
International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

DOI: 10.5121/ijcnc.2024.16203 43

HIGH PERFORMANCE NMF BASED INTRUSION

DETECTION SYSTEM FOR BIG DATA IOT TRAFFIC

Abderezak Touzene, Ahmed Al Farsi, Nasser Al Zeidi

Department of Computer Science, College of Science, Sultan Qaboos University, Oman

ABSTRACT

With the emergence of smart devices and the Internet of Things (IoT), millions of users connected to the

network produce massive network traffic datasets. These vast datasets of network traffic, Big Data are
challenging to store, deal with and analyse using a single computer. In this paper we developed parallel

implementation using a High Performance Computer (HPC) for the Non-Negative Matrix Factorization

technique as an engine for an Intrusion Detection System (HPC-NMF-IDS). The large IoT traffic datasets

of order of millions samples are distributed evenly on all the computing cores for both storage and speed-

up purpose. The distribution of computing tasks involved in the Matrix Factorization takes into account the

reduction of the communication cost between the computing cores. The experiments we conducted on the

proposed HPC-IDS-NMF give better results than the traditional ML-based intrusion detection systems. We

could train the HPC model with datasets of one million samples in only 31 seconds instead of the 40

minutes using one processor), that is a speed up of 87 times. Moreover, we have got an excellent detection

accuracy rate of 98% for KDD dataset.

KEYWORDS

Intrusion Detection Systems, Machine Learning, Dimensionality Reduction, High Performance Computing,

IoT traffic.

1. INTRODUCTION

Based on reports published by cybersecurity institutions in several countries worldwide, network

cyber-attacks have increased exponentially in recent decades. These days, as we witness the era

of the Fourth Industrial Revolution (4IR) and its emerging technologies like the Internet of
Things, Quantum Computing, and Artificial Intelligence. Millions of users have become

connected to the Internet, and hundreds of millions of devices connected to the network produce

millions of network traffic records datasets. Storing and analysing those massive network traffic

datasets using a single computer become difficult and highly inefficient especially when it comes
to detection and prevention of traffic attacks on real-time.

Many machine learning algorithms can deal with relatively large datasets dimensionality
reduction techniques for faster analytics, but it takes much time as the dataset size increases, Big

Data. Therefore, it is necessary to use High Performance Computer and parallel implementation

of machine learning algorithms to overcome both the storage and speed limitations.

This paper will focus on parallel Nonnegative Matrix Factorization using a High Performance

Computer (HPC) using Message Passing Interface (MPI) for processors’ communication to

implement an efficient real-time intrusion detection system to Big Data Analytics for large scale
IoT traffic datasets. Nonnegative Matrix Factorization (NMF) is an approximation numerical

method aiming at decomposing data matrix A into its simpler factors lower-rank matrices H and

W. NMF is an unsupervised Machine Learning technique widely used in data mining, dimension

https://airccse.org/journal/ijc2024.html
https://doi.org/10.5121/ijcnc.2024.16203

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

44

reduction, clustering, factor analysis, text mining, computer vision, and bioinformatics, image
recognition and recommendation systems to name a few. In contrast to Singular Value

Decomposition (SVD) and Principal Component Analysis (PCA), Nonnegative Matrix

Factorization (NMF) requires that A, W, and H be nonnegative. For many real-world data, non-

negativity is inherent, and the interpretation of factors has a natural interpretation which could be
one of the advantages of NMF compared to PCA and SVD.

Formally, Nonnegative Matrix Factorization problem is to find two low-rank factors matrix
and for a given nonnegative matrix , such that A ≈ WH. Most of the available

optimization techniques include Hierarchical Alternative Least squares HALS, Multiplicative

Updates (MU), Stochastic Gradient Descent, and Block Principal Pivoting (ALNS-BPP), which
are based on alternating optimizing W and H while keeping one of them fixed.

1.1. Intrusion Detection System Background

This section discusses the background of Intrusion detection systems, including their definition

and diverse types. Moreover, it discusses several papers on machine learning IDS algorithms.

1.1.1. Intrusion Detection System(IDS)

An intrusion Detection System is defined as a hardware device or software that observes systems
for malicious network traffic or policy violations. The purpose of IDS is to detect various types of

malicious network traffic or malicious computer use that a firewall cannot recognize. This is

critical to achieving high protection against actions threatening computer systems' availability,
integrity, or confidentiality [1].

1.1.2. Types of Introduction Detection Systems(IDS)

There are many classifications for intrusion detection systems (See Figure 1). However, this

classification has been used extensively in previous studies based on the data collection method:

1. Network intrusion detection system, which observes and analyses data traffic to detect if

there is an attack or malicious behaviour (NIDS).

2. The Host-based intrusion detection system monitors and analyses data from log files
(HIDS), and based on the detection technique, it can be categorized into three main

categories: Specification-based IDS, Anomaly-based IDS, and signature-based IDS.

Figure1: Intrusion Detection Systems Classification

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

45

 Signature-based (Misuse) Intrusion Detection Systems: Signature-based intrusion

detection analyzes the network traffic, searching for occasions or combinations of similar to
a predefined event pattern that describes a known attack.

Advantages: Signature-based Intrusion Detection Systems effectively detect intrusions

without almost no false detections.

Disadvantages: Signature-based-IDS can only identify known attacks, requiring constant
updating of the attack signatures. Signature-based-IDS detectors are trained very well for

detecting specific types of attacks which may prevent them from detecting new kinds of

attacks.

 Anomaly-based Introduction Detection Systems: Anomaly-based intrusion detection
systems identify abnormal behavior on a network. Commonly attacks differ from regular

legitimate network traffic; the IDS can detect them by analyzing these changes and

differences. Anomaly IDS are trained well on normal network traffic from historical data
collected. So, they can see abnormal behaviors easily.

Advantages: Anomaly-based Intrusion Detection systems can detect abnormal behavior, so

they can detect an attack without any knowledge about it, only from their behavior.

Disadvantages: Because of the variations in users and network behaviors, Anomaly-based
IDS may fire many false alarms. Anomaly detection approaches must be trained in huge

datasets of normal behavior activities.

1.2. Motivation

In this paper we aim at overcoming some of the limitations existing in traditional machine
learning-based Intrusion Detection Systems (IDS), such as a considerable amount of training and

testing on Big data datasets and to detect multiple types of attack in real-time. In this study we

analyse the performance of ML-based IDS using KDD and CIC datasets by applying NMF,
which will help reduce the datasets dimensions into lower-rank matrices that can be used for

analysing and testing any new network traffic in real time.

The rest of the paper is structured of the remaining as follows: In section 2, will start with a brief

background on Machine Learning based IDS and NMF and introduce the related work on which

the proposed solution will be built. In section 3 will discuss the design of the proposed HPC

parallel NMF based IDS including the learning and the detection phase. Section 4 is dedicated to
the experimental work, it describes the implementation environment and the datasets used, and

the performance evaluation of our IDS. Finally, section 5 will summarizes the paper and

highlights some limitations along with the future works.

2. BACKGROUND AND RELATED WORK

This section will discuss the background of Machine Learning IDS and the background related to

the Nonnegative Matrix Factorization (NMF).

2.1. Machine Learning-based IDS

Many recent Anomaly Intrusion Detection Systems (AIDS) is based on Machine Learning

methods. There are a lot of ML algorithms and methods used for ML-based IDS, such as neural
networks, nearest neighbour, decision trees, and clustering methods, applied to discover the

meaningful features from IDS datasets [1] [2].

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

46

2.1.1. Supervised Learning in Intrusion Detection System

Supervised ML-based IDS techniques that can identify attacks based on labeled training datasets.

A supervised ML technique can be divided into training and testing. Training phase, important

features are specified and processed in datasets, then we train the model from these datasets.
There are many applications of supervised machine learning-based IDS. Li et al. [3] used an

SVM classifier with an RBF kernel to classify the KDD 1999 dataset into predefined classes.

From a total of 41 attributes, a subset of features was carefully chosen by using the feature
selection approach [3]. K-Nearest Neighbours (KNN) classifier: The k-Nearest Neighbour (k-

NN) method is a typical non-parametric classifier used in machine learning [4]. These methods

aim to name an unlabelled data sample to the class of its k nearest neighbours.

2.1.2. Un Supervised ML-Based Intrusion Detection System

Unsupervised ML can be defined as an ML technique that obtains information of interest from
input data sets without class labels. The input data points are usually treated as a set of random

variables. A standard density model is then generated for the data set. In supervised learning,

output labels are presented and used to train the machine to obtain the desired results for an
unseen data point. By contrast, in unsupervised learning, no label is provided. Instead, the data is

automatically grouped into different categories through the learning process [5].

2.2. Non Negative Matrix Factorization (NMF)

Non-negative matrix factorization is an algorithm that takes a nonnegative input matrix
and decomposes it into lower rank matrices W and H based in low rank parameter K. NMF is an

unsupervised Machine Learning technique commonly used in clustering, dimensionality

reduction, factor analysis, data/text mining, computer vision, bioinformatics, image recognition
and recommendation systems to name a few. In contrast to Principal Component Analysis (PCA)

and Singular Value Decomposition (SVD), NMF requires that A, W, and H be nonnegative. For

many real-world data, non-negativity is inherent, and the interpretation of factors has a natural

interpretation which could be one of the advantages of NMF compared to PCA and SVD [10]
[11].

2.2.1. Foundations of Non Negative Matrix Factorization Framework

NMF takes a nonnegative input matrix is number of rows which represent number of

features and is number of column which represent number of samples, and low rank parameter

 which is positive integer < { }, NMF algorithms aims to find two low rank matrices
 and such that .

NMF aims to minimize the following cost function:

(1)

(2)

(3)

Most of the available optimization techniques include Hierarchical Alternative Least squares

HALS, Multiplicative Updates (MU), Stochastic Gradient Descent, and Block Principal Pivoting

(ALNS-BPP), which are based on alternating optimizing W and H while keeping one of them
fixed. NMF-IDS system consist of three major phases. In phase 1 the network dataset file is

converted into a two dimensional matrix . In phase 2, the matrix will be factorizedinto

two low-rank matrices and . Phase 3 consists of the detection phase. The same phases

will be conducted for the parallel High Performance Computing distribution HPC-NMF- IDS.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

47

2.2.2. NMF Factorization Phase

Lee and swing [6] proposed a multiplicative updates algorithm (MU) to solve the NMF

factorization problem where the factor matrices W and H are updated using the following

formulas:

(4)

(5)

means the matrix transpose of the matrix . MU algorithm can be divided into individual

smaller sub problems of matrix dot product. Instep 1 we update W based on , and

 ,then in step 2 we update H based on , and . See algorithm 1 below.

Algorithm (1)

The while loop at algorithm 1 will stop if the stopping criteria are satisfied. Either it reaches the

maximum number of iterations specified by the user, or it reaches convergence based on the

Frobenius norm function .

2.2.3. NMF Detection Phase

After MU algorithm reach to convergence or it reach the maximum number of iterations specified
by the user, we obtain the factor matrices W and H, that can be used to represent every sample

from A as weighted linear combination of columns of W, every column of W called bases where

the corresponding called the weights or encoding.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

48

Now if we have a new sample let’s call it and we want to check if it matches one or more of the
samples from the training set, we compute the encoding of it using :

Now we check the similarity of this encoding with every encoding that existed in H. The closest

match (sample class) is that sample whose encoding is the closest to the new sample (multi-class
detection). We can determine the matching score between the encodings using the following

formula:

2.3. Related Work

2.3.1. Serial NMF-based IDS

X. Guan in [7] presented an efficient and fast anomalous intrusion detection model that includes

many data from different sources. A new method based on non-negative matrix factorization

(NMF) is discussed to characterize program and user behaviors in a computer system. A large
amount of high-dimensional data was collected in their experiments. NMF was used and reduced

the vectors to a smaller vector length after that, any simple classifier can be implemented in low

dimension data instead of the entire dataset. After getting low dimension features the model can
differentiate between normal traffic and abnormal traffic easily by using a threshold, so any user

behavior on that threshold will be considered an attack.

Limitations: Although the implemented NMF-based IDS gives good accuracy, the datasets

were nonstandard. Moreover, the threshold technique used in the testing phase could not be

applied to multi-class network attacks.

2.3.2. Parallel NMF

In order to overcome the limitation of low performance NMF when applied to a larger dataset.

scientists have proposed parallel NMF and applied it in different ways, we will discuss here two

approaches, the first is based on MapReduce, and the second is based on Message Passing

Interface (MPI).

2.3.2.1. Hadoop Map Reduce based Parallel NMF

Yin et al., 2018 [12] proposed scalable distributed Nonnegative Matrix Factorization based on

Hadoop Map Reduce for different application. See Figure 2.

Figure 2: Map Reduce Applications

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

49

The authors proposed a technique for NMF matrix update by using block-wise updates in an
efficient MapReduce implementation. Moreover, they propose frequent and lazy block-wise

updates to optimize the operations. They claimed that their solution is faster than any existing

MapReduce NMF implementation with a traditional NMF update algorithm.

Limitations:

Although their implementation can handle larger files efficiently, the reported results for NMF
algorithm time are relatively large. See Figure 2. It is meanly due to Hadoop Map Reduce-based

algorithms with involving read/write data to/from disk which affecting the algorithms'

performance.

2.3.2.2. Message Passing Interface based NMF

MPI-FAUN by R. Kannan et al. 2018 [13] overcomes the Hadoop implementation as it shows
better speedup results. They test their algorithm in more extensive datasets of order millions x

millions in seconds using MPI-based parallel high-performance NMF. See Figure 3.

Figure 3: MPI based applications

The authors proposed a parallel distributed high-performance NMF framework based on MPI that
iteratively updates the low-rank factors in an alternating fashion. The framework proposed can be

applied with many different NMF update algorithms, giving efficient results for dense and sparse

matrices of massive sizes of hundreds of millions of datasets. The framework parallelism is
designed to use minimum communication and it can scale up to more than 1000 cores.

Figure 4: Processors data distribution

Data Distribution:

They divided the matrix W into blocks of rows equal to the number of processors p, ()

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

50

and the matrix H into blocks of columns (). Then, based on this distribution, matrix
the A is distributed by rows () and also by columns (), as shown in the

Figure 4, so that processor has column and row . Using this distribution Alternating

Update algorithm such as Multiplicative Update (MU) or Hierarchical Alternative Least Square
(HALS) implemented

Limitations: As far as it is linked to our research, the authors were only interested to develop a
parallel version of NMF without testing on specific application.

In this paper, we use the same methodology, apply it and test it in the context of developing a
real-time Intrusion Detection System using our University High Performance Computing facility.

3. PARALLEL NMF-IDS PROPOSED SOLUTION

This section will discuss the proposed solution of distributed parallel NMF based IDS in the HPC
of Sultan Qaboos University (Luban).

3.1. Proposed Solution

This section discusses the proposed solution for the problem of low performance (Speed and

accuracy) of Machine Learning Anomaly Intrusion Detection System when dealing with huge
datasets of orders of millions of samples.

3.1.1. NMF based Intrusion Detection System

KDD99 and CIC datasets (discussed in section 4.3) are Big data sets contains millions of network

traffic data. Based on the results of the above-mentioned literature, NMF based IDS has proven to

give better performance than other ML based AIDS, in terms of speed of training/testing high
dimensional datasets and accuracy. Therefore, NMF was selected. The initial experiment on

NMF based IDS (one processor) showed promising results.

3.1.2. Parallel NMF based Intrusion Detection System

Although NMF-based IDS showed good performance in relatively small datasets, it showed,

based on the experiments, to take a lot of time for larger datasets. In this study, we solved this
issue by applying parallel MPI-based NMF implemented on high-performance computing Luban

(section 4.2).

As mentioned in section (2.1.1), the non-negative matrix factorization algorithm aims to

decompose input matrix into the low-rank matrices and . Lee and swing [6]

proposed a multiplicative updates algorithm (MU) to solve the NMF problem. The matrices W

and H are updated using the following formulas:

1.

2.

Where means the matrix transpose of the matrix . MU algorithm can be divided into
individual smaller sub-problems of matrix dot product. In step 1 we update W based on ,

 and , then in step 2 we update H based on , and . Looking at the

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

51

dimensions of the matrices involved on each dot product operation, we can see that and
 have low dimension only . So, they can be solved in all processors without distribution

to reduce communication costs. Now, to solve the rest of the operations in parallel, we divided W

into blocks of rows equal to the number of processors (W1,…..,Wp) and the matrix H into blocks of

columns (H1,…Hp). Then, based on this distribution, we distributed the matrix A, once by rows
(A1,…,Ap) and once by columns (A1,…,Ap), as shown in Figure 5, so that processor I has column Ai and

row Ai.

Figure 5: Parallel data distribution and communication

With this distribution of data and variables, we can now apply parallel MU algorithm using only

two communications per iteration. As shown in algorithm 1. we can solve in several parallel

instances of equations 4 and 6 to update and , respectively. In equation 3, we apply MPI all-
gather to gather parts of the updated matrix from each processor and distribute the full matrix to

all processors. We do the same process for in equation 5.

Algorithm (2)[W,H]=Parallel_NMF(A,k)

○ is the input matrix distributed bothrow-wise and column-wise across processors

○ is rank of approximation

○ (1): initialize by processors

○ (2): while stopping criteria are not satisfied do

/*compute W given H*/

(3) : Collect H on each process or using all-gather communication

(4) :

/*compute H given W*/
(5) : Collect the matrix Win each processor using all-gather communication

(6) :

(7) : end while

The all-gather communication steps allow to collect from all processors the updated row blocks

of Wi and the columns blocks of H I to form the matrices W and H on each processor in order to

start a new iteration.

4. IMPLEMENTATION OF HPC-NMF-IDS AND EXPERIMENTAL RESULTS

We will explain the implementation environment starting by explaining the software and
hardware specification of Luban High performance Computing system at Sultan Qaboos

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

52

University. Then the data sets used in this study will be described. After that, the parallel
multiplicative update algorithm will be discussed, the rest of the section will show the

performance of the results.

4.1. NMF-IDS Methodology

In this study we will test our NMF-IDS on two known datasets (KDD, and CIC) after a pre-
processing phase, training phase using NMF factorization eq. 4, 5, and detection testing eq.7, 8, 9.

Figure 6: HPC-NMF-IDS Methodology

4.2. High Performance Computing (Luban) @ SQU

Luban is a High Performance Computing system of Sultan Qaboos University (SQU), launched

in February 2020. It provides 50 teraflops of computing power delivered using 15 advanced
compute nodes with around 400 terabytes of storage space, all connected to a high-speed

connection. The hardware and software specifications of Luban System are as follows. See

Figure 7:

● Compute Node Specification:

Each compute node (Think-System SD530): has Cent OS 7 Linux operating system, Dual 20-
cores Intel Xeon Gold 6230 2.10GHz CPUs, 197GB RAM, 10Gb Ethernet interface, and 100Gb

Intel Omni-Path Architecture (OPA) 100 Series.

● Login and Master Node Specification:

Each node (Lenovo Think-System SR630): has Cent OS 7 Linux operating system, Dual 14-cores

CPUs, 197 GB RAM, and 480TB + 12GB (SSD) storage.

Figure 7: High Performance Computing Facility HPC Luban @SQU

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

53

4.3. Datasets

This section will discuss the datasets used in this study in detail and how we pre-process them.

To study the performance of the proposed solution in this study, we applied it and analysed its
efficiency and accuracy on two different datasets, namely KDD and CIC.

KDD99: KDD dataset is a dataset used in an international competition held at the University of
California [8], where the goal of that competition was to build an intrusion detection system that

can differentiate between a normal good connection, or a bad connection called an intrusion or

attack. KDD dataset is about 5 million connection records that was generated from 7 days’

network traffic. It contains 41 features, and it is labelled by either Normal or specific type of
attack. KDD contains attacks that can be categorized to Denial of service (DoS), Remote to local

(R2L), and User to root (U2R).

CIC-IDS2017:The second dataset used in this study is CICIDS2017,created by I.Sharafaldin [9]

from the Canadian Institute for Cybersecurity. It’s a benchmark dataset consisting of 2830743

samples and 78 features. CIC dataset contains more recent attacks. For example, Brute Force
FTP, DoS, infiltration, DDoS.

4.4. Datasets Pre-Processing

This section explains the pre-processing methods for KDD and CIC datasets before applying

NMF to them to get the best results.

Label Encoding: To apply NMF to any dataset, we must ensure that all elements within the

dataset are non-negative numbers. The KDD dataset contains some features with text values

namely, service, Protocol_type, and flag, so they need to be converted to numeric values using
label_encoder from sk learn library of Python.

Normalization: Some features from the datasets contain large numbers. For example, src_bytes
and dst_bytes from KDD have large values that can reach thousands. Also, in CIC dataset

Flow_Duration contains values reach more than one million and Destination_Port can reach

thousands, those great values may affect the model's performance as it will be biased to those

great values. Therefore, normalization is applied to ensure that all the dataset’s values are in the
same range. In this study, we apply min-max normalization to make sure that all the values are

ranged between 0 and 1 only.

Train/Test Split: We divided KDD and CIC datasets into several training data sizes to apply the

proposed parallel NMF on it.

 Training datasets sizes (30K)

 Testing dataset size 3K

The original shape of the datasets was to reduce the number of features and to get

correct results out from NMF we will transpose the input matrix so it will be on the following

shape .

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

54

4.5. Experiments and Results

4.5.1. Experiment (1) Find Best Rank K for KDD Dataset

To make the most of NMF Algorithm, we must select the rank hyper-parameter carefully to

ensure that it gives the best results by striking a balance of reducing the dimension of the problem

and keeping the most amount of the features to insure good detection accuracy. In theory it is
difficult to assess which rank K will be the best. We decided to select the best rank

experimentally by running 1000 iteration of NMF with different values of K, as shown in Figure

8. By analyzing the results of the experiments, was selected as it gives an accuracy rate

reaching up to 98% in 1000 iterations.

Figure 8: NMF-IDS Best Rank selection for KDD

4.5.2. Experiment (2) Training & Testing on 30K samples KDD

Using as per the previous experiment, we implemented NMF on 30000 samples of42

features extracted from the KDD dataset.

Table 1. 30K samples KDD dataset Results

Iterations Training Time(s) Accuracy

(%)

100 3.9 76

200 7.7 83

400 15.0 91

600 23 97

800 31 98

As shown in the Table 1, increasing the iterations gives better results in terms the detection
accuracy, at the expense of higher training time (factorization). As it is clear, NMF for one

processor finished 100 iterations in approximately 4 seconds, with a detection accuracy of 76%,

compared to 800 iterations in approximately 31 seconds, but with a detection accuracy of 98%.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

55

Table 2. 30K samples KDD dataset Results

Number of

processors

Training Time(s) Speedup

1 39.5 1

4 3.9 10.1

8 6.6 5.9

32 9 4.3

64 8 4.9

120 9.8 4

Table 2 summarizes the results of running our proposed parallel NMF. We can reduce the

training time from 39.5 seconds using 1 processor to 3.9 seconds using 4 processors which
corresponds to a speedup of 10. This speedup is called super-linear speedup as it is more than

number of processors (4). Super-linear speedup happened here because running NMF in one

processor with a dataset that may not fit into its main memory, virtual memory using paging

stored in the disk memory will be time consuming. On other hands, we noticed unexpected
behaviour as we increase the number of processors the speedup decreases. This happens due to

the cost of the communication between processors, which overwhelms the speedup in processing

when the dataset is small.

4.5.3. Experiment (3) Training & Testing on 1M samples KDD

In this experiment we applied parallel NMF on one million samples of KDD, after one thousand

iterations we got detection accuracy of 97%. The results using different numbers of processors

are shown in Table 3.

Table 3.1M samples KDD dataset Results

Number of

processors

Training Time(s) Speedup

1 2432 -

4 977 2.5

8 550 4.4

32 259 9.3

64 167.7 14.5

120 159 15.3

240 61 39.9

320 39 62.3

420 31 87.5

In this experiment, as we can notice from Table 3, training the model using one processor took
2432 seconds, approximately 40 minutes. However, we reduced this large number using the

Parallel NMF on 420 cores to be only 31 seconds, with a speedup of 87.5 times.

4.5.4. Experiment (4) Find Best Rank K for CIC Dataset

As the best selection of the rank K depends on the dataset, in this experiment we run different
runs of NMF with different values of K for the CIC dataset, as it is shown in Figure 9. After1000.

By analyzing the results of the experiments, was selected as it gives an accuracy rate

reaching up to 90% in 1000 iterations.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

56

Figure 9: NMF-IDS Best Rank selection for CIC

4.5.5. Experiment (5) Training on 30K samples CIC

Using based in experiment 4, we implemented parallel NMF on 30000 samples of CIC.

Using different number of processors, we got the following results shown in Table 2.

Table 4. 30K samples CIC Dataset Results

Iterations Training Time(s) Accuracy (%)

100 20.5 66

200 41.0 74

400 82.1 84

600 124.0 87

800 164.0 90

As shown in the Table 4, increasing the iterations gives better results the accuracy rate is

increasing but with an additional cost for training. NMF-IDS reaches a detection accuracy of 90%

in 164 seconds.

4.5.6. Experiment (6) Training on 30K samples CIC parallel

Using the best rank from experiment 5, we implemented parallel NMF on 30000 samples
of CIC. From Table 5, we notice a similar behavior compared to the KDD dataset in terms of

speed-up due to the size of the dataset which is relatively small.

Table 5. 30K samples CIC dataset Results

Number of

processors

Training Time(s) Speedup

1 164 1

4 36 4.5

8 19 8.6

32 8 20.5

64 10 16.4

120 12 13.6

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

57

4.5.7. Experiment (7) Training on 1M samples CIC parallel

Using select in experiment 4, we implemented parallel NMF on one million samples of

CIC. Table 6 shows a better speed up compared to smaller dataset 30K. Using 120 processors our

parallel HPC-NMF-IDS manages to reduce the training time from 1.6 hours to 3.45 minutes.

Table 6. One Million samples CIC dataset Results

Number of

processors

Training Time(s) Speedup

1 5953 1

4 1778 3.3

8 1126 5.2

32 521 11.4

64 302 19.7

120 207 28.8

5. CONCLUSION

Millions of users and smart devices connected to the network produce several millions of
network traffic records. Storing and analyzing those traffic datasets is a challenging task. In this

paper we proposed a parallel and distributed Intrusion detection system based on dimensionality

reduction using High Performance Computer facility for Non-Negative Matrix Factorization to be
able to analyze efficiently large IoT traffic datasets. To achieve higher speedups using as many

cores in the HPC, the NMF algorithm distributes the blocks of rows and columns of the matrices

A, W, and H, by taking into account the data locality and minimization of the communication

between the computing node. Unlike the previous work which focus only on binary classification
of the network traffic, our implementation can detect multi-class of network attacks.

Experimental results show a detection precision of 98% for KDD datasets and 90% precision for

CIC dataset. In terms of efficiency for the HPC implementation, we could train our model using
KDD dataset of order of a million of samples in only 31 seconds instead of the sequential

implementation (one processor) which took approximately 40 minutes, that is a speed up of 87

times.

In our future work this study will investigate different approaches for data distribution distribute

to make the most of the parallelism and reduce the communication overhead to the minimum

possible. We will also investigate different update methods for NMF updates, including Block
Principal Pivoting (BPP) and Hierarchical Alternating Least Squares (HALS) which may give

faster results by reducing the number of iterations and thus the computation cost.

REFERENCES

[1] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT Security Techniques Based on Machine

Learning: How Do IoT Devices Use AI to Enhance Security”,IEEE Signal Process. Mag., vol. 35,

no.5,pp. 41–49, 2018.

[2] N. Kshetri and J. Voas, “Hacking Power,” no. December, pp. 91–95, 2017.
[3] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, “An efficient intrusion detection system based

on support vector machines and gradually feature removal method,” ExpertSyst.Appl., vol.39, no. 1,

pp. 424–430, 2012.

[4] W. C. Lin, S. W. Ke, and C. F. Tsai, “CANN: An intrusion detection system based on combining

cluster centers and nearest neighbors,”Knowledge-BasedSyst.,vol.78,no.1,pp.13–21,2015.

[5] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection systems:

techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, 2019.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.2, March 2024

58

[6] D. Leeand H.S. Seung, “Algorithms for Non-Negative Matrix Factorization,” in Advances in Neural

Information Processing Systems, no. 1, 2000, pp. 556–562.

[7] X.Guan, W.Wang, and X.Zhang, “Fast intrusion detection based on a non-negative matrix

factorization model,” J. Netw. Comput. Appl., vol. 32, no. 1, pp. 31–44, 2009.

[8] S. Stolfo, “KDD-99 Dataset, ” online,1999.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed Dec. 24, 2022).

[9] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection

dataset and intrusion traffic characterization, ”ICISSP2018 -Proc.4thInt.Conf.Inf.Syst.Secur. Priv.,

vol. 2018-Janua, no. Cic, pp. 108–116, 2018.

[10] R. Hedjam, A. Abdesselam, and F.Melgani, “NMF with feature relationship preservation penalty

term for clustering problems,” Pattern Recogn., vol. 112, 2021.

[11] T. Masuda, T. Migita and N. Takahashi, "An Algorithm for Randomized Nonnegative Matrix

Factorization and Its Global Convergence, "2021 IEEE Symposium Series on Computational

Intelligence (SSCI), Orlando, FL, USA, 2021, pp. 1-7.

[12] J. Yin, L. Gao, and Z. Zhang, “Scalable Distributed Nonnegative Matrix Factorization with Block-

Wise Updates,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 6, pp. 1136–1149, 2018, doi:

10.1109/TKDE.2017.2785326.
[13] R. Kannan, G. Ballard, and H. Park, “MPI-FAUN: An MPI –Based Framework for Alternating-

Updating Nonnegative Matrix Factorization,” vol. 30, no. 3, pp. 544–558, 2018.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	Department of Computer Science, College of Science, Sultan Qaboos University, Oman
	1. Introduction
	1.1. Intrusion Detection System Background
	1.1.1. Intrusion Detection System(IDS)
	1.1.2. Types of Introduction Detection Systems(IDS)

	1.2. Motivation

	2. Background and Related Work
	2.1. Machine Learning-based IDS
	2.1.1. Supervised Learning in Intrusion Detection System
	2.1.2. Un Supervised ML-Based Intrusion Detection System

	2.2. Non Negative Matrix Factorization (NMF)
	2.2.1. Foundations of Non Negative Matrix Factorization Framework
	2.2.2. NMF Factorization Phase
	Algorithm (1)
	2.2.3. NMF Detection Phase

	2.3. Related Work
	2.3.1. Serial NMF-based IDS
	2.3.2. Parallel NMF
	2.3.2.1. Hadoop Map Reduce based Parallel NMF
	The authors proposed a technique for NMF matrix update by using block-wise updates in an efficient MapReduce implementation. Moreover, they propose frequent and lazy block-wise updates to optimize the operations. They claimed that their solution is fa...
	Limitations:
	2.3.2.2. Message Passing Interface based NMF
	Data Distribution:
	Limitations: As far as it is linked to our research, the authors were only interested to develop a parallel version of NMF without testing on specific application.

	3. Parallel NMF-IDS Proposed Solution
	3.1. Proposed Solution
	3.1.1. NMF based Intrusion Detection System
	3.1.2. Parallel NMF based Intrusion Detection System
	(3) : Collect H on each process or using all-gather communication
	(5) : Collect the matrix Win each processor using all-gather communication
	(7) : end while

	4. Implementation of HPC-NMF-IDS and Experimental Results
	4.1. NMF-IDS Methodology
	4.2. High Performance Computing (Luban) @ SQU
	● Compute Node Specification:
	Each node (Lenovo Think-System SR630): has Cent OS 7 Linux operating system, Dual 14-cores CPUs, 197 GB RAM, and 480TB + 12GB (SSD) storage.
	4.3. Datasets
	4.4. Datasets Pre-Processing
	4.5. Experiments and Results
	4.5.2. Experiment (2) Training & Testing on 30K samples KDD
	4.5.3. Experiment (3) Training & Testing on 1M samples KDD
	4.5.5. Experiment (5) Training on 30K samples CIC
	4.5.6. Experiment (6) Training on 30K samples CIC parallel
	4.5.7. Experiment (7) Training on 1M samples CIC parallel
	5. Conclusion

	References

