
International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

DOI: 10.5121/ijcnc.2024.16102 13

EFFECTIVE MULTI-STAGE TRAINING MODEL FOR

EDGE COMPUTING DEVICES IN
INTRUSION DETECTION

Trong Thua Huynh, Hoang Thanh Nguyen

Posts and Telecommunications Institute of Technology, Vietnam

ABSTRACT

Intrusion detection poses a significant challenge within expansive and persistently interconnected

environments. As malicious code continues to advance and sophisticated attack methodologies proliferate,

various advanced deep learning-based detection approaches have been proposed. Nevertheless, the

complexity and accuracy of intrusion detection models still need further enhancement to render them more

adaptable to diverse system categories, particularly within resource-constrained devices, such as those

embedded in edge computing systems. This research introduces a three-stage training paradigm,
augmented by an enhanced pruning methodology and model compression techniques. The objective is to

elevate the system's effectiveness, concurrently maintaining a high level of accuracy for intrusion

detection. Empirical assessments conducted on the UNSW-NB15 dataset evince that this solution notably

reduces the model's dimensions, while upholding accuracy levels equivalent to similar proposals.

KEYWORDS

Neural network, pruning, quantization, intrusion detection

1. INTRODUCTION

Over the past decade, numerous deep learning models have been proposed across various fields

to replace previous traditional solutions, especially in network intrusion detection.Higher
accuracy models tend to be more complex and larger in size. This leads to another significant

challenge that needs to be addressed, which is how devices with limited resources and energy can

detect network intrusions based on modern machine learning models.

As the Earth is getting warmer, alongside the effort to enhance problem-solving efficiency, we

also need to ensure resource conservation, particularly energy resources, to safeguard a greener

world. This study aims to achieve a balanced solution between intrusion detection effectiveness
and resource consumption.

There are also many concentrated deep learning models within high-performance systems that
provide results back to the end (customers). However, these models are still not widely adopted

in a world where protecting customer data is important, and customers can build their own

models with appropriate costs and goals. In return, their models need simplicity while ensuring

high accuracy. Many deep learning models have generated astonishing prediction results with
very high accuracy, but they require good enough resources such as high-speed, expensive GPUs.

This can hardly be extensively applied to moderately configured hardware devices.

https://airccse.org/journal/ijc2024.html
https://doi.org/10.5121/ijcnc.2024.16102

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

14

This research inherits the three-stage training model DSD that we published in [1]. In this study,
we propose an enhanced three-stage training model, specifically tailored for edge computing

devices. In the study [1], the DSD training model was divided into three stages, each utilizing a

multi-layer deep learning model. We also experimented with the model using the UNSW-NB15

dataset, employing all three deep learning methods: RNN, LSTM [2], and GRU [3]. The results
of that research showed that applying LSTM to the DSD training model yielded significantly

superior prediction efficiency compared to RNN, GRU, and the original LSTM itself. Therefore,

this current research focuses on improving the DSD model using LSTM, which we previously
referred to as DSD-3hLSTM. We propose an enhanced pruning method combined with

appropriate quantization to reduce the complexity of the model while maintaining high intrusion

prediction accuracy.

The effectiveness of intrusion detection, especially when deployed on resource-constrained

devices, cannot be overstated. These devices often grapple with constrained processing power,

memory, and energy, making traditional intrusion detection methods challenging to implement.
However, the integration of edge computing and the enhanced three-stage training model

alleviates these limitations by distributing the computational workload intelligently. By

processing data closer to the source, these devices can focus on initial data filtering and basic
analysis, reducing the need for resource-intensive tasks. This streamlined approach conserves

both computing power and energy, prolonging the operational life of these devices in today's

interconnected digital landscape.

The structure of the paper is outlined as follows. Section 2 provides an overview of the related

literature. In Section 3, we detail the hybrid model that we have developed. Moving forward,

Sections 4 and 5 delve into the experimentation, results, and assessment of the proposed models.
Ultimately, the paper concludes with final remarks in Section 6.

2. RELATED WORK

2.1. Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) network, introduced as a variation of the recurrent neural
network [2], stands as a pivotal machine learning technique tailored to address an array of

sequential data challenges. Distinguished by its capacity to preserve and convey errors across

temporal layers, LSTM substantially enhances the accuracy of output and imbues the recurrent

neural network (RNN) with an extended capability for long-term memory tasks. The LSTM
architecture, graphically depicted in Figure 1, encompasses four principal constituents: the input

gate (i), the forget gate (f), the output gate (o), and the memory cell (c).

Figure 1. The core architecture of the LSTM block [2]

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

15

The LSTM block operates by determining the activation of its gates, which dictate the process of
actions such as storage, reading, and writing, achieved through open or closed ports. Notably,

each memory block corresponds to a discrete time step. The communication ports are established

on a set of weights, with certain weights, such as those for input and hidden states, undergoing

adjustments during the learning process. Equations ranging from (1) to (6) are employed to
articulate the relationship between input and output at time t within each LSTM block.

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1)

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

𝑗𝑡 = 𝜔(𝑊𝑗[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑗) (3)

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑗𝑡 (4)

𝑧𝑡 = 𝜎(𝑊𝑗[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑗) (5)

ℎ𝑡 = 𝑧𝑡 × 𝜔(𝑐𝑡) (6)

Where σ and ω are the activation functions sigmoid and tanh, respectively, xt is an input vector at

time t, ht is the output vector at time t, W and b are the weight matrix and bias coefficient,
respectively. ft is a forget function used to filter out unnecessary information, it and jt are used to

insert new information into memory cells, zt outputs relevant information.

2.2. Dense Sparse Dense (DSD)

Complex multi-layer neural architectures yield favorable outcomes by capturing highly nonlinear
associations between input features and output. However, the drawback of these expansive

models lies in their susceptibility to noise present in the training dataset, thereby giving rise to

overfitting [4] and high variance [5]. Conversely, a reduction in model complexity can result in
the omission of relevant relationships between features and output, leading to the predicament of

underfitting [4] and high bias [6]. Achieving a harmonious balance between bias and variance is

notably intricate and challenging.

Through the strategic application of pruning and network densification, the DSD training model

introduces a transformative optimization approach. This, in turn, culminates in enhanced

performance, yielding noteworthy outcomes.

2.3. Stochastic Gradient Descent (SGD)

Gradient Descent (GD) is an iterative optimization process aimed at searching for the optimal

value of the objective function. It stands as one of the most widely used methods for adjusting

model parameters to minimize the cost function within neural networks. Fundamentally, the

GD algorithm is a prediction of θ with an initial point 𝜃0 = 0. It then updates θ until an

acceptable outcome 𝜃 = 𝜃 − 𝜂 ∙ ∂𝜃𝐿(𝜃), where ∂𝜃𝐿(𝜃)) denotes the derivative of the loss

function 𝐿 at 𝜃, and 𝜂 represents the stepsize (or learning rate).

Stochastic Gradient Descent (SGD) is a variant of the GD algorithm used to optimize machine

learning models. It addresses the inefficiency in computation of traditional GD methods when

handling large datasets in machine learning projects. In SGD, instead of using the entire
dataset, it randomly selects a data point from the entire dataset at each iteration to compute the

gradient and update the model parameters, thereby significantly reducing calculations.

Mathematically, the update rule of SGD after each epoch can be expressed as follows:

𝜃 = 𝜃 − 𝜂 ∙ ∂𝜃𝐿(𝜃; 𝑥(𝑖); 𝑦(𝑖)) (7)

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

16

where∂𝜃𝐿(𝜃; 𝑥(𝑖); 𝑦(𝑖))is a loss function with only one data point pair (input, label) of(𝑥(𝑖); 𝑦(𝑖)).

To address the issue of SGD getting stuck in an undesirable local minimum, the Momentum

method [7] is incorporated into SGD, resulting in a variant known as Stochastic Gradient

Descent with Momentum (SGDM) [8]. The mathematical formulation for this approach is

depicted as follows:

𝜃 = 𝜃 − 𝜂 ∙ ∂𝜃𝐿(𝜃; 𝑥(𝑖); 𝑦(𝑖)) + 𝛼∆𝜃 (8)

where is an exponentialdecay factorbetween 0 and 1 that determines the relative contribution

of the current gradient and earlier gradients to the weight change. ∆𝜃is the difference between

two consecutive times of 𝜃.

SGDM is widely adopted for training neural networks, demonstrating notable experimental

successes. It has been integrated as the default optimization algorithm in PyTorch [9] and

TensorFlow [10], attesting to its practical significance and effectiveness.

2.4. Selective Weight Decay

Regularization, at its core, involves making slight adjustments to a model to mitigate overfitting

while preserving its overall generalizability (the ability to describe a wide range of data,

encompassing both training and test sets). In a more specific context, the aim is to guide the
optimization problem's solution towards a nearby point. The direction of movement encourages

the model to become less complex, even if it leads to a slight increase in the value of the loss

function.

For Neural Network models, a commonly employed regularization technique is L2 regularization

[11]. The essence of regularization involves augmenting the loss function with an additional term,

denoted as ℛ(𝜃), as shown in the formula:

𝐿𝑟𝑒𝑔(𝜃) = 𝐿(𝜃) + 𝜆ℛ(𝜃) (9)

This quantity influences the loss function. Specifically, when 𝜆is large, the impact of the added

term on the loss function is substantial, whereas if 𝜆is small, the influence is minimal. However,

𝜆 should not be excessively large, as an excessive value would overpower the added term. This

causes the construction model to be wrong (underfitting). Since the weight parameters (w)

primarily determine the predicted value delta, under L2 regularization, ℛ is defined as:

ℛ(𝑤) = ‖𝑤‖2
2 (10)

Consequently, the loss function can be expressed as:

𝐿(𝑤) =
1

2
‖𝑦 − 𝑋𝑤‖2

2 + 𝜆‖𝑤‖2
2 (11)

The process of optimizing a model is synonymous with reducing the loss function, which in turn
leads to a decrease in weights. Hence, L2 regularization is also referred to as 'weight decay,' as it

contributes to the diminishment of weight values.

Selective Weight Decay (SWD) [12] is a continuous regularization process that induces sparsity

in any kind of structure: at each training step, a specific penalty is applied to pruned parameters

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

17

based on predefined criteria and a designated structure. The criterion for selection is the
magnitude of weights or its derivatives according to the chosen structure. The optimization

problem with penalties can be perceived as:

𝐿(𝑤) = ∑ 𝜀(𝑁(𝑥, 𝑤), 𝑦) + 𝜇‖𝑤‖2 + 𝑎𝜇‖𝑤∗‖2

(𝑥,𝑦)∈𝐷

 (12)

where, L is the objective function, the network is trained through error function 𝜀and penalized

by a weight decay with a coefficient 𝜇with a being a coefficient determining the significance of
SWD compared to the rest of the optimization problem,w* represents a subset of w that is pruned

at some step.

2.5. Quantization

Edge computing devices often come with constrained memory and computational power.
Different optimization methods can be employed to adapt training models, enabling them to

operate effectively within these limitations. Furthermore, specific optimization techniques are

purposefully designed to leverage specialized hardware, thereby enhancing inference speed.
Several optimization techniques [13] can be utilized to reduce the model size. he small model

offers many benefits such as reducing the memory capacity for training, thereby freeing up

memory for other components, while potentially enhancing performance and stability. They also

result in smaller download sizes, suitable for environments with limited bandwidth. Additionally,
certain optimization approaches can decrease the required computational resources for inference,

leading to lower latency. This, in turn, contributes to reduced power consumption.

However, optimization efforts can potentially lead to changes in the model's accuracy, a factor

that must be carefully considered during the application's development process. The impact on

accuracy varies depending on the specific model being optimized and is challenging to predict

beforehand. In general, models optimized for size or latency may incur a marginal loss in
accuracy. Depending on the application, a moderate reduction in accuracy might or might not

significantly affect the end-user experience.

Quantization [14] is an optimization technique that facilitates the mapping of input values from a

large set (often continuous) to output values in a smaller set (typically finite). It can reduce the

precision of model parameters, but it concurrently diminishes latency and model size. According
to this approach [15], real values r can be derived from quantized values q as follows:

𝑟 = 𝑆(𝑞 − 𝑍) (13)

where, S and Z correspondingly represent the scale (utilized to shrink values with low precision
back to floating-point values) and zero point (a value of low precision representing the quantized

value, typically mapped to the real value 0).

This quantization method essentially combines the Quantize and Dequantize operations stacked

upon each other. The scale is determined according to the formula:

𝑠𝑐𝑎𝑙𝑒 =
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛
 (14)

where𝑓𝑚𝑎𝑥and𝑓𝑚𝑖𝑛represent the maximum and minimum values at the floating-point precision,

while𝑞𝑚𝑎𝑥and𝑞𝑚𝑖𝑛denote the maximum and minimum values within the quantization range.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

18

In this case, the zero point Z and the quantized value from the floating-point values are
determined as follows:

𝑍 = 𝑞𝑚𝑖𝑛 −
𝑓𝑚𝑖𝑛

𝑠𝑐𝑎𝑙𝑒
 (15)

𝑞 = ⌊
𝑟

𝑆
+ 𝑍 ⌉ (16)

Thus, the real value is obtained by inserting the quantized value into equation (13), yielding:

𝑟𝑛𝑒𝑤 = 𝑆 (⌊
𝑟

𝑆
+ 𝑍 ⌉ − 𝑍) (17)

3. THE PROPOSAL

In this section, we present two parts. Part 1 (3.1) will outline the 3-stage DSD-3hLSTM model
utilizing the LSTM deep learning method proposed in our earlier study [1]. Specifically, we will

provide a detailed explanation of the pruning technique employed between hidden layers within

the Sparse stage of the model. Part 2 (3.2) covers the improved pruning technique combined with
quantization proposed for application to the DSD training model. The objective is to enhance

training efficiency, reduce model complexity, while still maintaining a high level of accuracy in

intrusion prediction.

3.1. Pruning in DSD-3hLSTM

Applying the findings of Song Han et al. in [16], in this training model, during the Sparse stage,
connections with low weights are pruned, and subsequently, the network is trained after

sparsification. A uniform sparsity is applied across all layers through a hyperparameter called

sparsity, representing the percentage of weights to be pruned to zero. For each layer W with N

parameters, the parameters are sorted, and the k-th largest parameter, denoted as 𝜆 = 𝑆𝑘 , is

chosen as the threshold, where 𝑘 = 𝑁 ∗ (1 − 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦). Subsequently, all weights smaller than λ

are removed.

To eliminate small weights, a Taylor approximation polynomial is employed. The loss function

and its Taylor polynomial are expressed in equations (18) and (19). To mitigate the loss increase

when creating a hard threshold for weights, the first two components in formula (19) need to be
minimized.

As parameters are reduced to zero, ∆𝑊𝑖 practically becomes 𝑊𝑖 − 0 = 𝑊𝑖. At the local minimum

level where 𝜕𝐿 𝜕𝑊𝑖 ≈ 0⁄ and
𝜕2𝐿

𝜕𝑊𝑖
2 > 0, only the second component is significant. Given that

second-order gradient 𝜕2𝐿 𝜕𝑊𝑖
2⁄ is computationally expensive and 𝑊𝑖 is squared, |𝑊𝑖| is used as

a pruning metric. A smaller |𝑊𝑖|implies a smaller increase in the loss function.

𝐿 = 𝑓(𝑥, 𝑊1, 𝑊2, 𝑊3 …) (18)

△ 𝐿 =
𝜕𝐿

𝜕𝑊𝑖

△ 𝑊𝑖 +
1

2

𝜕2𝐿

𝜕𝑊𝑖
2 △ 𝑊𝑖

2 + ⋯ (19)

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

19

Figure 2. DSD-3hLSTM model

3.2. The Proposed Model

Building upon the DSD model proposed in our previous study [1], this research introduces

improvements through a combined pruning technique and quantization method. The aim is to

reduce model complexity, while maintaining a high level of accuracy in intrusion prediction.

Pruning

In this study, inspired by the momentum term in gradient descent learning algorithms proposed

by Ning Qian in [7] and the Selective Weight Decay pruning technique introduced by Hugo

Tessier et al. in [12], we present a three-stage training model named DSD-3hoLSTM. The
purpose of this model is to perform continuous deep neural network pruning during the training

process.

Figure 3. Model Optimization using SGDM

Initially, the model is optimized using the Stochastic Gradient Descent with Momentum (SGDM)

method [8] to determine the optimal value of the objective function as described in equation (8)

with specific parameter values detailed in Figure 3. In each stage, different learning rates are

applied along with the same momentum. Specifically, in the Dense stage, SGDM is utilized to
compute the optimal value of the loss function with a learning rate of 0.1. In the Sparse stage, the

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

20

learning rate is set to 0.01, while in the final re-Dense stage, a learning rate of 0.001 is used. A
consistent momentum of 0.9 is employed across all three stages.

Next, the model undergoes the pruning phase based on the Selective Weight Decay method [12],

where we propose Algorithm 1 to enhance the training process in each stage. Specifically, in the
First Phase and the Last Phase, we reuse the steps similar to the DSD algorithm described in our

previous study [1]. However, in the Second Phase (Sparse), we introduce an improvement by

adding a sub-mask layer to extract W* (a subset of W that has been pruned at some step). This
subset contains weights greater than a target pruning threshold, denoted as T. We then compute

the Total Weight Decay (TWD), which is the sum of all the regularization values after applying

the mask and squaring the weights. Subsequently, we calculate aTWD by multiplying the total
TWD with a coefficient a (determining the importance of TWD compared to the rest of the

optimization problem). This step adjusts the level of regularization applied to the weights.

Finally, the model updates its weights using the back propagate operation Err+WD+aTWD.

Then, the weight values and a are updated to continue the iterative process until the target
pruning threshold T is achieved.

Algorithm 1. DSD-3hoLSTM training procedure

Initialization: 𝑊(0) 𝑤𝑖𝑡ℎ 𝑊(0)𝑁(0, 𝛴); 𝑎; 𝑇

Output: 𝑊(𝑡)

The first Phase: Initialize Dense Phase

 while not converged do

 𝑊(𝑡) = 𝑊(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊(𝑡−1); 𝑥(𝑡−1))

𝑡 = 𝑡 + 1
 end

The second Phase: Sparse Phase

 // initialize the mask by sorting and keeping the k weights at the top

𝑆 = 𝑠𝑜𝑟𝑡(|𝑊(𝑡−1)|);

𝜆 = 𝑆k;
𝑀𝑎𝑠𝑘 = 1(|𝑊(𝑡−1)|) > 𝜆;
while the network is not fully trained do

 𝑊(𝑡) = 𝑊(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊(𝑡−1); 𝑥(𝑡−1))

𝑊(𝑡) = 𝑊(𝑡). 𝑀𝑎𝑠𝑘

𝐸𝑟𝑟 ← 𝜀(𝑁(𝑥(𝑡−1), 𝑊(𝑡)), 𝑦(𝑡−1));

𝑊𝐷 ← 𝜇‖𝑊(𝑡)‖
2
;

𝑀𝑎𝑠𝑘′ = 1(|𝑊(𝑡−1)|) > 𝑎;

𝑊(𝑡′) = 𝑊(𝑡). 𝑀𝑎𝑠𝑘

determine 𝑊∗ according to 𝑇 and 𝑊(𝑡′);

𝑇𝑊𝐷 ← 𝜇‖𝑊∗‖2 ;

backpropagate 𝐸𝑟𝑟 + 𝑊𝐷 + 𝑎. 𝑇𝑊𝐷;

update weights;increase 𝑎;

𝑡 = 𝑡 + 1
 end

The last Phase: reDense Phase

 while not converged do

 𝑊(𝑡) = 𝑊(𝑡−1) − 𝜂(𝑡)𝛻𝑓(𝑊(𝑡−1); 𝑥(𝑡−1))

𝑡 = 𝑡 + 1
 end

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

21

Quantization

After pruning, the model continues to undergo quantization according to the scheme depicted in

Figure 4. From the DSD-3hLSTM model presented in our previous study [1], utilizing Stochastic

Gradient Descent with Momentum, we obtain the DSD-3hoLSTM model (1.1). During the
pruning step, the technique of weight sparsity is employed by retaining a certain number of

important weights while setting the values of unimportant weights to 0. This reduction in model

size not only decreases computational complexity but also enhances execution speed. By
sparsifying the weights, we can generate smaller models suitable for deployment on resource-

constrained infrastructures, such as mobile devices and embedded microcontrollers. Following

this pruning step, we obtain a sparser model suitable for edge computing devices, denoted as
DSD-3hoLSTM-pruned_model (2.1).

Figure 4. Quantization of the pruned model

In the quantization step, most of the values defined within the LSTM structure from equations (1)

to (6) are easily quantizable, except for the value ct in equation (4). While the other equations

utilize activation functions like tanh and sigmoid, 𝑐𝑡 does not. However, it is apparent that

computations involving 𝑐𝑡 mainly consist of element-wise multiplications and additions, which

may be much faster than matrix multiplications. For this reason, 𝑐𝑡 is represented in floating-

point format, while the weights 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑗 are quantized to the range of [-1, 1], and the input 𝑥𝑡

is quantized to the range of [0, 1].

In addition, due to the potential changes in weights and inputs over time or during the training

process, we propose a quantization procedure based on the Dynamic Range Quantization method

[17]. In this process, the range of numerical values is determined and converted into fixed-bit
integer form, enhancing computational speed and reducing memory storage. Figure 5 outlines the

steps of the dynamic range quantization execution, and the detailed implementation steps are

presented in Algorithm 2. In the dynamic range quantization, weights are converted into precise

8-bit values. Consequently, from the original 32-bit values, this technique can reduce the model

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

22

size by up to four times. The substantial reduction in model size is traded for minimal impact on
latency and accuracy. In Figure 4, the model subjected to quantization is one that has been

converted to the tflite format (1.2 and 2.2). Subsequently, we obtain the quantized model (1.3 and

2.3) after applying quantization techniques.

Figure 5. Dynamic Range Quantization Procedure

Algorithm 2. Dynamic Range Quantization

Input: Pre-trained model

 Step 1.Calibration
 Step 1.1.Find min_value and max_value based on the pre-trained model's

weights and input data (optional).

Step 1.2. Calculate the zero point Z and scale factor S, and quantize the

values q from floating-point values using equations (14), (15), (16).

 Step 2.Quantization: Perform quantization for each weight in the model with
fewer bits, based on the dynamic range determined in Step 1 using the formula

(17).

Output: Quantized Model

4. EXPERIMENT

4.1. Dataset

In this study, to evaluate the effectiveness of the improved intrusion detection capability, we

continue to use the UNSW-NB15 benchmark dataset [18], which was also utilized in the previous

study [1]. This comprehensive dataset consists of a total of 2,540,044 records. The dataset

described in the previous study [1] contains 49 features along with classified labels. These
features encompass information such as total time (dur), protocol (proto), type of service

(service), protocol state (state), number of packets from source to destination (spkts), number of

packets from destination to source (dpkts), number of bytes from source to destination (sbytes),
number of bytes from destination to source (dbytes), TTL value from source to destination (sttl),

TTL value from destination to source (dttl), etc.

Indeed, the dataset includes additional features that provide more comprehensive information for

intrusion detection. These features encompass:

- Source and destination jitter: Jitter refers to the variation in delay between packets in a
network. It can provide insights into network congestion and quality.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

23

- TCP connection establishment time: This feature indicates the time taken to establish a
TCP connection between source and destination.

- Average stream packet size: This feature gives the average size of packets within a stream,

helping to characterize the data flow.

- Link depth in the connection of HTTP request/response transaction: This feature provides
information about the position of a request/response transaction within the connection.

- Number of connections with the same service and source/destination address: This feature

counts the number of connections with the same service and source or destination address.
- Number of connections with the same source address and destination port: This counts

connections with the same source address and destination port.

These additional features contribute to a more detailed representation of network traffic and

interactions, enhancing the ability to detect intrusions and anomalous behavior effectively.

Based on the validated experimental results from the study [1], wechose the top 20% of the most
important features from the dataset and apply custom features from UNSW-CF [19]. This

decision was made to reduce training time while still ensuring effective intrusion detection. By

selecting the most relevant features, the model can prioritize the information that contributes the
most to detecting intrusions, leading to more efficient training and potentially faster inference

during real-world usage.

4.2. Data Preprocessing

In the initial preprocessing step, we employed the scikit-learn LabelEncoder library [20] to
transform nominal features into numerical representations before feeding them into the model.

In the UNSW-NB15 dataset, there are nine types of attacks (anomalies) and one additional class

for normal traffic. The normal class contains 2,218,761 records, while the nine attack classes
have a total of 321,283 records. These attack classes include generics, exploits, fuzzers, DoS

(Denial of Service), reconnaissance, analysis, backdoor, shellcode, and worms. Detailed

descriptions of these attack types are also provided in our previous paper [1].

Next, we employed the Min-Max normalization method to map the raw data values into the range

of 0 to 1, facilitating more accurate operation of the objective function and enhancing the

confidence level in predictions [21]. The Min-Max normalization equation is defined by formula:

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (20)

where x represents the raw data value, and x' denotes the normalized value.

4.3. Experimental Environment

The experiment was performed on a PC workstation, with a CPU configuration dual Intel Xeon

E5-2683 2.1GHz, 64 GB memory, and GPU 8 Gigabytes Tesla P4. Experiments have been

designed to study the performance of the DSD-3hLoSTM in binary classification (normal,
anomaly). This model is trained on the comprehensive dataset UNSW-NB15, built on Python

language and Keras library, Sklearn, runs on Tensorflow platform and Anaconda

environment.The DSD-3hLoSTMinclude three phase Dense – Sparse – Redense. Each phase is
designed as follow:

- The LSTM layers consist of 32 neuron units for all layer, all phases.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

24

- The Dense layer uses the sigmoid activation function.
- Dropout layers have a dropout rate of 0.1 each layer hidden, all phases.

- SGD Optimization with learning rate is 0.1 for first phase, 0.01 for second phase, 0.001

for third phase. Momentum of 0.9 is applied for all phases.

- Dropout layers has a dropout rate of 0.1 each layer hidden.
- The initial_sparsity and final_sparsity parameters are experimented with values of 0.25 and

0.8, respectively.

- The coefficient a=0.001 and the threshold T=0.5.

5. RESULT EVALUATION

5.1. Evaluation Method

Selecting the appropriate evaluation method depends on the specific problem, our context, and

the relative importance of minimizing false positives and false negatives. For instance, in an
intrusion detection system, maximizing Detection Rate (recall) might be crucial to avoid missing

potential intrusion cases, even if it results in more false alarms. In contrast, in a spam email filter,

Precision might be more important to minimize false positives and prevent legitimate emails from

being classified as spam. Intrusion detection systems often require a careful balance between the
rate of true positive detections and the rate of false alarms.

We evaluate intrusion detection performance using 5 common metrics: Accuracy, Detection Rate,
Precision, False Alarm Rate, and F1 score. Table 1 displays the confusion matrix, a table used to

evaluate the performance of a classification model including True Positive (TP, i.e. Instances

correctly classified as positive), True Negative (TN, i.e. Instances correctly classified as
negative), False Positive (FP, i.e. Instances incorrectly classified as positive), and False Negative

(FN, i.e. Instances incorrectly classified as negative). In our problem, TP and TN represent

correctly classified attacked (anomaly) and normal states, respectively. FP indicates incorrect

prediction of a normal record as an unrealistic attack, and FN indicates misclassification of an
attack record as normal.

Table 1. Confusion Matrix

 Prediction – Normal (0) Prediction – Anomaly (1)

Reality– Normal (0) TN FP

Reality– Anomaly (1) FN TP

Accuracy – The formula calculating the accuracy is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(21)

False Alarm Rate (FAR) - This measure is calculated according to formula:

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (22)

Precision –The formula calculating Precision is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (23)

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

25

Detection Rate (DR or Recall) –This criterion aims to evaluate the generalization of the found
model and is determined by the formula:

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (24)

F1-score- is called a harmonic mean of the Precision and DR criteria and determined by the

formula:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝐷𝑅)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐷𝑅
 (25)

F1-score tends to take the value closest to whichever is the smaller between the Precision and DR

values. Therefore, it is a more objective representation of the performance of a machine learning

model.

5.2. Result and Evaluation

Figure 6. Visual Comparison of Model Similarity

Based on the results presented in Table 2, both proposed models in this study outperform the

model from the study [1] in most metrics, except for the Precisionmetric. Additionally, the

baseline model DSD-3hoLSTM performs better than the pruned model DSD-3hoLSTM-pruned
in important metrics such as Accuracy, DR, and F1-score, although the differences are not

significant. Observing Figure 6, we can clearly see a similarity in terms of accuracy among all

three models, but the proposed models in this study exhibit better recall and f1-score values

compared to the model from the study [1].

Table 2. Comparison between the proposed approach in this study and the approach in [1]

 FAR% Acc% Prec% DR% F1-score%

DSD-3hoLSTM 0.2974 99.0526 93.6487 86.2710 89.8086

DSD-3hoLSTM-pruned 0.2690 99.0392 94.1668 85.4347 89.5885

DSD-3hLSTM [1] 0.2619 98.9540 94.1910 83.5346 88.5433

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

26

(a) (b)

(c) (d)

Figure 7. Confusion Matrix of the Models on the same Test Dataset

The Heatmap chart in Figure 7 displays confusion matrices based on the evaluation results of the

four models: DSD-3hoLSTM, DSD-3hoLSTM-quantized, DSD-3hoLSTM-pruned, and DSD-

3hoLSTM-pruned-quantized, all on the same test dataset. It is evident that the color patterns of
correctly and incorrectly predicted regions are very similar among these models. The

corresponding numerical values within these regions also reflect this high degree of similarity.

Figure 7(d) exhibits the most noticeable differences compared to Figure 7(a), but the disparities
in the numerical values are quite minimal. Additionally, Figures 7(b) and 7(c) show the closest

resemblances to the other two plots. This observation suggests that pruning and quantization have

a negligible impact on the models' ability to accurately predict correct or incorrect classifications.

Table 3. The combined pruning and quantization model vs individual models

 FAR% Acc% Prec% DR% F1-score%

1.2 DSD-3hoLSTM 0.2974 99.0526 93.6487 86.2710 89.8086

1.3 DSD-3hoLSTM-quantized 0.3913 99.0630 91.9842 88.3317 90.1209

2.2 DSD-3hoLSTM-p 0.2690 99.0392 94.1668 85.4347 89.5885

2.3 DSD-3hoLSTM-p-q 0.2709 99.0270 94.1148 85.2206 89.4471

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

27

(a)

(b)

Figure 8. Visual Comparison of Model Similarity in Terms of Accuracy and Model Size

According to the results in table 3, the quantized, pruned, or combined models all outperform the
baseline model in all metrics. Additionally, the quantized-only model performs better than the

other models in terms of Accuracy, DR, and F1-score. The Precision metric is best achieved by

the pruned-only model. The combined model, which includes both pruning and quantization, has
the best FAR score, while other metrics such as Acc, Precision, DR, and F1-score show relatively

similar results to both the quantized-only and pruned-only models. Therefore, to evaluate the

model's effectiveness, we take more results on model size to compare in correlation with

accuracy in order to recommend a suitable model when considering both these metrics.

In order to deploy the model in practical applications, we compared both the model size and

accuracy when converting the DSD-3hoLSTM models (baseline), DSD-3hoLSTM-pruned, and
quantized models into the tflite format using the Tensorflow platform. Figure 8 presents the

results of evaluating the model's effectiveness based on two key metrics: prediction accuracy and

model size. In Figure 8(a), the prediction accuracy of the models is nearly equivalent, with the

highest being the quantized model (99.063%) and the lowest being the combined pruned-
quantized model (99.027%). Thus, the difference in prediction accuracy between the highest and

lowest is only 0.036%. Meanwhile, based on the data in Table 4 and the observation in Figure

8(b), we can easily notice a significant reduction in model size compared to the baseline model.
The corresponding reduction ratios are approximately 2.81 times (65%), 3.76 times (73%), and

5.89 times (83%) for the pruned, quantized, and combined pruned-quantized models compared to

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

28

the baseline model. Clearly, with the approach proposed in this study, the DSD-3hoLSTM-
pruned-quantized training model is well-suited for edge computing systems. The model size has

been greatly reduced while maintaining a high level of prediction accuracy.

Table 4. Comparison of Model Effectiveness in Terms of Accuracy and Model Size

Model in TFlite Name Accuracy

(%)

Size

(bytes)

+/-Size

(times)

DSD-3hoLSTM.tflite Baseline 99.052 98,652

DSD-3hoLSTM-quantized.tflite Quantized 99.063 26,180 -3.76

DSD-3hoLSTM-pruned.tflite Pruned 99.039 35,004 -2.81

DSD-3hoLSTM-pruned-

quantized.tflite

Pruned

Quantized

99.027 16,746 -5.89

The True Positive Rate (TPR) is used to measure the proportion of positive cases correctly
classified, while the False Positive Rate (FPR) is used to measure the proportion of positive cases

incorrectly classified. The ROC curve represents the trade-off between TPR and FPR as the

classification threshold changes from 0 to 1. Based on the ROC curve in Figure 9, the ROC curve
of the proposed DSD-3hoLSTM model on both the validation and test datasets is better than that

of the DSD-3hLSTM model [1]. Specifically, for the validation dataset, the ROC curve of DSD-

3hoLSTM is 0.998753 compared to 0.963558 for DSD-3hLSTM. Similarly, on the test dataset,

the ROC curve of DSD-3hoLSTM is 0.998823 compared to 0.998248 for DSD-3hLSTM. These
results demonstrate the effectiveness of the DSD-3hoLSTM model compared to DSD-3hLSTM

in early stopping to avoid overfitting and improving the model's prediction ability on new data.

Figure 9. ROC Curve Comparison of the Models

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

29

6. CONCLUSIONS AND DISCUSSIONS

This paper presents a method to improve the efficiency of intrusion detection suitable for edge

computing devices based on the combination of pruning and quantization techniques. This

method not only ensures high accuracy in intrusion prediction, but also significantly reduces the

size of the training model. To achieve that result, we have found a solution to the problem of
local minimum and overfitting that exists in the DSD-3hLSTM model that we proposed

previously based on Stochastic Gradient Descent with momentum and Selective Weight Decay

methods. The significant contribution of this study is the improved pruning method, which
eliminates many of the parameters that are not significant to the model. In addition, dynamic

range quantization technique is also applied to the proposed model with suitable parameters to

achieve the optimization of the training model. Through many experiments on the UNSW-NB15

dataset, the study has proven to be effective in intrusion detection with very high predictive
accuracy while significantly reducing the model size. This shows the significance of the solution

in creating suitable training models for edge computing devices.

Below are some further discussions on the trade-offs between model size and accuracy,

especially in the context of pruning and quantization, with their implications for real-world

implementations.

Trade-offs between model size and accuracy

Pruning techniques selectively remove weights, neurons, or entire layers from a neural network to
reduce its size. This process often results in a smaller and sparser model. While pruning reduces

model size significantly, it can lead to a reduction in accuracy, especially if the pruning criteria

are not carefully chosen. Pruning might also introduce irregularities in the network structure,
affecting its ability to generalize.

Quantization involves reducing the precision of model parameters, typically from 32-bit floating-
point numbers to lower bit-width representations like 8-bit integers. Quantization can

substantially decrease model size and memory footprint. However, lower precision can introduce

quantization errors, potentially degrading model accuracy. The extent of accuracy loss depends

on the specific quantization scheme and the type of data being processed.

Implications for real-world deployment in many other areas

Firstly, in edge computing scenarios, where devices have limited computational resources,

smaller models resulting from pruning and quantization are advantageous. These models can run

efficiently on edge devices, enabling real-time inference for applications like autonomous drones,

industrial IoT, and wearable health monitors.Secondly, smaller models are beneficial for
applications with limited bandwidth, such as remote sensing, where data must be transmitted over

constrained networks. A smaller model size reduces the amount of data sent during inference,

saving both time and data costs.

Finally, smaller models lead to faster inference times due to reduced computational requirements.

This is crucial for real-time applications like autonomous vehicles, where split-second decisions
are necessary for safety. Also, smaller models consume less power during inference, extending

the battery life of mobile devices and reducing the environmental impact. This is essential for

mobile applications, such as smartphone-based AI assistants.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

30

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] Trong Thua Huynh and Hoang Thanh Nguyen,“On the Performance of Intrusion Detection Systems

with Hidden Multilayer Neural Network using DSD Training”, Journal of Computer Networks &

Communications (IJCNC), Vol.14, No.1, Jan 2022.

[2] Anani, Wafaa, “Recurrent Neural Network Architectures Toward Intrusion Detection” in Electronic

Thesis and Dissertation Repository, 5625, 2018.

[3] K. Cho, J. Chung, C .Gulcehre, and Y. Bengio, “Empirical evaluation of gated recurrent neural

networks on sequence modeling”,Computing Research Repository (CoRR), 2014.

[4] Brownlee, Jason, “Overfitting and Underfitting With Machine Learning Algorithms” 12 August

2019. [Online]. Available: https://machinelearningmastery.com/overfitting-and-underfitting-with-

machine-learning-algorithms/. [Accessed 03 August 2020].

[5] Gupta, Prashant, “Cross-Validation in Machine Learning” Towards Data Science, 05 June 2017.
[Online]. Available: https://towardsdatascience.com/cross-validation-in-machine-learning-

72924a69872f. [Accessed 02 August 2020].

[6] Brownlee, Jason, “Gentle Introduction to the Bias-Variance Trade-Off in Machine Learning” 25

October 2019. [Online]. Available: https://machinelearningmastery.com/gentle-introduction-to-the-

bias-variance-trade-off-in-machine-learning/. [Accessed 03 August 2020].

[7] Ning Qian, “On the momentum term in gradient descent learning algorithms”, in Neural networks

:the official journal of the International Neural Network Society, 12(1):145–151, 1999.

[8] Sebastian Ruder, “An Overview of Gradient Descent Optimization Algorithms”, arXiv preprint

arXiv:1609.04747, 2016.

[9] Adam Paszke, et al.,“Pytorch: An imperative style, high-performance deep learning library”, In

Advances in neural information processing systems, pages 8026–8037, 2019.

[10] Martín Abadi, et al.,“Tensorflow: A system for large-scale machine learning”, In 12th {USENIX}
symposium on operating systems design and implementation, pages 265–283, 2016.

[11] Neumaier, A.,"Solving ill-conditioned and singular linear systems: A tutorial on

regularization",SIAM Review,40(3): 636–666, 1998

[12] Hugo Tessier, et al.,“Rethinking Weight Decay for Efficient Neural Network Pruning”, Journal of

Imaging8(3):64, 2022.

[13] Shiliang Sun, et al., “A Survey of Optimization Methods From a Machine LearningPerspective”,

IEEE Transactions on Cybernetics, Volume: 50,Issue: 8, August 2020.

[14] Asghar Gholami, et al.,“A Survey of Quantization Methods for Efficient Neural Network

Inference”, in Low-Power Computer Vision (book) (pp.291-326), 2022.

[15] Benoit Jacob, et al.,“Quantization and Training of Neural Networks for Efficient Integer-

Arithmetic-Only Inference”, IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[16] Song Han, Huizi Mao, Enhao Gong, Shijian Tang, William J. Dally, “DSD: Dense-Sparse-Dense

Training For Deep Neural Networks” in ICLR 2017, 2017.

[17] Tensorflow., “Post-training dynamic range quantization” 2023. [Online].

Available:https://www.tensorflow.org/lite/performance/post_training_quant

[18] Moustafa, Nour Moustafa Abdelhameed, “The UNSW-NB15 Dataset Description” 14 November

2018. [Online]. Available: https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA - NB15-Datasets/. [Accessed 02 August 2020].

[19] D.V. Jeyanthi and Dr. B. Indrani,“An Efficient Intrusion Detection System with Custom Features

using FPA-Gradient Boost Machine Learning Algorithm”, Journal of Computer Networks &

Communications (IJCNC), Vol.14, No.1, Jan 2022

[20] Pedregosa et al., “Scikit-learn: Machine Learning in Python” 2011. [Online]. Available:
https://scikit-learn.org/stable/modules/.

[21] Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift”, Computer Science - Machine Learning, 2015.

https://www.mat.univie.ac.at/~neum/ms/regtutorial.pdf
https://www.mat.univie.ac.at/~neum/ms/regtutorial.pdf
https://www.researchgate.net/profile/Hugo-Tessier-2
https://www.researchgate.net/journal/Journal-of-Imaging-2313-433X
https://www.researchgate.net/journal/Journal-of-Imaging-2313-433X
https://ieeexplore.ieee.org/author/37536892300
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221036
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=9138538&punumber=6221036
https://www.researchgate.net/profile/Asghar-Gholami-2

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.1, January 2024

31

AUTHORS

Trong Thua Huynh is currently the Head of Information Security Department,

Faculty of Information Technology, Posts and Telecommunications Institute of

Technology in Ho Chi Minh City, Vietnam. He received a Bachelor's degree in

Information Technology from Ho Chi Minh City University of Natural Sciences, a

Master degree in Computer Engineering at Kyung Hee University, Korea, and a

Ph.D. degree in Computer Science at the Ho Chi Minh City University of

Technology, Vietnam National University at Ho Chi Minh City. His key areas of
research include Information Security in IoT, Blockchain, Cryptography, and Digital

Forensics.

Hoang Thanh Nguyen is currently the Lecturer in Ho Chi Minh City, Vietnam. He

received a Master’s Degree in Information Systems from the Institute of Post and

Telecommunications Technology. His research areas are Information Security,

Machine Learning.

	Abstract
	Keywords
	Neural network, pruning, quantization, intrusion detection

	1. Introduction
	2. Related Work
	2.1. Long Short-Term Memory (LSTM)
	2.2. Dense Sparse Dense (DSD)
	2.3. Stochastic Gradient Descent (SGD)
	2.4. Selective Weight Decay
	2.5. Quantization

	3. The Proposal
	3.1. Pruning in DSD-3hLSTM
	3.2. The Proposed Model

	4. Experiment
	4.1. Dataset
	4.2. Data Preprocessing
	4.3. Experimental Environment

	5. Result Evaluation
	5.1. Evaluation Method
	5.2. Result and Evaluation

	6. Conclusions and Discussions
	Conflicts of Interest
	References
	Authors

