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ABSTRACT 
 
The Internet of Things (IoT) has expanded to a diverse network of interconnected electronic components, 

including processors, sensors, actuators, and software throughout several sectors such as healthcare, 

agriculture, smart cities, other industries. Despite offering simplified solutions, it introduces significant 

challenges, specifically data security and privacy. Machine Learning (ML), particularly the Federated 

Learning (FL) framework has demonstrated a promising approach to handle these challenges, specifically 

by enabling collaborative model training for Intrusion Detection Systems (IDS). However, FL faces some 

security and privacy issues, including adversarial attacks, poisoning attacks, and privacy leakages during 

model updates. Since the encryption, mechanisms poses issues like computational overheads and 
communication costs. Hence, there is need for exploring of alternative mechanism such as Differential 

Privacy (DP). In this research, we demonstrate an experimental study aiming exploring of FL with DP to 

secure IoT environment.  This study analyzes the effectiveness of DP in horizontal FL setup under 

Independent and Identically Distributed (IID) pattern. Results on MNIST dataset show promising 

outcomes; FL with and without employing DP mechanism achieve an accuracy of 98.92% and 98.2%, 

respectively. Furthermore, the accuracy rate achieved with complex cybersecurity dataset is 93% and 91% 

before and after employing the DP mechanism. These findings outlines the efficiency of DP in FL 

framework for improving security and privacy in IoT environment. 
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1. INTRODUCTION 
 

The Internet of Things (IoT) applications are made up of various electronic components, 
including sensors, actuators, processors, and software, creating a complete heterogeneous 

interconnected network of ‘things’. These devices are equipped with sensors connected to 

constrained computational resources to operate efficiently in diverse environments, from 
healthcare, smart cities, agricultural fields, and smart grids to other industries, to facilitate tasks 

[1]. Therefore, IoT technologies play a very critical role in enabling automation and connectivity 

across a broad range of sectors and use cases. These applications of IoT offer a range of 

simplifications and solutions to daily lives and industrial environments. However, it also comes 
with significant challenges, including dealing with large volumes of data, communication issues 

between the devices, and the safety of the data [2]. The impact of IoT security exploitation is 

significant on socio-economic factors, including users' privacy and infrastructure integrity. The 
outcomes of the breaches lead to financial losses, exploiting personal information, and 

interrupting fundamental services. Consequently, the security and privacy of the IoT have 
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become the most important challenges that researchers are paying attention to. It has been very 
crucial to find possible methods of protecting IoT devices and the collected data from misuse and 

tampering by intruders [3]. 

 

For the same context, Artificial Intelligence (AI) has been proposed as a powerful method for 
securing IoT from intrusions. Developing an Intrusion Detection System (IDS) using 

Machine/Deep Learning (ML/DL) has proved to accurately detect attacks in IoT environments 

without regular updating of conventional signature-based IDS rules [4]-[5]. However, in the 
centralized method, sharing of data to central server before constructing the model is must, which 

causes some challenges, including data transmission and communication overhead, and security 

and privacy of user’s data [6]. 
 

Federated Learning (FL) has arisen as a sub-field of ML concentrating on training models across 

various distributed collaborators at the edge without sharing private data to a central server. In 

FL, training takes place at local IoT devices; each device trains a local model using its own 
existing data and then shares only model gradients/updates [7]. This technique has proven to 

significantly improve model performance, reduce communication costs and computation 

resources, and reduces the risks of personal data leakages [8]. However, FL is not without its 
challenges, particularly in the realms of security and privacy. The deployment of the FL 

framework in various domains has exposed certain security and privacy challenges, poisoning 

exploitations for their normal execution [9]. Researchers have highlighted three important targets 
as potential security gaps. Firstly, the possible exploitation of local data by malicious users leads 

to generating poisoning models, impacting the integrity of the learning process. Secondly, 

eavesdropping on the exchange of updates between clients and servers raises privacy concerns 

and can be compromised through reverse engineering, in [10] researchers have proved the 
possibility of obtaining private training data from gradients. Finally, the server becomes the main 

target, poisoned local models created by exploited clients, causes to generate a tainted global 

model; in support of this concept, a study in [11] used generative adversarial networks to exploit 
model aggregation in server for stealing user data, they implemented the attack by generating 

similar local model updates. As a result the tainted global model, which is distributed back to all 

clients, consequently, causes a critical security issue in the FL framework. 

 
Researchers have provided a couple of techniques to preserve privacy in FL framework, using 

cryptographic method for encrypting updates/gradients [12]. However, these techniques come 

with some extra challenges in constrained IoT devices, like increased computational overhead 
and communication costs, and make FL setup exploitable to attacks [12]. To overcome these 

limitations, DP has got researchers attention as robust alternative approach to preserve security 

and privacy in FL settings [13]. In contrast to encryption methods, which may introduce 
significant latency and computational overhead on IoT devices due to complex encryption and 

decryption processes, FL with DP offers a more lightweight and efficient solutions.The DP 

mechanism usually adds random noise to the intermediate output, ensuring that the change of an 

input element will not causes too much difference in the output distribution [13]. With adding 
noise at weights of each model of IoT device locally, DP reduces the need for central data 

aggregation and encryption, on the other hand, lower communication costs and enhance data 

privacy. 
 

In this research study, we carried out an experimental study to secure IoT systems with help of 

FL settings, incorporating DP to enhance further the security and privacy of the IoT environment. 
In our experiment, we considered two datasets from cybersecurity and regular ML testing 

domains, and tested the effectiveness of DP in multiple FL settings. Renyi Differential Privacy 

(RDP) was utilized to specify more rigid privacy measures for this experimental study. Through 
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this study, our intention was to showcase the feasibility and effectiveness of DP mechanisms in 
FL settings, and overall enhancing security and privacy of IoT systems. 

 

The rest of the paper is organized as follows: Section 2 of the paper presents an extensive 

overview of existing approaches in IoT security, countermeasures with ML approaches, and 
security and privacy issues in the FL approach—section 3 delves into preliminaries of the 

research and overview of the proposed method. In Section 4, we elaborate on the experimental 

setup, ML algorithms, and utilized datasets. Section 5 offers an in-depth analysis of performance 
results, complemented by meaningful discussions. The paper concludes with insights into the 

efficacy of FL with DP mechanisms in securing IoT applications and provides recommendations 

for future research.  
 

2. RELATED WORK 
 

In this section, we briefly overview some of the most significant research works on IoT security 

and privacy, current machine learning approaches, and their limitations. 
 

Research studies in [14] and [15] highlighted that IoT systems' constrained characteristics, such 

as limited processing power and memory, restrict robust security measures. An insecure 
heterogeneous network utilized in an IoT environment causes several security and privacy 

challenges, making it exploitable for cyber-attacks. Different ML solutions have been proposed 

to tackle these security challenges in the field. [16] and [17] reviewed these solutions, which rely 

on conventional ML approaches. Although these approaches have shown promise, they face 
challenges such as high computational overhead and the risk of data privacy breaches. 

 

McMahan et al. [18] suggested a federated averaging algorithm to schedule clients in a 
synchronized way, average weights for updating gradients, and generate the global model. In this 

approach, the client’s data is exploited by the server and susceptible to inference intrusions. 

Nguyen et al. [19] introduced DIoT a self-learning system to detect Mirai attacks in smart home 
networks; the system was implemented using Python’s Flask and Tensorflow for a federated 

learning global model. The system architecture consists of two parts: the security gateway acts as 

an access point between IoT devices and the internet, and IoT services store device-specific 

anomaly models. This approach is able to reduce false alarms, but it is designed only for Mirai 
attack detection and lacks a dedicated FL deep learning framework. 

 

Rahman et al. [20] proposed an IDS based on FL for IoT networks, which maintains the privacy 
of data and detects attacks. They tested their method with various use cases to simulate real-

world scenarios. Based on the experimental study, they concluded that federated learning could 

perform the same as a centralized approach in accuracy. Mowla et al. [21] suggested a FL based 

approach to detect jamming attacks formed by Unmanned Aerial Vehicles (UAVs) in Flying Ad 
Hoc Networks; they implemented the Dempster–Shafer theory to prioritize client groups and find 

better groups for calculating global gradients. Wei Ou et al. [22] introduced a privacy-preserving 

vertical FL framework for Bayesian ML with the help of HE; the experimental study shows a 
performance accuracy of 90% in a single union server training model. Fang and Qian  [23], with 

the help of Homomorphic Encryption (HE), suggested a multiparty privacy-preserving ML 

approach in FL settings, which utilizes HE-encrypted gradients to protect the security of clients' 
private information. However, this framework needs more communication overhead and low 

scalability. Similarly in other research study Zhang et al. [24] used the Homomorphic Encryption 

(HE) technique to encrypt local gradients and introduced a FL approach to preserve privacy. To 

minimize computation and communication costs, they implemented distributed selective SGD. 
To make a diverse attack scenario, they used a generative adversarial network (GAN). 

Bagdasaryan et al. [25] carried out research on the impact of gradient exploitation by malicious 
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devices and noticed the negative effect on main model performance. Moreover, the authors 
outlined the potential for backdoor updates; adversaries are capable of tampering with client 

model updates by exploiting some of the participants. Zhu et al. [10] carried out an interesting 

study on deep learning called deep leakage from gradients; they used an optimization algorithm 

to rebuild training data samples and their labels. They could successfully highlight the 
reconstructing images and texts used in deep learning model training.  

 

Based on the aforementioned studies in FL settings of [10]–[12], [14]-[25], we notice that most of 
them are susceptible to a variety of attacks or require more computation resources and 

communication costs. Hence, the FL framework requires further research to develop a secure 

mechanism for implementation, particularly in the IoT environment. 
 

3. PRELIMINARIES AND PROPOSED METHOD 
 

In this section, we mainly introduce the algorithms, technologies, and structure for this 

experimental study. 
 

3.1. Federated Learning (FL) 
 
FL is a sub-domain of Machine Learning (ML), which has achieved considerable attention from 

researchers, having the capability of handling privacy-related issues for network settings where 

sensitive data is dispersed among devices/edge nodes, reducing communication costs and 
improving overall model performances[7]. FL is a creative ML approach with decentralized 

model training capability across several edge devices. In contrast to conventional centralized ML 

model training techniques, this method gets rid of raw data sharing to a central location that is 
susceptible to significant security and privacy risks by transmitting data from numerous sources 

to a central server for model training [26]. The steps involved in FL are mainly divided into three 

stages: system initialization and device selection, local training and update, and model 

aggregation [27]; each step is explained as follows: 
 

System Initialization and Device Selection: At this stage, the server initializes learning 

parameters to train the model for performing some selected tasks. The server also chooses clients 
who can take part in the FL process and updates the local process from each client. 

 

Local Training and update: When the process is initialized with configuration and learning 

parameters, a new model is initialized by the server, let it be 𝑤𝐺
0, and model data transmitted to 

client during training process, each client does local training using their existing dataset 𝐷𝑐, and 

updates training data 𝑤𝑐to minimize loss function  𝐹 (𝑤𝑐), optimization process is calculated as 

follow: 

 

𝑊𝑐
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝐹(𝑤𝑐), 𝑝𝜀𝐶                                                  (1) 

 

Where 𝑊𝑐
∗the optimal training data is for client c, 𝐹 (𝑤𝑐)  is the loss function associated with the 

training data 𝑤𝑐, C is the set of all clients taking part in FL process. Loss function varies in 

different FL processes, and for each process client c updates their computed weights 𝑤𝑐 in server 

for aggregation.   

 
Model aggregation: After local training and model updates by clients, weights, gradients are 

sent to the server; models are aggregated at the server and create a new global model, in the 

following way: 
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𝑤𝐺 =  
∑ |𝐷𝑐|𝑤𝑐

|𝐶|
𝑐=1

∑ |𝐷𝑐|𝑐∈𝐶
         (2) 

 

Where, 𝑤𝐺  is the updated global model,|𝐷𝑐 | is size of dataset 𝐷𝑐 of client c, and 𝑤𝑐 is updated 

model of client c. 
 

By the end of aggregation process, server dispense updated global weights 𝑤𝑔  to all the clients. 

Local models are optimized at their stages. This process is repeated until the optimal global 
model is obtained for the selected task to achieve the desired accuracy. 

 

3.2. Stochastic Gradient Descent (SGD) 
 

The high performance of deep learning mostly relies on the use of stochastic gradient descent for 

optimization. Several improvements have been made to adapt the model structure to work better 
with SGD-based optimization techniques [28]. Hence, it is suggested that SGD-based algorithms 

be used for federated optimization; here, a single batch gradient calculation occurs per 

communication round. SGD operates by iteratively updating the weights and biases of local 
models on IoT devices to reduce the loss with respect to a training dataset. Algorithms 1 describe 

the entire SGD process. 

 

Algorithm 1: Stochastic Gradient Descent (SGD) 
 

1: Input: learning rate𝜂𝑡 >  0 

2: Initialize:𝑤0 ∈ 𝑅𝑑 , 𝑡 =  0 

3: while stopping_criteria_not_met do: 

4:  Sample 𝜉 𝑖 ∼  𝑃 𝑤𝑖𝑡ℎ 𝑖 ∈  {1, 2, . . . , 𝑛} 

5: 𝜁𝑖 = 𝛻𝑓𝑖(𝑤𝑡; 𝜉𝑖) 

6: w+  =  w − ηt ·  ζi 
7: 𝑡 = 𝑡 + 1 
8: end while 

 

Similarly, instead of computing the gradient of the whole dataset at once, it computes the gradient 
using a randomly selected subset of local data samples (mini-batch) at each epoch as detailed in 

Algorithm 2 [28]. This stochastic data sampling aids SGD in combining quickly and managing 

large datasets efficiently. Despite the computational effectiveness of this technique, several 

training rounds are needed to give satisfactory models. 
 

Algorithm 2: Stochastic Gradient Descent (SGD) 

 

1: Input: learning rate𝜂𝑡 >  0 

2: Initialize:𝑤0 ∈ 𝑅𝑑 , 𝑡 =  0 

3: while stopping_criteria_not_met do: 

4:  𝑧𝑡  ←  𝛻𝑓ℒ𝑡 (𝑤𝑡)  =  
1

|ℒ𝑡|
∑ 𝛻𝑓𝑖 (𝑤𝑡; 𝜉𝑖)ℒ𝑡

 

5: 𝑤𝑡+1  =  𝑤𝑡  −  𝜂𝑡  ·  𝑧𝑡  

6: 𝑡 = 𝑡 + 1 

7: end while 
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3.3. Differential Privacy (DP) 
 

The DP measures the impact of individual data on the output of a learning algorithm. This 

mechanism is considered as ϵ-differentially private if, when there is one difference in comparison 
of two datasets with a single entry, the chance of having specific output remains the same. 

Equation 3 mathematically defines DP [29]. 
 

Pr[𝑀(𝐷) ∈ 𝑆]  ≤  𝑒𝜀 × Pr [𝑀(𝐷′) ∈ 𝑆] + δ                                                   (3) 
 

Where, M is learning algorithm, which introduces randomness in its outputs to obscure the 

presence or absence of any single individual's data in the dataset. 

The output probability distributionPr[𝑀(𝐷) ∈ 𝑆] indicates output of algorithm M on D lies 

in set S. D and D’ are neighboring datasets, S is output space, and ε and δ are privacy 

parameters.  

 

For query function𝑓, the sensitivity 𝛻𝑓 is calculated as follow:  

 
 𝛻𝑓 =  max ∥ 𝑓(𝐷) − 𝑓(𝐷′) ∥  (4) 

 

For the small positive values of ε and δ, Equation (3) suggests that the results of M will be almost 

untouched in distribution if one datapoint is changed in the dataset. The merit of the DP 
mechanism is that it is purely quantitative. Hence, it produces numerical proof of the portion of 

privacy that can be foreseen in the stochastic sense, where inferior ε and δ indicate that the 

mechanism preserves better privacy. 
 

3.4. Renyi Differential Privacy (RDP) 
 
RDP is more advanced with detailed analysis of privacy protection with the help of introducing a 

set of privacy parameters indexed by α. It is specifically helpful in the assessment of privacy 

mechanisms, such as the Gaussian mechanism often used in FL. The advantage of RDP over DP 
is its capability for tighter measures of privacy loss [30]. We can calculate RDP using Equation 

(5): 
 

RDP(α, q, σ) =  
1

α−1
ln (∑ (

α
𝑘

)α
𝑘=0 (1 − 𝑞)α−k𝑞𝑘𝑒

(
𝑘2−𝑘

2 σ2 )
)     (5) 

 

Where, α is Renyi parameter, indexing family of privacy parameters, q is sampling ratio, and σ is 

standard deviation of Gaussian noise added to mechanism. 

 
RDP has been proven to be a better way of expressing proof of privacy-preserving algorithms and 

for the composition of heterogeneous mechanisms, offering a more convenient and quantitatively 

accurate method of standalone differentially private mechanisms. Most importantly, RDP allows 
for merging the intuitive and appealing concept of a privacy budget with the help of advanced 

composition theorems. 

 

3.5. Overview of the System 
 

In this paper, we concentrated on improving the security and privacy of the IoT environment, 
using FL settings and introducing Gaussian noise with the help of RDP techniques to further 

enhance privacy concerns in FL settings. In this approach, we added Gaussian noise to the 
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weights of each trained model at IoT edge devices to ensure the privacy of sensitive 
information. Figure 1 demonstrates an overview of the proposed approach in detail. 

 

The level of noise added to the weights is dynamically adjusted with a parameter called Sigma 

using RDP. This helps us to balance between privacy and model weight usability. Moreover, we 
also converted sigma values from RDP to DP to ensure compatibility with present privacy 

frameworks. Based on our evaluation, this approach showcases the effectiveness of FL in 

securing IoT data privacy and minimizing data utility. It can be considered a promising solution 
for privacy-preserving IoT systems. 

 

As shown in Figure 1, each client maintains its local dataset, which may possess sensitive 
information such as sensor readings, user behavior data, or environmental variables. During 

training, these clients collaboratively train a global model by exchanging model updates and 

ensuring differential privacy. The processes take place as follows: First, a single global ML 

model is initialized by the server and transferred to all the clients in the network. Second, local 
models are trained and tested on each client using the existing available data. Third, a certain 

amount of Gaussian noise is added to local models to avoid privacy leakages, and the weights of 

local models are calculated. Further, weights are sent to the server for aggregation and global 
model creation. For this study, we considered a CNN multi-classifier model, which is explained 

in detail in section 4.1. 

 

 
 

Figure 1: Architecture of FL settings for IoT environment. 
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4. EXPERIMENTAL SETUP 
 
In this section, we explain the experiment conducted using the proposed approach to analyze its 

feasibility. First, it describes experiment settings, dataset descriptions, and the environmental 

setup. We implemented this experiment using the Google Colab platform, including PyTorch, 

Scikit-learn, Numpy libraries, and CUDA for GPU acceleration. A Toshiba machine with 8GB 
RAM, a 750GB HDD, and an AMD FX-8800P 2.1GHz processor were the hardware parts for the 

experimental study. 

 

4.1. Convolution Neural Networks (CNN) 
 

For this experiment, we utilized a CNN algorithm for local and global models. CNN is one of the 
discriminative deep learning algorithms broadly used for handling massive datasets, having a 

hierarchical pattern extraction. To use input data structure, CNN networks use local connections 

and weights in place of fully connected networks [31]. Hyperparameter optimization of CNN is 
an essential part of adjustment in FL settings. This technique affects the structure and 

effectiveness of CNN and further improves the classification accuracy of the model. Categorized 

in two parts, with each category affecting the model’s design and training efficiency. The first 

category includes obtaining a number of frozen layers and dropout ratio to avoid overfitting. 
Optimizing the learningrate is required for convergence during training. The second category is 

for improving model performance and reducing training time. The number of epochs, early-

stopping, and batch size are critical in optimizing model learning capacity and computational 
efficiency [32]. 

 

4.2. Convolution Neural Networks Design 
 

The basic architecture of the model for this study consists of two convolutional layers backed by 

fully connected layers. Convolutional layers employ filters to input data and to extract relevant 
features through some convolution operations. The output of each convolution layer is passed 

through an activation function; for this model, we use the hyperbolic tangent (tanh) function to 

introduce non-linearity. Pooling layers are placed between convolution layers for down-sampling 
feature maps to reduce computational complexity while obtaining important features. Max-

pooling is used to choose a maximum value from a window of the input and effectively limit the 

spatial dimensions of data.  

  
At the end of the architecture, after passing through convolution layers and pooling operations, 

feature maps are flattened and passed to fully connected layers. These layers perform linear 

transformations on input data, permitting networks to learn complex relationships between 
features. A pictorial representation of the model is shown in Fig 2. 

 

 
 

Figure 2: CNN Architecture  
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Hyperbolic tangent (tanh) function: is a widely used activation in neural networks to introduce 
non-linearity and enable the model to learn complex patterns from the input data.  

 

This squashes input values between -1 and 1 using the Equation 6 [31]. 

 
 

tanh(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥(6) 

 

Where, x is input for the function. 
  

4.3. Dataset Description 
 
In this section, we describe the two datasets used to evaluate the performance of the proposed 

approach in FL Settings: Car Hacking and MNIST. 

 

4.3.1. CAR-Hacking Dataset 

 

This dataset is generated in a simulated environment for cyber-attacks on control area network 
protocol for IoV; it consists of two main features, CAN-ID and 8-bytes of the data field 

(DATA[0]-DATA[7]). The dataset contains four types of cyber-attacks: DoS, which is used for 

overloading the network with a flood of traffic; Fuzzy for malfunctioning of the system; gear 

spoofing, which exploits gear display messages; and RPM spoofing, which alters engine readings 
[34]. We have made some series of transformations and optimizations on the dataset to make it 

compatible with CNN models and enhance performance [33]. First, scaled numerical features to a 

standard range of (0,1) with the help of a quantile transformer. This normalization phase assures 
the feature's consistency and helps smoother convergence during model training. Further, features 

are modified and scaled in the range of (0,255) to map them for pixel intensities, which is suitable 

for image representation.  

 
After feature scaling, the dataset was converted into image format, with each row representing a 

single image. We generated images for each class with the dataset to ensure a balanced 

representation of classes in the training set. Additionally, the dataset is separated into two parts: 
train-set and test-set, and class balance is maintained across both sets to ensure evaluation of 

model performance. For CNN architecture, we standardized the input dimensions of the 

generated images and resized them to a uniform size of 224x224 pixels, which is critical for CNN 
model compatibility and facilitating the learning of meaningful patterns to improve classification 

accuracy. These preprocessing steps are demonstrated in Figure 3. Following these 

transformations, the preprocessed data was distributed among clients in an FL setup to train local 

models. For the distribution of data among clients, an IID pattern is followed for this dataset; 
each client poses a subset of random and homogeneous data. 
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Figure 3: Data Preprocessing for Car-hacking dataset 

 

4.3.2. MNIST Dataset 
 

This is a broadly utilized dataset in ML that contains a collection of grayscale images of 

handwritten digits (0-9) in 28x28 pixels. This dataset is labeled to make it suitable for various 
classification tasks. Here, each image belongs to a handwritten digit [35].  

 

For this experimental study, we used this dataset to evaluate proposed FL settings with non-

cybersecurity environments. This logic is implemented to create a real-time IoT-based scenario 
where each IoT device has specific data. The number of shards was determined based on the 

number of clients in FL settings. Subsequently, all images within each shard were stored with 

their corresponding labels to ensure different representations of classes. Clients possessed various 
classes, demonstrating real-world scenarios. 

 

4.4. Model Training 
 

The training process for local and global models is explained in Algorithm 3 and parameters are 

described in Table 1. Both models are trained iteratively to leverage the collaborative learning of 
selected clients in FL settings while preserving their privacy. During the training process, each 

client’s data is split into batches, followed by gradient descent optimization to update the model’s 

parameters. To improve privacy, Gaussian noise is added to weights of gradients of model 

parameters; we have also used the gradient clipping technique to control the magnitude of noise. 
After completing the training process for a chosen number of epochs, model weights are updated 

based on gradients. 

 
The global model aggregates the weights from all the clients to learn the knowledge. This 

aggregation process is assured with a privacy-preserving technique employing DP at the local 

training phase. 
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Table 1: Parameters description of Algorithm1 

 
Ser 

# 

Parameter Meaning 

1 t Iteration number 

2 i Initial global model parameters 

3 lr Learning rate 

4 𝑤0 Initial global model parameters 

5 𝑤𝑖
𝑡  Local model parameters for client 𝑖 at epoch 𝑡 

6 bs Batch-size 

7 ∇𝐽(𝑤𝑖
𝑡) Gradients of  loss function with respect to the local 

model parameters 

8 𝜃 Gaussian noise 

9 𝑤𝑡  Global model parameters at epoch 𝑡 

 

5. RESULTS AND DISCUSSION 
 
In this section, we analyze the performance of our proposed approach utilizing two benchmark 

datasets of cybersecurity and image classifications as explained in section 4.3, in two approaches, 

both datasets are analysed with and without employing DP at local training phases. Furthermore, 
we compared the outcomes of our approach with the state-of-the-art methods in Table 2.   

 

The performance evaluation of proposed FL approach utilizing the CNN algorithm and employed 

DP to preserve privacy of clients’ data has shown a promising results. In this setup, the data is 
first converted to colour images as explained in section 4.3.1and than divided among clients. 

 

Algorithm 3:  FL Training Process 
 

1: Initialize global model parameters: 𝑤0 

2: Set hyperparameters: clients, epochs, lr, bs 
3: for t in range (ecpochs) do  

4:        local _weights : ← [ ] 

5:        for i in range (clients) do 

6:               for mini_batch j in client_dataset[i] do  

7:                     Calculate gradients: ∇𝐽(𝑤𝑖
𝑡) =  

1

|𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ|
∑ ∇𝐽(𝑤𝑖

𝑡 , 𝑥)𝑥∈𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ  

8:                      Add Gaussian noise to gradients: 𝑛𝑜𝑖𝑠𝑦 − 𝑔𝑟𝑎𝑑 = ∇𝐽(𝑤𝑖
𝑡) +  𝜃 

9:                      Apply gradient clipping: clipped − grad = clip(noise_grad) 

10:                      Update local model weights: 𝑤𝑖
𝑡 =  𝑤𝑖

𝑡 − 𝑙𝑟 × clipped − grad 

11:                 End for 

12:                 Add local model weights to local-weights list: local_weights.append(𝑤𝑖
𝑡) 

13:           End for 

14: Aggregate local models weights to get global model weights: 𝑤𝑖
𝑡 =

1

𝑐𝑙𝑖𝑒𝑛𝑡𝑠
∑ 𝑤𝑖

𝑡𝑐𝑙𝑖𝑒𝑛𝑡𝑠
𝑖=1  

15:           Update global model: 𝑤𝑡+1 =  𝑤𝑡  

16:           Evaluate global model performance:  accuracy, loss 

17: End for 
 

In the local training carried out for clients, the models have shown a consistent decrease in loss 

over epochs with both datasets across all clients in the FL setup. This suggests adequate model 
learning progress and convergence over time, as demonstrated in Figure 4 and Figure 5. 
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Figure 4. Loss decrease during local training of 

Car-Hacking over epochs 

Figure 5. Loss decrease during local training of 

MNIST over epochs 

 

In the global model training aggregated from clients’ weights at server, from Table 2, the 

performance of the proposed approach on the Car-Hacking dataset without employing DP 

mechanisms shows an accuracy of 93%, demonstrating its ability to classify images at a high 
level. Similarly, considering precision, recall, and f1-score rate, achieving 0.8608, 0.9276, and 

0.8929, respectively, and the average loss decreased from 2.3946 up to 0.0041 same has been 

shown in Figure 7 indicates the effectiveness of FL Setup to preserve privacy and security of IoT 

environment [36]. 
 

On the other hand, when we employ the DP mechanisms with parameters values of differential 

privacy budget ε=1.0, probability of privacy breach δ= 1e-5, learningrate = 0.01, and dynamically 
calculated collaborative sigma value using RDP σ = 0.9886978, to further enhance privacy 

concerns in suggested approach. From evaluation values in Table 2, the model’s performance has 

demonstrated a slight decrease in accuracy rate. Yet, despite this, the model obtained a relatively 

high accuracy of 91%, displaying its stability to noise and its capability to perform well in 
existing privacy-preserving measure mechanisms. Considering other used evaluation metrics rate 

for the experiment, precision, recall, and f1-score achieved promising values of 0.9361, 0.8979, 

and 0.914, respectively. Similarly, the loss has also decreased from 2.9700 up to 0.1109, overall 
indicating their effectiveness in detecting true positive samples under noise conditions introduced 

by the DP mechanisms. 

 
Furthermore, we evaluated this experimental study using the MNIST dataset to illustrate its 

performance with the normal dataset. We considered five clients. Following the training process 

global model with multiple epochs without employing the DP mechanisms, analyzing is done on 

a centralized testset. Considering the accuracy rate, model performances consistently improve 
accuracy over epochs, obtaining an accuracy of 98.92% on testset after 15 epochs. At the same 

time, the model is also evaluated using precision, recall, and f1-score metrics and achieved 

98.51%, 98.73%, and 98.61%, respectively, after 15 epochs; the average loss also decreased 
progressively from 0.7706 up to 0.0570 same is plotted on Figure 9, demonstrating robustness 

and balanced classification capabilities. 

 
Similarly, when we employed the DP mechanisms with parameters values of DP budget ε=1.0, 

probability of privacy breach δ= 1e-2, learningrate = 0.02, and collaborative sigma value using 

RDP was calculated to be σ = 1.2074424, to enhance the security and privacy issues in suggested 

approach. Based on the evaluation value from Table 2, the model’s performance decreased in 
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accuracy rate. The model obtained a high accuracy of 98.28%, demonstrating its capability to 
handle noise addition and perform well in the presence of privacy-preserving measures. 

Considering other evaluation metrics, the model achieved promising results of precision 98.38%, 

recall 98.4%, and F1-score 98.39% in the final epoch; similarly, loss decreased from 0.6638 up to 

0.0590, overall indicating balanced performance across all classes. 
 

In the analysis conducted on the CAR-Hacking dataset, the proposed approach obtained 

promising results in terms of evaluation metrics, as shown in Figure 6 and Figure 7, illustrating 
its ability to classify attacks and, at the same time, preserve privacy and security of IoT 

environments. Applying the DP mechanisms has made a slight change in the evaluation metrics 

rate but improved preserving privacy issues in the FL setup, demonstrating the model's strength 
to noise and its effectiveness in performing well under privacy-preserving mechanisms. 

Similarly, the analysis carried out on the MNIST dataset, as shown in Figure 8 and Figure 9, 

further proved the robustness of the proposed approach, with consistent enhancement in 

evaluation metrics over epochs and balanced classification capabilities. At the same time, 
applying the DP mechanism with this dataset showed a small quantity of change in evaluation 

metrics, in contrast to improving privacy issues in the FL setup; this indicates good performances 

of the model and outlines the model's ability to maintain privacy-preserving measures efficiently.  
Overall, this experimental study outlines the effectiveness and resilience of the suggested FL 

approach in Car-Hacking and MNIST datasets, illustrating its potential for real-world scenarios in 

IoT systems. 
 

Table 2. Comparison of Proposed approach with latest state-of-the-art approaches  

 

Algorithms Datasets Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

 F1 

(%) 

Reference 

FL  CAR-H  93 86.08  92.76 89.29  

 MNIST 98.92 98.51 98.73 98.619  

FL-DP  CAR-H 91 93.61 89.79 91.4  

 MNIST 98.28 98.38 98.4 98.38  

FL Custom  95.6 --- --- --- [19] 

FL KDD, 

NSL-

KDD, 

UNSW 

95.5,9379,9

5.6 

85.16 

(PPV) 

84.98(T

PR) 

--- [37] 

FL  NSL-

KDD 

98.73 85.35 73.49 78.98 [38] 

FL Edge-

IIoTset 

91.87 --- --- --- [39] 
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Figure6 : Evaluation Metrics on Car-Hacking  Figure7: Loss changes during training of 

Car-Hacking  

 

 

Figure8 : Evaluation Metrics on MNIST  Figure 9: Loss changes during training of 

MNIST 
 

6. CONCLUSION 
 

In this experimental study, we analyzed the efficiency of FL in securing the IoT environment, 

particularly employing the DP mechanisms to improve security and privacy in the FL framework. 
For the broader evaluation of the suggested approach, datasets from both regular and 

cybersecurity, domains are considered to demonstrate real-world scenarios. Results shown by 

evaluation metrics (accuracy, precision, recall, f1-score) for both scenarios in terms of 
classifications and progressively decrease in loss during training indicate promising outcomes. 

Incorporating Differential Privacy mechanisms demonstrates enhancement in privacy 

preservation of the FL setup without notable compromises in model performances. Particularly, 

the FL setup achieved an accuracy of 98.92% with a well-defined MNIST dataset, and after 
integrating with the DP mechanisms, the accuracy slightly decreased to 98.2%. Similarly, after 

some transformation of the CAR-Hacking dataset into image format, the proposed approach 

achieved an accuracy of 93% in classification in the normal setup; while implementing the DP 
mechanisms, the accuracy changed slightly to 91%. These findings outline the robustness of FL 

incorporated with the DP mechanisms in reducing security and privacy issues within IoT 

environments and provide insights for real-world deployment in various IoT applications. 
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Regarding future research, firstly, focus on the optimization of DP parameters with more 
robustness and scalable FL techniques, such as vertical FL algorithms that divide features across 

various devices. Furthermore, analysing the effectiveness of the proposed approach in real-world 

IoT applications gives more valuable insights into the effectiveness and scalability of various use 

cases. 
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