
International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

DOI: 10.5121/ijcnc.2024.16306 89

ANALYSIS AND EVOLUTION OF SHA-1 ALGORITHM -

ANALYTICAL TECHNIQUE

Malek M. Al-Nawashi1, Obaida M. Al-hazaimeh1, Isra S. Al-Qasrawi1,Ashraf A.

Abu-Ein2andMonther H. Al-Bsool1

1Department of Information Technology, Al-Balqa Applied University, Jordan

2Department of Electrical Engineering, Al-Balqa Applied University, Jordan

ABSTRACT

A 160-bit (20-byte) hash value, sometimes called a message digest, is generated using the SHA-1 (Secure

Hash Algorithm 1) hash function in cryptography. This value is commonly represented as 40 hexadecimal

digits. It is a Federal Information Processing Standard in the United States and was developed by the

National Security Agency. Although it has been cryptographically cracked, the technique is still in

widespread usage. In this work, we conduct a detailed and practical analysis of the SHA-1 algorithm's

theoretical elements and show how they have been implemented through the use of several different hash

configurations.

KEYWORDS

Cryptography, SHA-1, Message digest, Data integrity, Digital signature, National security agency

1. INTRODUCTION

In computing, a hash function is a procedure that accepts an input of variable length and returns

an output of fixed length, often called a "fingerprint." The index into a "HASHTABLE" is a

common application of such a function. Cryptographic hash functions are ideal for use in digital

signature schemes and message integrity verification because of their extra features. A public key
kp and a secret key ks are used in conjunction with two functions, Sign(M, ks), which generates a

signature S, and Verify (M, S, kp), which returns a BOOLEAN indicating whether or not the

given S is a valid signature for message M. Sign(M, Sign(M, ks), kp) = true for any given key pair
(ks, kp) is a necessary condition for any function to satisfy [1-7]. Conversely, it should be

unattainable to fabricate a counterfeit signature. Two sorts of forgeries can be differentiated:

Universal forgeries and Existential forgeries [8-19].In the first scenario, the attacker uses the

public key kp to generate a valid M, S pair. The attacker has no control over the message being
computed; as a result, M is often generated at random. The attacker generates a valid signature S

from the provided M and kp to establish a universal fake. Such a signature can be placed using a

public-private key cryptosystem, such as RSA [20-26]. Here, the private key pair (n, d) is used to
sign the message, while the public key pair (n, e) is used to authenticate the signature. Calculating

the private part of the RSA key scheme efficiently enough to pull off a universal forgery is

thought to be impossible. Finding an existential forgery, on the other hand, is a breeze: for any
arbitrary S, we can easily determine the matching message M by solving M = Se% n. A further

problem is that RSA can only sign messages up to a certain length; a simple but poor workaround

would be to split the message up into blocks and sign them individually. A new message with a

valid signature can be created, but an attacker can now rearrange the blocks to do so. In
conclusion, the RSA method is somewhat sluggish. These issues may be fixed by using

cryptographic hash functions. Such a hash function H, as was previously indicated, accepts a

https://airccse.org/journal/ijc2024.html
https://doi.org/10.5121/ijcnc.2024.16306

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

90

message of variable length as input and outputs a message digest D of defined length. A
communication's digest is now signed instead of the original message itself. It is necessary to

identify message M, given D, such that H(M) = D in order to establish an existential forgery. As

shown in Figure 1 [8, 27-31], the SHA-1 algorithm's block diagram.

Figure 1. Block diagram of SHA-1 algorithm

2. SHA-1 PROCESSES – ANALYTICAL EXAMPLE

The purpose of this section is to explain the SHA-1 algorithm and its relationship to SHA-0 and
SHA-2. Two distinct phases are discernible in each method, with the first being message

expansion, and the second being a state update transformation that is repeated for a certain

number of times (80 in SHA-1). We'll be utilizing the "and" operator, which performs a bitwise

left-to-right shift, and the "and" operator, which performs a bitwise left-to-right rotation, in the
next sections [32-34]. Messages up to 264 -1 bit in length can be fed into SHA-1, and the output

is a 160-bit message digest. The input is split into 512-bit chunks and padded using the following

method. After appending a 1, followed by zero padding until bit 448, the length of the message is
placed in the final 64 bits of the message with the most significant bits zero-padded. A sample

message and the same message with some zeros tacked to the end might collide if a 1 weren't

appended first [24, 35-37]. The sections that follow will elaborate on these aspects.

2.1. Encoding

Suppose we are using the SHA-1 algorithm to encode the word "Security". The binary

representation of the word, acquired from the code as depicted in Figure 2, is indicated in Table

1. The encoded message in binary is shown in Figure 3.

Table 1. Binary encoding for messages

Letter ASCII Binary

S 83 01010011

e 101 01100101

c 99 01100011

u 117 01110101

r 114 01110010

i 105 01101001

t 116 01110100

y 121 01111001

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

91

Figure2. Message to binary sequence – Code

Figure3. Binary encoded message

2.2. Padding

The following approach is used to pad the input before processing it in chunks of 512 bits. After

appending a 1, followed by zero padding until bit 448, the length of the message is placed in the
final 64 bits of the message with the most significant bits zero-padded. The length of our message

is 64, therefore we add 383 zeroes to the end to make 484 and store the message length in the

final 64 bits, as illustrated in Figure 4.

Figure4. "Chunk" 0: 512-bits in size

2.3. Splitting

To illustrate, in Table 2 we see chunk 0 being divided into 16 words, each of which is 32 bits in

size.

Table 2. Split words

w [0] 01010011011001010110001101110101 w [8] 00000000000000000000000000000000

w [1] 01110010011010010111010001111001 w [9] 00000000000000000000000000000000

w [2] 10000000000000000000000000000000 w [10] 00000000000000000000000000000000

w [3] 00000000000000000000000000000000 w [11] 00000000000000000000000000000000

w [4] 00000000000000000000000000000000 w [12] 00000000000000000000000000000000

w [5] 00000000000000000000000000000000 w [13] 00000000000000000000000000000000

w [6] 00000000000000000000000000000000 w [14] 00000000000000000000000000000000

w [7] 00000000000000000000000000000000 w [15] 00000000000000000000000001000000

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

92

2.4. Extending

Utilize mathematical techniques based on Figure 5 and Figure 6 to elongate words into a total of

eighty words.

Figure 5. Procedure expansion Code

Figure6. Block diagram of the expansion procedures

For the sake of clarity, we've isolated the word number 16 in its entirety here:

w [16] = w [16-3] XOR w [16-8] XOR w [16-14] XOR w [16-16]
w [13] XOR w [8] =

00000000000000000000000000000000 XOR 00000000000000000000000000000000

= 00000000000000000000000000000000

(w [13] XOR w [8]) XOR w [2] =

00000000000000000000000000000000XOR10000000000000000000000000000000
= 100000000000000000000000000000000

((w [13] XOR w [8]) XORw [2]) XOR w [0] = 100000000000000000000000000000000 XOR

01010011011001010110001101110101
= 11010011011001010110001101110101

Left rotate by one= 1010011011001010110001101110101011
w [16] = 1010011011001010110001101110101011

Table 3 displays the 64 words formed after we iterated the techniques described above.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

93

Table 3. Generated words

w [16] 10100110110010101100011011101011 w [49] 01100010011000001000101001110111

w [17] 11100100110100101110100011110010 w [50] 11110010001001001110101001101001

w [18] 00000000000000000000000010000001 w [51] 10000110011111101011100101011011

w [19] 01001101100101011000110111010111 w [52] 01000011100100011010000110101001

w [20] 11001001101001011101000111100101 w [53] 01100001011011101000000010000000

w [21] 00000000000000000000000100000010 w [54] 01110001000000110010000000011010

w [22] 10011011001010110001101110101110 w [55] 01011110111100001010000010001111

w [23] 10010011010010111010001101001011 w [56] 10111110001101110101111111001100

w [24] 01001101100101011000111111010011 w [57] 00000011011100010011110011111011

w [25] 11111111111100111110011010111000 w [58] 10001011111110011111010000100110

w [26] 00100110100101110100011110010101 w [59] 11000110100000011001110110110100

w [27] 00000000000000000000010000001000 w [60] 00010001011111010111111101010100

w [28] 01101100101011000110111010111010 w [61] 11010010011101110011100000000101

w [29] 01001101001011101000110110101110 w [62] 10101000001000111011100001101101

w [30] 01111011110000111011001010011010 w [63] 00100111110110000111100001001100

w [31] 00110110011010100100101010000110 w [64] 11000001011101001010111100110101

w [32] 01001100111000111000100000101111 w [65] 10011110100110010110111101110100

w [33] 01011010111011100110001000001110 w [66] 00111011001010011000111101010100

w [34] 10110010101100011011100011101111 w [67] 11000001110010100001011010110101

w [35] 00000010111011000000000111100100 w [68] 01111010111011010010001100100111

w [36] 11001001100110011000110111111110 w [69] 10101101100000010010111010111101

w [37] 11011001101010010010111000010000 w [70] 01001101101110111010001000011101

w [38] 01011111001000100100111000000111 w [71] 00000001011010011000111000111110

w [39] 00100110100101110000010100010111 w [72] 10110010011101100101010011000100

w [40] 11111100100100001101110011110011 w [73] 00101101101001001101100001001100

w [41] 11110100011111111001110101110011 w [74] 01000001100010010001010000110001

w [42] 10111100001110110010100110101111 w [75] 11001110100101011100111110000000

w [43] 01100110101001001010100101100011 w [76] 11011100001011100111100010100101

w [44] 01010101000100111001100101011010 w [77] 11101011110110001000010110011010

w [45] 00111101101011011000000100101110 w [78] 10111010010111111111011111111111

w [46] 00011101010011011011101110100010 w [79] 10010001110111001000001001000001

w [47] 00111110000000010110100110001010 NULL NULL

w [48] 01111110110111101101101000111010 NULL NULL

2.5. Compression Function and Constants

The terms from Tables 2 and 3 were analyzed, and the results were then organized into four

categories (Function1, Function2, Function3, and Function4) as shown in Table 4. SHA-1

employs five 32-bit variables (A, B, C, D, and E) as the initial hash values as shown in Table 5.
These primary hash values come from the decimal parts of the square roots of prime numbers and

are used as constants.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

94

Table 4. Words categories – Based Functions

Function 1 Function 2

w [0] 01010011011001010110001101110101 w [20] 11001001101001011101000111100101

w [1] 01110010011010010111010001111001 w [21] 00000000000000000000000100000010

w [2] 10000000000000000000000000000000 w [22] 10011011001010110001101110101110

w [3] 00000000000000000000000000000000 w [23] 10010011010010111010001101001011

w [4] 00000000000000000000000000000000 w [24] 01001101100101011000111111010011

w [5] 00000000000000000000000000000000 w [25] 11111111111100111110011010111000

w [6] 00000000000000000000000000000000 w [26] 00100110100101110100011110010101

w [7] 00000000000000000000000000000000 w [27] 00000000000000000000010000001000

w [8] 00000000000000000000000000000000 w [28] 01101100101011000110111010111010

w [9] 00000000000000000000000000000000 w [29] 01001101001011101000110110101110

w [10] 00000000000000000000000000000000 w [30] 01111011110000111011001010011010

w [11] 00000000000000000000000000000000 w [31] 00110110011010100100101010000110

w [12] 00000000000000000000000000000000 w [32] 01001100111000111000100000101111

w [13] 00000000000000000000000000000000 w [33] 01011010111011100110001000001110

w [14] 00000000000000000000000000000000 w [34] 10110010101100011011100011101111

w [15] 00000000000000000000000001000000 w [35] 00000010111011000000000111100100

w [16] 10100110110010101100011011101011 w [36] 11001001100110011000110111111110

w [17] 11100100110100101110100011110010 w [37] 11011001101010010010111000010000

w [18] 00000000000000000000000010000001 w [38] 01011111001000100100111000000111

w [19] 01001101100101011000110111010111 w [39] 00100110100101110000010100010111

Function 3 Function 4

w [40] 11111100100100001101110011110011 w [60] 00010001011111010111111101010100

w [41] 11110100011111111001110101110011 w [61] 11010010011101110011100000000101

w [42] 10111100001110110010100110101111 w [62] 10101000001000111011100001101101

w [43] 01100110101001001010100101100011 w [63] 00100111110110000111100001001100

w [44] 01010101000100111001100101011010 w [64] 11000001011101001010111100110101

w [45] 00111101101011011000000100101110 w [65] 10011110100110010110111101110100

w [46] 00011101010011011011101110100010 w [66] 00111011001010011000111101010100

w [47] 00111110000000010110100110001010 w [67] 11000001110010100001011010110101

w [48] 01111110110111101101101000111010 w [68] 01111010111011010010001100100111

w [49] 01100010011000001000101001110111 w [69] 10101101100000010010111010111101

w [50] 11110010001001001110101001101001 w [70] 01001101101110111010001000011101

w [51] 10000110011111101011100101011011 w [71] 00000001011010011000111000111110

w [52] 01000011100100011010000110101001 w [72] 10110010011101100101010011000100

w [53] 01100001011011101000000010000000 w [73] 00101101101001001101100001001100

w [54] 01110001000000110010000000011010 w [74] 01000001100010010001010000110001

w [55] 01011110111100001010000010001111 w [75] 11001110100101011100111110000000

w [56] 10111110001101110101111111001100 w [76] 11011100001011100111100010100101

w [57] 00000011011100010011110011111011 w [77] 11101011110110001000010110011010

w [58] 10001011111110011111010000100110 w [78] 10111010010111111111011111111111

w [59] 11000110100000011001110110110100 w [79] 10010001110111001000001001000001

Table 5. Words categories

h0 01100111010001010010001100000001

h1 11101111110011011010101110001001

h2 10011000101110101101110011111110

h3 00010000001100100101010001110110

h4 11000011110100101110000111110000

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

95

Each 512-bit block is compressed using SHA-1's compression algorithm. There are a total of 80
iterations in the compression process, each of which operates on a single 32-bit word of the

message's schedule. Figure 7 depicts the actions that must be carried out for each round.

Figure 7. Compression algorithm

A logical operation is chosen from Function-1, Function-2, Function-3, or Function-4 depending

on the rounded value as illustrated in Table 6. Then the selected function is applied to the current

32-bit word, together with additional variables and constants, utilizing bitwise AND, OR, XOR,
and NOT operations. Finally, the result of the logical operation and the current word are used to

modify the five hash variables (A, B, C, D, and E).The SHA-1 round operation is illustrated in

Figure 8 [38-40]. To clarify, in this paper we will provide a thorough explanation of the first

element of the word, denoted as word [0], in the subsequent steps (Algorithm-1):

Table 6. Function determination

Function-1 Function-2

F1=([B] AND [C]) OR ([!B] AND [D])

K1= Constant Factor

K1= 011010100000100111100110011001

F2= [B] XOR [C] XOR [D]

K2= Constant Factor

K2=

01101110110110011110101110100001

Function-3 Function-4

F3= ([B] AND [C]) OR ([B] AND [D]) OR ([C]

AND [D])
K3= Constant Factor

K3=01101110110110011110101110100001

F4= [B] XOR [C] XOR [D]

K4= Constant Factor
K4=11001010011000101100000111010110

Figure 8. SHA-1 round operation

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

96

Algorithm-1 - Steps Action

Step 1: Setup of hashing variables.

Set A=h0 = 01100111010001010010001100000001

Set B=h1 = 11101111110011011010101110001001

Set C=h2 = 10011000101110101101110011111110

Set D=h3 = 00010000001100100101010001110110

Set E=h4 = 11000011110100101110000111110000

Step 2: Function selection word[0] belong to Function-1 as shown in Table 4

Step 3:
Get the truth table value for

Function-1.

F1= (B AND C) OR (! B AND D)

B =11101111110011011010101110001001
C =10011000101110101101110011111110

!B =00010000001100100101010001110110

D =00010000001100100101010001110110

F1 =10011000101110101101110011111110

Step 4:

Calculate Temp:

Temp = (ALrot 5) + F + E

+ K + Current word

[Lrot = Insert the first five

bits last]

A=01100111010001010010001100000001

(A Lrot 5) =

11101000101001000110000000101100

F= 10011000101110101101110011111110

E= 11000011110100101110000111110000

K1= 01011010100000100111100110011001

w [0]=01010011011001010110001101110101

Temp= 1011110011000110011111110000101000

Step 5:

Update the hash variables.
E = D

D = C

C = B Lrot 30

B = A

A = Temp

A = 11110011000110011111110000101000
B = 01100111010001010010001100000001

C = 01111011111100110110101011100010

D = 10011000101110101101110011111110

E = 00010000001100100101010001110110

Step 6:
A total of 79 times, iterate

Steps 1 through 5.
For (inti=0; i<=79; i++)

Step 7:

Update the constant

variables.

h0 = h0old + A
h1 = h1old + B

h2 = h2old + C

h3 = h3old + D

h4 = h4old + E

h0=4066173368

=11110010010111001110000110111000 =

(F25CE1B8)HEX

h1=2744761734

=10100011100110011011110110000110 =

(A399BD86) HEX

h2=0564491303
=00100001101001010111010000100111 =

(21A57427) HEX

h3=2717923764

=10100010000000000011100110110100 =

(A20039B4) HEX

h4=2973316571

=10110001001110010011010111011011 =

(B13935DB)HEX

Step 8:
Message Digest = Hash

(Security) = h0h1h2h3h4

Message Digest (Output) =

f25ce1b8a399bd8621a57427a20039b4b13935db

As previously stated in this document, the hash function receives an input and generates a 160-bit

(20-byte) hash value, also referred to as a message digest. The resulting value, represented in

hexadecimal as "f25ce1b8a399bd8621a57427a20039b4b13935db" is equivalent to 160 bits.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

97

3. EVALUATION

The SHA-1 hash method was long thought to be impenetrable, however it has since been found to

be vulnerable to a number of attacks. It is possible to identify two different messages that

generate the same hash result, which is SHA-1's fundamental vulnerability. As shown in Table 7,

this can be used in a variety of attacks [31].

Table 7. SHA-1 attacks

Attack Description

Birthday

Attack

The birthday attack is a form of collision attack where an

attacker tries to identify two different messages that produce

the same hash value. A birthday attack on SHA-1 only

requires 280 calculations, which is well within the capabilities

of today's computers [6, 31].

Man-in-

the-

Middle

A man-in-the-middle attack is one in which a third party
eavesdrops on a conversation between two others and

modifies the information being exchanged. It is difficult to

detect tampered data when using SHA-1 since an attacker can

generate a fake message with the same hash value as the

original [36, 37].

Certificat

e Forgery

Digital certificates use SHA-1 to ensure that a website or

service is legitimate. Collision attacks, however, allow an

adversary to forge a certificate that has an identical hash value

to a legal certificate [33, 40].

Substitutes for SHA-1, Stronger hash algorithms, such as SHA-2 and SHA-3, are recommended

in place of SHA-1 because of its flaws. Table 8 shows comparisons between different SHA

families. The SHA-2 family of hash algorithms generates hash values of varying lengths, from
256 bits to 384 bits to 512 bits. The successor to SHA-1, SHA-2 is often regarded as more secure.

NIST developed SHA-3 in 2015, which is a more recent hash function that generates hash values

in a different way than SHA-2 [41-43].

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

98

Table 8. The SHA family comparison

Algorithm

Bit

output

size

In-state

bit size

Bit-size

block
Rounds Operations

Initially

released
Reference

SHA-0

160
160

(5 × 32)
512 80

XOR, OR,
AND

(MOD 232)

ADD, LROT

1993 [40]

SHA-1 1995 [6]

S

H

A-

2

SHA-224 224
256

(8 × 32)
512 64

XOR, OR,
AND

(MOD 232)

ADD, LROT

2004

[27]

SHA-256 256 2001

SHA-384 384

512

(8 × 64)
1024 80

SHR, XOR,
OR, AND

(MOD 264)

ADD, LROT

2001

SHA-512 512 2001

SHA-
512/224

224

2012
SHA-

512/256
256

S

H

A-

3

SHA3-

224
224

1600

(5 × 5 ×

64)

1152

24
XOR, ROT,

NOT, AND
2015 [3, 41-45]

SHA3-

256
256 1088

SHA3-

384
384 832

SHA3-

512
512 576

4. CONCLUSION AND DISCUSSIONS

This paper aims to elucidate the theory of the SHA-1 algorithm, progressing from basic to

advanced concepts. Our goal is to provide a practical explanation of basic mathematics and the

implementation of the SHA-1 algorithm in real-world systems. Understanding this cryptographic
algorithm enables comprehension of its advantages and disadvantages, facilitating the

modernization and development of more efficient cryptographic algorithms.

CONFLICTS OF INTEREST

Authors declare no conflicts of interest. There is no financial interest and all co-authors have seen

and approved the manuscript.

ACKNOWLEDGEMENTS

Everyone involved in the process, from the writers to the editors and anonymous reviewers,

deserves credit for the work that went into this manuscript.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

99

REFERENCES

[1] A. Bakhtiyor, A. Orif, B. Ilkhom, and K. Zarif, "Differential collisions in SHA-1," in 2020

International Conference on Information Science and Communications Technologies (ICISCT),

2020, pp. 1-5.

[2] E. Biham, R. Chen, and A. Joux, "Cryptanalysis of SHA-0 and Reduced SHA-1," Journal of

Cryptology, vol. 28, pp. 110-160, 2015.

[3] R. Chaves, L. Sousa, N. Sklavos, A. P. Fournaris, G. Kalogeridou, P. Kitsos, et al., "Secure hashing:

Sha-1, sha-2, and sha-3," Circuits and systems for security and privacy, pp. 105-132, 2016.

[4] C. De Canniere and C. Rechberger, "Finding SHA-1 characteristics: General results and

applications," in International Conference on the Theory and Application of Cryptology and

Information Security, 2006, pp. 1-20.

[5] P. Garg and N. Tiwari, "Performance analysis of SHA algorithms (SHA-1 and SHA-192): a

review," International Journal of Computer Technology and Electronics Engineering, vol. 2, pp.
130-132, 2012.

[6] P. Gauravaram, A. McCullagh, and E. Dawson, "Attacks on MD5 and SHA-1: Is this the “Sword of

Damocles” for Electronic Commerce?," 2006.

[7] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, et al., "Comparative analysis of

the hardware implementations of hash functions SHA-1 and SHA-512," in Information Security: 5th

International Conference, ISC 2002 Sao Paulo, Brazil, September 30–October 2, 2002 Proceedings

5, 2002, pp. 75-89.

[8] H. Handschuh, L. R. Knudsen, and M. J. Robshaw, "Analysis of SHA-1 in encryption mode," in

Cryptographers’ Track at the RSA Conference, 2001, pp. 70-83.

[9] J.-P. Kaps and B. Sunar, "Energy comparison of AES and SHA-1 for ubiquitous computing," in

International Conference on Embedded and Ubiquitous Computing, 2006, pp. 372-381.
[10] O. M. Al-hazaimeh, "A novel encryption scheme for digital image-based on one dimensional

logistic map," Computer and Information Science, vol. 7, p. 65, 2014.

[11] O. M. Al-Hazaimeh, N. Alhindawi, and N. A. Otoum, "A novel video encryption algorithm-based

on speaker voice as the public key," in 2014 IEEE International Conference on Control Science and

Systems Engineering, 2014, pp. 180-184.

[12] O. M. Al-Hazaimeh, "A new dynamic speech encryption algorithm based on Lorenz chaotic map

over internet protocol," International Journal of Electrical and Computer Engineering (IJECE), vol.

10, pp. 4824-4834, 2020.

[13] O. M. Al-Hazaimeh, "A new speech encryption algorithm based on dual shuffling Hénon chaotic

map," International Journal of Electrical and Computer Engineering, vol. 11, p. 2203, 2021.

[14] O. M. Al-Hazaimeh, A. Abu-Ein, M. m. Al-Smadi, and M. H. Al-Bsool, "A split and merge video

cryptosystem technique based on dual hash functions and Lorenz system," International Journal of
High Performance Computing and Networking, vol. 17, pp. 39-46, 2021.

[15] O. M. Al-Hazaimeh, A. A. Abu-Ein, M. M. Al-Nawashi, and N. Y. Gharaibeh, "Chaotic based

multimedia encryption: a survey for network and internet security," Bulletin of Electrical

Engineering and Informatics, vol. 11, pp. 2151-2159, 2022.

[16] O. M. Al-Hazaimeh, M. F. Al-Jamal, A. Alomari, M. J. Bawaneh, and N. Tahat, "Image encryption

using anti-synchronisation and Bogdanov transformation map," International Journal of Computing

Science and Mathematics, vol. 15, pp. 43-59, 2022.

[17] O. M. Al-hazaimeh, M. A. Al-Shannaq, M. J. Bawaneh, and K. M. Nahar, "Analytical Approach for

Data Encryption Standard Algorithm," International Journal of Interactive Mobile Technologies

(iJIM), vol. 17, 2023.

[18] O. M. Al-Hazaimeh and A. Ma'moun, "Vehicle To Vehicle and Vehicle To Ground
Communication-Speech Encryption Algorithm," in 2023 3rd International Conference on

Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2023, pp. 1-4.

[19] O. M. A. Al-hazaimeh, "New cryptographic algorithms for enhancing security of voice data,"

Universiti Utara Malaysia, 2010.

[20] N. Tahat, A. A. Tahat, M. Abu-Dalu, R. B. Albadarneh, A. E. Abdallah, and O. M. Al-Hazaimeh,

"A new RSA public key encryption scheme with chaotic maps," International Journal of Electrical

and Computer Engineering (IJECE), vol. 10, pp. 1430-1437, 2020.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

100

[21] O. M. A. Al-Hazaimeh, "Hiding data in images using new random technique," International Journal

of Computer Science Issues (IJCSI), vol. 9, p. 49, 2012.

[22] N. Tahat, M. T. Shatnawi, S. Shatnawi, O. Ababneh, and O. M. Al-Hazaimeh, "A signature

algorithm based on chaotic maps and factoring problems," Journal of Discrete Mathematical

Sciences and Cryptography, vol. 25, pp. 2783-2794, 2022.
[23] N. Tahat, O. M. Al-hazaimeh, and S. Shatnawi, "A New Authentication Scheme Based on Chaotic

Maps and Factoring Problems," in International Conference on Mathematics and Computations,

2022, pp. 53-64.

[24] R. Shaqbou’a, N. Tahat, O. Ababneh, and O. M. Al-Hazaimeh, "Chaotic Map and Quadratic

Residue Problems-Based Hybrid Signature Scheme," International Journal for Computers & Their

Applications, vol. 29, 2022.

[25] M. Obaida and A. Al-Hazaimeh, "A new approach for complex encrypting and decrypting data,"

International Journal of Computer Networks & Communications (IJCNC), vol. 5, p. 88, 2013.

[26] O. M. A. Al-Hazaimeh, "Design of a new block cipher algorithm," Network and Complex Systems,

vol. 3, pp. 1-5, 2013.

[27] F. Mendel, T. Nad, and M. Schläffer, "Finding SHA-2 characteristics: searching through a minefield

of contradictions," in Advances in Cryptology–ASIACRYPT 2011: 17th International Conference on
the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December

4-8, 2011. Proceedings 17, 2011, pp. 288-307.

[28] H. E. Michail, G. S. Athanasiou, G. Theodoridis, A. Gregoriades, and C. E. Goutis, "Design and

implementation of totally-self checking SHA-1 and SHA-256 hash functions’ architectures,"

Microprocessors and Microsystems, vol. 45, pp. 227-240, 2016.

[29] H. Michail, A. P. Kakarountas, O. Koufopavlou, and C. E. Goutis, "A low-power and high-

throughput implementation of the SHA-1 hash function," in 2005 IEEE International Symposium on

Circuits and Systems, 2005, pp. 4086-4089.

[30] S. S. Omran and L. F. Jumma, "Design of SHA-1 & SHA-2 MIPS processor using FPGA," in 2017

Annual Conference on New Trends in Information & Communications Technology Applications

(NTICT), 2017, pp. 268-273.
[31] W. Penard and T. van Werkhoven, "On the secure hash algorithm family," Cryptography in context,

pp. 1-18, 2008.

[32] T. Polk, L. Chen, S. Turner, and P. Hoffman, "Security considerations for the SHA-0 and SHA-1

message-digest algorithms," 2070-1721, 2011.

[33] S. Pongyupinpanich and S. Choomchuay, "An Architecture for a SHA-1 Applied for DSA," in

Proceeding of 3rd Asian International Mobile Computing Conference (AMOC), Thailand, May,

2004, pp. 26-28.

[34] V. Rijmen and E. Oswald, "Update on SHA-1," in Topics in Cryptology–CT-RSA 2005: The

Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18,

2005. Proceedings, 2005, pp. 58-71.

[35] C. C. G. San Jose, B. Tanguilig III, and B. Gerardo, "Enhanced SHA-1 on Parsing Method and

Message Digest Formula," in The Second International Conference on Electrical, Electronics,
Computer Engineering and their Applications (EECEA2015), 2015, p. 1.

[36] N. B. Slimane, K. Bouallegue, and M. Machhout, "Nested chaotic image encryption scheme using

two-diffusion process and the Secure Hash Algorithm SHA-1," in 2016 4th International

Conference on Control Engineering & Information Technology (CEIT), 2016, pp. 1-5.

[37] M. Stevens, "New collision attacks on SHA-1 based on optimal joint local-collision analysis," in

Advances in Cryptology–EUROCRYPT 2013: 32nd Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings 32,

2013, pp. 245-261.

[38] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, "The first collision for full

SHA-1," in Advances in Cryptology–CRYPTO 2017: 37th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I 37, 2017, pp. 570-
596.

[39] M. Alam and S. Ray, "Design of an Intelligent SHA-1 Based Cryptographic System: A CPSO

Based Approach," Int. J. Netw. Secur., vol. 15, pp. 465-470, 2013.

[40] X. Wang, H. Yu, and Y. L. Yin, "Efficient collision search attacks on SHA-0," in Advances in

Cryptology–CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 14-18, 2005. Proceedings 25, 2005, pp. 1-16.

International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.3, May 2024

101

[41] S.-j. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul, et al., "Third-round report of

the SHA-3 cryptographic hash algorithm competition," NIST Interagency Report, vol. 7896, p. 121,

2012.

[42] S. Saraireh, "A secure data communication system using cryptography and steganography,"

International Journal of Computer Networks & Communications (IJCNC), vol. 5, 2013.
[43] H. Elwahsh, M. Hashem, and M. Amin, "SECURE SERVICE DISCOVERY PROTOCOL FOR AD

HOC NETWORKS USING HASH FUNCTION," International Journal of Computer Networks &

Communications (IJCNC), vol. 4, p. 157, 2012.

[44] I. S. Al-Qasrawi and O. M. Al-Hazaimeh, "A Pair-Wise Key Establishment Scheme for Ad Hoc

Networks," International Journal of Computer Networks & Communications (IJCNC), vol. 5, p.

125, 2013.

[45] G. Li, K. T. Mursi, A. O. Aseeri, M. S. Alkatheiri, and Y. Zhuang, "A new security boundary of

component differentially challenged XOR PUFs against machine learning modeling attacks,"

International Journal of Computer Networks & Communications (IJCNC), vol. 14, no. 3, 2022.

AUTHORS

Malek M. Al-Nawashi is a Lecturer in the Department of Computer Science and

Information Technology at AL-BALQA Applied University, Jordan. He has completed

his Ph.D. Degree at University of Salford Manchester in Computer Science in 2019. His

main research interests are image processing and machine learning. He can be contacted
at email: nawashi@bau.edu.jo.

Obaida M. Al-Hazaimeh earned a BSc in Computer Science from Jordan's Applied

Science University in 2004 and an MSc in Computer Science from Malaysia's University

Science Malaysia in 2006. In 2010, he earned a Ph.D. Degree in Network Security

(Cryptography) from Malaysia. He is a Full Professor at AL-BALQA Applied

University's department of computer science and information technology. Cryptology,

image processing, machine learning, and chaos theory are among his primary research

interests. He has published around 52 papers in international refereed publications as an author or co-

author. He can be contacted at email: dr_obaida@bau.edu.jo.

Isra S. Al-Qasrawi received the BSc Degree in Computer Science from AL-BALQA Applied University,

Jordan in 2004, the MSc in Computer Science from YARMOUK University, Jordan in 2009, she earned a

Ph.D. Degree in Business Intelligence from The World Islamic Sciences and Education University. She is

working as lecturer in AL-BALQA Applied University department of Information Technology. She can be

contacted at email: israonnet@bau.edu.jo

Ashraf A. Abu-Ein is a Full Professor in the Department of Electrical Engineering. He

has completed his Ph.D. Degree at National Technical University of Ukraine in 2007.

Now, he is a lecturer at AL-BALQA Applied University, Jordan. He can be contacted at

email:ashraf.abuain@bau.edu.jo

Monther H. Al-Bsool received the BSc Degree in Computer Engineering from Jordan
University of Science and Technology in 1998, the MSc in Computer Information

Systems from Arab Academy for Financial and banking science, Jordan in 2004. . He is

working as lecturer in AL-BALQA Applied University department of Information

Technology. He can be contacted at email: monther.bsool@bau.edu.jo

	Abstract
	Keywords
	Cryptography, SHA-1, Message digest, Data integrity, Digital signature, National security agency

