The vector [𝑦1(𝑛), 𝑦2(𝑛) − − − − − −𝑦𝑁𝑅
(𝑛)]′represents the signals received by 𝑁𝑅 

receive antennas at time n, while the complex noise matrix is denoted as E and defined as 𝐸 =
[𝑒(0), 𝑒(1),· · · , 𝑒(𝑁𝑠 −  1)], where e(n) is the vector of additive noise components for each 

receive antenna, i.e 𝑒(𝑛) = [𝑒1(𝑛), 𝑒2(𝑛), − − −𝑒𝑁𝑅
(𝑛) ]′ 

 

 It is important to note that  𝑆𝑛𝑡
(𝑛) represents the pilot symbol transmitted by the 𝑛𝑡ℎ transmit 

antenna at time n, 𝑦𝑛𝑟
(𝑛) represents the signal received by the 𝑛𝑡ℎ  receive antenna at time n, 

𝑒𝑛𝑟
(n) represents the additive noise component in 𝑦𝑛𝑟

(𝑛)and the expected signal-to-noise ratio 

(SNR) on each receive antenna is calculated for n ∈ [0, Ns−1]. The use of multiple antennas at 

the transmitter and receiver sides allows the system to use spatial diversity, which means that the 
signals transmitted from different antennas can take different paths to the receiver, reducing the 

effects of fading and improving the reliability of the system. 

 

4. CHANNEL ESTIMATION (CE) 
 

This section discusses the implementation of the Channel Estimator (CE), a fundamental 

component in wireless communication systems that aids in the recovery of transmitted data by 

estimating the state of the channel through which the data travels. Effective implementation of 
the CE can significantly improve the reliability and accuracy of the received signals, enabling 

better performance of the communication system as a whole. 

 
Channel estimation is essential for reliable communication and plays a critical role in the 

performance of the overall communication system. Classical channel estimation techniques have 

been extensively researched and developed over the years, and this section will discuss some of 

these classical techniques in detail. These techniques include Least Squares (LS), Maximum 
Likelihood (ML), Minimum Mean Square Error (MMSE), Understanding these techniques is 

vital for effectively implementing channel estimation in wireless communication systems. 

 
LS (Least Squares) estimation is a method for estimating the unknown parameters of a 

mathematical model by minimizing the sum of the squares of the differences between the 

predicted values of the model and the actual observations [24]. It is a popular method in many 
fields, including statistics, signal processing, and machine learning. In the context of wireless 

communication, LS estimation can be used to estimate the channel response in a communication 

system [25]. The LS estimate of the channel response is obtained by minimizing the sum of the 

squared errors between the received signal and the predicted signal, using the estimated channel 
response [26]. Specifically, the LS estimate of the channel response eq (5) 

 

𝐻𝑙𝑠 = 𝑌𝑋′ 𝑋𝑋′                                                                                                                                      (5)⁄  
 

𝐻𝑙𝑠is the LS estimate of the channel response, Y is the received signal, X is the transmitted signal 

(known training symbols), and ' denotes the conjugate transpose. The LS estimate is simple to 

compute and is commonly used in many communication systems, although it is sensitive to noise 
and may not be optimal in some situations channel estimation and equalization using the least 

squares error (LSE) method followed by zero-forcing (ZF) equalization[27].  

 
The input variables to the are: The input are received symbols, pilot which is a pilot sequence, 

positions of the pilot subcarriers, the number of transmit and receive antennas, the number of 

subcarriers, number of channel taps, the noise variance. The input variables to the are: estimated 
channel impulse response, estimated frequency response of the channel, then performs 

equalization by looping over each subcarrier and calculating the inverse of the estimated channel 
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frequency response using the Moore-Penrose pseudoinverse of a matrix. The resulting equalized 
symbols are stored in the variable. 

 

MMSE (Minimum Mean Square Error) estimation is a method for estimating the unknown 

parameters of a mathematical model by minimizing the expected value of the squared difference 
between the predicted values of the model and the actual observations [28]. It is a popular method 

in many fields, including signal processing, control theory, and machine learning. MMSE 

estimation can be used to estimate the channel response in a communication system [29].The 
MMSE estimate of the channel response is obtained by minimizing the expected value of the 

squared error between the received signal and the predicted signal, using the estimated channel 

response [30]. Specifically, the MMSE estimate of the channel response is given byeq (6): 
 

𝐻𝑚𝑚𝑠𝑒 = 𝑅𝑥𝑥𝑆𝑛𝑡
(𝑛)′ + sigma_n2 ∗ eye(N𝑡))                                                                               (6) 

 

Where 𝐻𝑚𝑚𝑠𝑒 the MMSE estimate of the channel response is, 𝑅𝑥𝑥  is the autocorrelation matrix of 

the known training symbols𝑆𝑛𝑡
(𝑛), sigma 𝑛2 is the noise variance, and eye(𝑁𝑡) is the identity 

matrix of size 𝑁𝑡𝑥𝑁𝑡 in eq (4). The MMSE estimate takes into account the noise in the received 
signal and is generally more robust to noise than the LS estimate [31]. 

 

The MMSE method offers advantages over LS and ML methods by providing improved 
performance in noise, low-SNR scenarios, multipath fading environments, and achieving an 

optimal trade-off between bias and variance in channel estimation. 

 

Implement channel estimation and equalization using the minimum mean squared error (MMSE) 
algorithm. Input are same as used for LS estimation, the output is the estimated channel is the 

frequency response of the estimated channel. The equalization with MMSE is performed in the 

following loop by computing the pseudo-inverse of the matrix H' * H + N0 * eye(Nt) ,the 
estimated channel frequency response for each subcarrier, and N0 is the noise variance. The 

result is multiplied by the received symbols to obtain the equalized symbols. The mean squared 

error (MSE) between the equalized symbols and the original transmitted symbols is computed 
and stored. 

 

Maximum likelihood (ML) based channel estimation is a method used in communication systems 

to estimate the channel coefficients of a communication channel. In this method, the receiver uses 
the maximum likelihood principle to estimate the channel coefficients based on the received 

signal [32]. The ML-based channel estimation assumes that the transmitted signal is known, and 

the receiver measures the received signal at different time intervals. The received signal is 
modelled as a linear combination of the transmitted signal and the channel coefficients, with 

additive noise. The goal of the ML-based channel estimation is to estimate the channel 

coefficients that maximize the likelihood function of the received signal [33]. 

 
To perform ML-based channel estimation, the receiver first constructs a likelihood function that 

describes the probability of the received signal given the channel coefficients. The likelihood 

function is usually expressed in terms of the channel coefficients and the received signal. The 
receiver then computes the maximum of the likelihood function to obtain the estimated channel 

coefficients implement channel estimation and equalization using the maximum likelihood (ML) 

algorithm [34]. Input is same as used for LS estimation. It initializes and loops over all 
subcarriers. For each subcarrier, it extracts the estimated channel coefficients H, and the received 

symbols and computes the ML estimate of the transmitted symbol for that subcarrier using the 

minimum distance criterion. The ML estimate is stored in the corresponding variable. Finally, it 



International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023 

105 

computes the mean squared error (MSE) between the estimated symbols and the transmitted 
symbols, and stores the result in the variable. 

 

5. SIMULATION AND DISCUSSION  
 

In the simulation 2 and 4 taps in each sub channel   ℎ𝑛𝑡𝑛𝑟
𝑁𝑇= 4,8,16, 𝑁𝑅 = 4, 8, and N = 64,128 

for the, additive noise, we assume elements of E are white complex Gaussian with unit variance. 

For the underlying fading channel, Elements of H are independent complex Gaussian, These 
parameters help to identify the performance of channel estimation with respect to SNR as shown 

in table I.  

 
Table 1. Simulation parameters 

 
Parameter Value 

FFT points  64,128 

Cyclic prefix  32, 64 

Nt 4,8,16 

Nr 4,8,16 

SNR 0-30 dB 

Pilot in each frame 4 

Modulation QPSK 

No. of taps  2,4 

 

The result compares channel estimation using the LS and MMSE techniques, employing 16 pilots 

for channel estimation in each frame for MIMO 4x4. According to the results presented in 
Figure.3, the LS method performs poorly at lower SNRs, at SNR=10, MSE of LS=2 while the 

MMSE=0.5 method exhibits superior performance, the ML method demonstrates MSE as 1.3. 

 

 
 

Figure 3. CE of MIMO (4x4), tap=2, pilots=16 

 

The channel estimation in MIMO 8x8 systems, with pilots=32 is shown in Figure.4. The LS 
method performs worse at lower SNRs, at 10dB its power of MSE=0.5 while the MMSE method 
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outperforms as MSE is 1.3.  Furthermore, the ML method displays nearly constant MSE it is 
around 1.8. 

 

 
 

Figure 4. CE of MIMO (8x8), tap=2, pilots=32 

 

Figure.5 shows the channel estimation in MIMO 16x4 systems with pilots=32. The LS method 
and the MMSE perform almost similar at SNR=10dB, it is power of MSE is .084 and 0.82 

respectively. In addition, the ML method demonstrates almost constant MSE of 1.3 to 1.5 for 

different SNR 

 

 
 

Figure 5. CE of MIMO (16x4), tap=2, pilots=32 

. 
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Figure 6. CE of MIMO (16x8), tap=2, pilots=32 

 

In Figure.6, presents channel estimation of MIMO 16x8 systems with 32 pilots for channel 

estimation in each frame. The results demonstrate that the LS and MMSE methods perform 
similarly at higher SNR at 20dB, exhibiting little difference in performance. Additionally, the 

ML method shows nearly constant MSEpower around 1.8 To 1.9 MSE. 

 

 
 

Figure 7. CE of MIMO (16x16), tap=2, pilots=32 

 
In this study, we evaluated the performance of LS and MMSE techniques for channel estimation 

in MIMO 16x16 systems, using pilots=32 with tap=2 for channel estimation in each frame. Our 

analysis, as illustrated in Figure.7, indicates that the LS method underperforms at lower SNRs 

compared to the MMSE method at SNR =10dB, MSE power is 8 and 3, the ML method shows 
consistent MSE throughout the evaluation 1.9 of MSE power. 
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Figure 8. CE of MIMO (16x4), tap=4, pilots=32 

 

The purpose of our investigation was to compare the effectiveness of LS and MMSE techniques 
in channel estimation MIMO 16x4 systems, utilizing 32 pilots and a tap of 4 for channel 

estimation in each frame. Our findings, illustrated in fig. 8, demonstrate that the LS method 

performs less optimally than the MMSE method at lower SNRs at SNR=10dB, power of MSE is 
1.2 and 1.5 respectively. Which indicated increase number of tap effect on MSE which can 

analysed from Figure. 

 

 
 

Figure .9. CE of MIMO (16x8), tap=4, pilots=32 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.15, No.6, November 2023 

109 

 LS and MMSE techniques in channel estimation and detection for MIMO 16x4 systems, 
utilizing 32 pilots and a tap of 4 for channel estimation in each frame. Based on our results 

depicted in Figure. 9. Increase in tap in the systems, results indicates that the LS method performs 

sub-optimally at lower SNRs in comparison to the MMSE method at SNR=10dB, which 

demonstrates superior performance. Furthermore, the ML method maintains a consistent MSE 
throughout the evaluation as in Figure.9 and Figure.6. 

 

 
 

Figure 10. CE of MIMO (16x16), tap=4, pilots=32 

 

The performance of LS and MMSE techniques for channel estimation and detection in MIMO 
16x16 systems, using 32 pilots and a 4-tap channel estimation per frame, was evaluated. The 

results, presented in Figure.10 and Figure.7 indicate that the MMSE method outperforms the LS 

method at lower signal-to-noise ratios (SNRs) for increased tap numbers. Additionally, the ML 
method maintains a consistent mean squared error (MSE) across the evaluation of with different 

taps. 

 

 
 

Figure 11. MSE Vs MIMO (Nt, Nr), tap=2, pilots=32 
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Figure.11 depicts the MSE plotted against different antenna configurations in MIMO systems 
with 2-channel taps and 128 pilots, with a fixed SNR of 15dB. The results indicate that the LS 

method yields a higher MSE for the 16x16 MIMO system, whereas the MMSE method exhibits a 

lower MSE for the 16x8 MIMO system. In contrast, the ML method performs consistently across 

various MIMO sizes. 
 

 
 

Figure 12.  MSE Vs MIMO (Nt, Nr), tap=4, pilots=32 

 
The MSE is plotted against different antenna configurations in MIMO systems with 4-channel 

taps and 32 pilots in Fig. 12, with a fixed SNR of 15dB. The outcomes show that the LS method 

results in a lower MSE for the 16x16 MIMO system than in Figure. 11. Conversely, the MMSE 
method yields a lower MSE for the 16x8 MIMO system compared to Figure.11. However, the 

ML method performs uniformly across various MIMO sizes and taps. From these results, we can 

see that MMSE method performs better over LSE and ML methods for almost all the scenarios. 
LSE method has higher MSE for lower SNRs, but as SNR increases it gives better performance 

nearly same as MMSE method. The ML estimation technique aims to find the parameter values 

that maximize the likelihood of the observed data given a specific model. In wireless 

communication systems, ML estimation takes into account the statistical characteristics of the 
received signals and noise to estimate the channel parameters accurately. ML estimation is 

known to achieve the Cramer-Rao Lower Bound (CRLB) for parameter estimation, which 

represents the minimum variance attainable for unbiased estimators. It achieves the lowest 
possible estimation error in large sample sizes. ML estimation is optimal when the noise follows 

a Gaussian distribution, which is a common assumption in many wireless communication 

systems. In such cases, ML estimation provides the best estimate of the true channel parameters. 
ML method can be used in low SNR regimes or the scenarios where we have a fixed error 

tolerance as in all scenarios we receive nearly constant MSE in ML method. 

 

6. CONCLUSION  
 
The continuously increasing demand in communication network is enforcing adaptive channel 

estimation techniques in current generation communication systems. In this paper, we present a 

simulation performance of communication channel for multipath fading scenarios in wireless 
communication. The model includes Tapped-Delay-Line channel models to reproduce the effects 

of channel distortion and interference. Based on the simulation results, it can be concluded that 

the proposed system is effective in accurately estimating the channel parameters that are 

subjected to frequency-selective fading. This work employs LS, MMSE, and ML methods for 
channel estimation and detection using 16, and 32 pilots and fixed pilots for channel estimation in 

each frame. The MMSE method given better MSE performance in all the scenarios. The LS 
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method with specific configurations and taps exhibit small MSE for high-order antenna 
performance. However, the MMSE and ML methods consistently outperform the LS method in 

all configurations for both channel estimation in wireless communications system. The 

simulation results obtained from our study provide valuable insights and serve as a foundation for 

optimizing the performance of wireless communication systems in realistic channel 
environments. They aid in system design, algorithm development, performance evaluation, and 

optimization techniques, ultimately leading to improved system performance and efficiency so 

proposed simulation model and methods can be used for evaluating and optimizing the 
performance of wireless communication systems in realistic channel environments. 

 

7. FUTURE WORK  
 

This paper has examined classical estimation methods for different antenna array between 
transmitter and receiver with different tap delay line. The proposed simulation model and 

methods can indeed be applied to different types of wireless communication systems. While the 

specific implementation may require some adjustments or customization to suit the characteristics 
of the particular wireless system. However exact implementation and parameters may vary 

depending on the specific system requirements, channel characteristics, and available resources. 

Some adaptations or modifications may be necessary to ensure optimal performance in different 
wireless communication scenarios. This study motivates the researchers to work on advanced 

channel estimation techniques machine learning-based approaches and implementing the 

proposed system in a real-world wireless communication system to identify and address practical 

deployment challenges. These avenues for future research could help in advancing the field of 
wireless communication and improving the performance of wireless communication systems 

under various channel conditions. 
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