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ABSTRACT 
 
The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by 

combining Machine Learning (ML) and Deep Learning (DL) techniques, addressing the growing challenge 

of cybersecurity threats. A thorough process for data preparation, comprising activities like cleaning, 

normalization, and segmentation into training and testing sets, lays the framework for model training and 

evaluation. The study uses the CSE-CIC-IDS 2018 and LITNET-2020 datasets to compare ML methods 

(Decision Trees, Random Forest, XGBoost) and DL models (CNNs, RNNs, DNNs, MLP) against key 

performance metrics (Accuracy, Precision, Recall, and F1-Score). The Decision Tree model performed 

better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), 

demonstrating the model's ability to detect network breaches effectively. The findings highlight EPSO's 

importance in improving ML classifiers for cybersecurity, proposing a strong framework for NIDS with 

high precision and dependability. This extensive analysis not only contributes to the cybersecurity arena by 

providing a road to robust intrusion detection solutions, but it also proposes future approaches for 

improving ML models to combat the changing landscape of network threats. 
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1. INTRODUCTION 
 

Network security is one of the significant challenges that network administrators and owners face, 

particularly given the growing number and complexity of attacks. Due to the rapid increase in those 

issues, various protection measures and methods must be developed. Network Intrusion Detection 

Systems (NIDS) scan and analyze network traffic to identify assaults and alert network 

administrators[1][2][3]. 

 

In recent years, the growth of digital communication networks has resulted in an unprecedented 

volume of data, requiring improved machine learning (ML) algorithms for successful analysis and 

categorization [4]. The CSE-CIC-IDS 2018 and LITNET-2020 datasets, a representative example of 

such extensive datasets, present challenges in multi-class classification tasks[3][4][5][6][7]. The 

objective of this paper is to conduct a thorough investigation into the performance of several ML 
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classifiers, such as Random Forest (RF), Decision Tree (DT), Extreme Gradient Boosting 

(XGBoost)[3][6][8],Convolutional Neural Networks (CNNs)[9], Recurrent Neural Networks (RNNs), 

Deep Neural Networks (DNNs)[11],and Multilayer Perceptron (MLP)[6][12][13]on the CSE-CIC-

IDS 2018 and LITNET-2020 datasets. As a result, the best model is selected for fine-tuning with 

Enhanced Particle Swarm Optimization (EPSO)[14][15]. 

 

The selection of classifiers for this study reflects a diverse range of approaches, from traditional 

clustering methods to state-of-the-art ensemble models and neural network architectures. In 

contrast, RF, DT, and XGBoost, renowned for their robustness and accuracy, are investigated as 

representative ensemble methods. Additionally, the study explores the effectiveness of Deep 

learning (DL) models, including CNNs, RNNs, DNNs, and MLP, which are known for their 

capability to automatically extract complex features from high-dimensional data. 

 

The motivation behind this research lies in the necessity to discern the strengths and limitations 

of diverse ML approaches when confronted with the challenges posed by the CSE-CIC-IDS 2018 

and LITNET-2020 datasets. Understanding the relative performance of these classifiers is pivotal 

for guiding the selection of models in real-world applications, particularly in domains where 

multi-class classification plays a crucial role, such as network security and anomaly 

detection.Through a rigorous evaluation based on accuracy, precision, recall, and F1-Score 

metrics[6][11][16]., this research aims to provide insights into the suitability of each classifier for 

the CSE-CIC-IDS 2018 and LITNET-2020 datasets, offering valuable guidance for practitioners 

and researchers alike in choosing the most effective approach for similar complex classification 

tasks. 

 

The goal of this study was to find the most efficient classifier using preprocessing methodologies, 

which convert into widely used ML and DL approaches for intrusion detection systems(IDS). We 

investigated popular and high-performing classification techniques such as XGBoost, DT, 

RF,CNNs, RNNs, DNNs, and MLP. The performance evaluation was multidimensional, focusing 

on four essential metrics: accuracy, precision, recall, and F1-Score. Accuracy is a critical metric 

of a model's effectiveness in classification tasks, expressing the proportion of correct predictions 

to total predictions made. A model with great accuracy can foresee outcomes that are consistent 

with real-world observations.The primary contributions of this work can be described in full 

detail as the following: 

 

• Using the CSE-CIC-IDS-2018 and LITNET-2020 datasets, which are among the most 

recent and include a wide range of incursion types, establishing them as standards. 

• On these datasets, researchers evaluated well-known ML classifiers with DL models, that 

is, a combination had never been substantially examined. 

• Implementation of a multi-class classification approach to assess model efficiency 

thoroughly. 

• Verification of model adequacy across both datasets to ensure optimal fit and applicability 

to a variety of data scenarios. 

• Model performance is improved by using EPSO for more accuracy and finer parameter 

selection. 

• Researchers evaluated the performance of ML classifiers that they had previously 

classified as effective[3]. 

• The analysis of full datasets took into account Big Data, setting this effort apart from 

others that frequently use a random subset of data for research. 

 

The structure of the paper is as follows Section 2 reviews relevant previous studies, Section 3 

describes the proposed research methodology, Section 4 discusses the datasets chosen for 

analysis, Section 5 details the experimental setup, Section 6 presents the results and discussions 
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of the experiments, and Section 7 concludes the paper with a summary of the findings and 

recommendations for future work 

 

2. RELATED WORKS 
 

Research into multi-class classification using ML classifiers has yielded extensive discourse, 

delving into the comparative strengths and weaknesses of various algorithms applied to a range of 

datasets. Ensemble strategies, notably RF, DT, and XGBoost, have risen as formidable contenders 

in the classification arena, attributed to their proficiency in curbing overfitting and enhancing 

predictive precision[17]. Empirical studies have corroborated the superiority of these methods in 

diverse sectors, warranting their inclusion for an in-depth evaluation against the CSE-CIC-IDS 

2018 and LITNET-2020 datasets within this study[18][19]. 

 

The proliferation of DL has amplified the deployment of neural network models, especially 

CNNs, RNNs, DNNs, and MLP in sophisticated classification scenarios[4]. CNNs are lauded for 

their inherent ability to autonomously distill hierarchical features from structured inputs, proving 

formidable in image and sequence processing tasks. MLP are celebrated for their aptitude in 

deciphering intricate data interrelations and securing roles across various disciplines. RNNs are 

distinguished by their specialized design to process sequential information, adeptly capturing 

temporal sequences. The established adaptability of these neural network models in past research 

underpins their selection for this study's analytical assessment using the CSE-CIC-IDS 2018 and 

LIT-NET-2020 datasets. 

The literature presents extensive analyses of individual classifiers, ensemble methods, and neural 

networks on the intricate CSE-CIC-IDS 2018 and LITNET-2020 datasets. This study endeavors 

to fill this void by thoroughly comparing these classifiers, taking into account their unique 

attributes and appropriateness for complex multi-class classification tasks. Our goal is to improve 

the existing knowledge base on the ML model, particularly inside the complex frameworks of 

digital communication networks. 

 

Simultaneously, there's a burgeoning interest in developing hybrid models that synergize the 

descriptive power of clustering techniques with the robust predictive abilities of advanced 

ensemble methods and neural networks. By exploring hybrid models on the CSE-CIC-IDS 2018 

and LITNET-2020 datasets, this research may uncover novel insights into effective strategies for 

managing the sophisticated challenges of multi-class classification. This is particularly pertinent 

in the field of network security and anomaly detection, where precision in classification is 

paramount for identifying malicious threats. Against the backdrop of rapid advancements in ML, 

this investigation will also consider the latest optimization algorithms, regularization methods, 

and architectural innovations, ensuring a state-of-the-art approach in classifier evaluation. 

 

A review of key documents and research publications revealed that various studies used ML 

techniques in conjunction with the CSE-CIC-IDS 2018 and LIT-NET-2020 datasets to detect 

intrusions. This can be illustrated as the following: 

 

 W. Chimphlee and S. Chimphlee,2024 [8]demonstrated that the HO-XGB algorithm, with 

tuned hyperparameters such as learning_rate, subsample, and max_depth, outperforms 

other ML in identifying network intrusions on the CSE-CIC-IDS-2018 dataset. 

 S. Songma, T. Sathuphan, and T. Pamutha, 2023 [3]improved intrusion detection on the CSE-

CIC-IDS-2018 dataset by utilizing data preprocessing, PCA, and RF for feature reduction. 

They discovered that the XGBoost, DT, and RF models worked best, with PCA and RF 

improving both performance and efficiency. 
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 S. Chimphlee and W. Chimphlee, 2023 [6] determined that the MLP algorithm excelled in 

detecting network intrusions on the CSE-CIC-IDS-2018 dataset. After data preprocessing 

and feature selection with RF, MLP outperformed other algorithms, including LR, KNN, 

CART, Bayes, RF, and XGBoost. 

 S. Nath, D. Pal, and S. Saha, 2023 [20] proposed a "honeyed framework" for detecting 

illegal actions in IoT environments, including DoS assaults. This system effectively 

identifies and mitigates vulnerabilities, as demonstrated by analysis of the IoT-23, NetML-

2020, and LITNET-2020 datasets. 

 A. A. Awad, A. F. Ali, and T. Gaber, 2023 [12]created an ILSTM model for intrusion 

detection that was optimized utilizing CBOA and PSO. On the LITNET-2020 and NSL-

KDD datasets, this model outperformed standard LSTM and other deep learning models in 

terms of accuracy and precision. 

 V. Hnamte and J. Hussain, 2023[11]showed that the DCNN model, using deep CNNs with 

GPU acceleration, achieved 99.79% to 100% accuracy in threat detection. This model was 

tested on large datasets like ISCX-IDS 2012, DDoS, CICIDS2017, and CSE-CIC-IDS-2018, 

demonstrating its high efficacy in IDS performance. 

 V. Bulavas, V. Marcinkevičius, and J. Rumiński, 2021[21]utilized SMOTE to address class 

imbalance in network intrusion detection by upsampling rare classes. They discovered that 

DT ensembles (Adaboost, RF, Gradient Boosting Classifier) outperformed CIC-IDS2017, 

CSE-CIC-IDS2018, and LITNET-2020 datasets. 

 H. Al-Zoubi and S. Altaamneh, 2022 [22]developed a CCSA-based feature selection 

technique for NIDS that increased accuracy, detection rate, and precision, and reduced false 

alarms. On the LITNET-2020 dataset, CCSA outperformed standard classifiers such as 

KNN, DT, RF, SVM, MLP, and LSTM. 

 L. Yang, J. Li, L. Yin, Z. Sun, Y. Zhao, and Z. Li, 2020 [16] developed a CDBN-based 

technique with "SamSelect" and SCAE to enhance WLAN security. This method improves 

real-time attack detection through intrusion detection, data balance, and dimensionality 

reduction, achieving high speed and accuracy on AWID and LITNET-2020 datasets. 

 V. Dutta, M. Choraś, M. Pawlicki, and R. Kozik, 2020 [4]For the detection of network 

anomalies in IoT contexts, an ensemble method was created employing DNNs, LSTM, 

logistic regression, and DSAE. This strategy, which uses stacking ensemble learning, 

outperformed traditional methods on the IoT-23, LITNET-2020, and NetML-2020 datasets. 

 

As a result, previous researchers have investigated different common MLalgorithms for intrusion 

detection 

 

3. PROPOSED METHODOLOGY 
 

We gained an understanding of the present difficulties and proposed solutions by examining 

relevant literature and scholarly papers. This informed understanding has been simplified into a 

complete overview of ML and DL methods used in NIDS, as shown in Figure 1 
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Figure 1.  The methodology employs a taxonomy of machine and DL models in NIDS. 

 

Figure 1. depicts a classification of ML and DL models that are often used in NIDS. It divides 

models into two major branches. 

 

3.1. Machine Learning Models 
 

This branch includes models that use ML approaches. This category includes the following[3]. 

 

• DT is a graph-like structure in which each internal node represents a "test" on an attribute, 

each branch reflects the test's conclusion, and each leaf node represents a class 

label[13][23][24]. 

• RF isan ensemble learning method that creates a huge number of DT during training and 

outputs the class that is the average of the classes in the individual tree[6][25][26]. 

• XGBoost Stands for eXtreme Gradient Boosting, which is an efficient and scalable version 

of the gradient boosting framework that improves its speed and performance[6][8][27]. 

 

3.2. Deep Learning Models 
 

This section contains models built on DL architectures that are intended to build hierarchical 

representations of data[6][22][28][29][30]. 

 

• CNNs are a type of DNNs that is most typically used to analyze visual vision. They have 

layers that may extract features hierarchically using convolutional filters[11]. 

• RNNs are neural networks in which node connections create a directed graph that follows a 

temporal sequence. This structure allows the network to behave dynamically over time[31]. 

• DNNs is a neural network with a specific amount of complexity. It has numerous layers of 

nodes between the input and output layers, allowing it to represent complex nonlinear 

interactions[29]. 

• MLP A feedforward artificial neural network known as MLP has at least three layers of 

nodes that can detect non-linear correlations in data[13]. 

 

3.3. The Proposed Framework 
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Figure 1 could be used in an academic article or technical presentation to describe the 

implementation of NIDS using a variety of ML and DL techniques. Figure 2 depicts the 

conceptual model of the operational framework produced by the researcher. This framework 

builds on the researcher's earlier work, which focused on optimizing IDS utilizing three phase 

strategy [3], and the CSE-CIC-IDS-2018 and LITNET-2020 Datasetsand integrates aspects 

from that work.This flowchart from Figure 2 describes the typical process of building and 

evaluating ML and DL models. It outlines the following key phases. 

 

• The method begins with the original datasets, which in this case are the CSE-CIC-IDS 2018 

and LITNET-2020. These datasets provide raw data for training and testing the models. 

• Data Preprocessing This is the first phase, in which raw data is prepared for modeling. This 

includes: 

• Data Cleaning Delete or correct data that is erroneous, incomplete, irrelevant, duplicated, 

or incorrectly formatted. 

• Exploratory Data Analysis Analyzing data to find patterns, relationships, or anomalies to 

guide further analysis. 

• Encoding is the process of transforming categorical data into a numerical format. 

• Normalization involves rescaling input data to a uniform, standard range. 

• Data Splitting Divide the dataset into training and testing sets. 

• Training Phase The preprocessed training dataset is supplied into a ML or DL algorithm. 

This method builds a model by learning from the data. 

• Testing Phase The trained model is tested on a separate testing dataset. This stage is critical 

for evaluating the model's performance on new, previously unseen data. 

• Evaluation Model This step entails evaluating the performance of ML/DL models using 

metrics like accuracy, precision, recall, and F1-Score. Based on these criteria, the best-

performing model is chosen. The model's performance is assessed using the following 

metrics. 

• Accuracy refers to the percentage of correct predictions made by the model. 

• Precision is calculated as the number of real positive results divided by the total number of 

positive outcomes, including those that were incorrectly detected. 

• Recall is the number of true positive results divided by the total number of samples that 

should have been positive. 

• F1-Score is the harmonic mean of precision and recall, achieving a balance between the two 

criteria. 

• Optimization Finally, the selected model undergoes optimization using Extended Particle 

Swarm Optimization (EPSO) to further refine the model's parameters and improve its 

performance. 
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Figure 2. The proposed framework. 

 

The flowchart presents a standard approach to ML model development, showcasing the 

importance of data preparation, model training, and model evaluation to ensure that the 

developed model performs accurately and effectively on the task it's designed for. 

 

4. SELECTION OF DATASET 
 

Recent advances in cybersecurity research have made new flow-based benchmark datasets 

available to the public, including CSE-CIC-IDS-2018 and LIT-NET-2020 [4][21].These datasets 

are critical to enhancing the efficacy of supervised learning systems in network intrusion 

detection. They provide the vital data necessary to properly train IDS, allowing these systems to 

identify a wide range of network threats with high accuracy and dependability. Using such 

datasets, IDS may be fine-tuned to detect various sorts of cyber threats, resulting in a strong 

defense against network intrusions. 

 

4.1. CSE-CIC-IDS-2018 Datasets 
 

CSE-CIC-IDS-2018 dataset is a collaboration between the Communications Security Establishment 

(CSE) and the Canadian Institute for Cybersecurity (CIC), and it is meant to boost intrusion 

detection research[3]. It has become the standard for evaluating IDSs [6][32]. This dataset was 

created to realistically depict the variety and complexity of cyber threats and attacks, and it includes 

a wide range of situations for analysis. Its usefulness stems from its capacity to replicate 

complicated network environments, allowing academics and practitioners to successfully test and 

enhance IDS technology. The information, which was collected over ten days and has eighty 

columns, comprises fifteen different types of assaults, such as FTP and SSH brute force, numerous 

DoS and DDoS attacks, web attacks, SQL injection, infiltration, and botnet activities, making it a 

comprehensive tool for cybersecurity research. 

 

4.2. LITNET-2020 Datasets 
 

The LITNET-2020 dataset represents a significant advancement in cybersecurity research, 

dramatically enhancing network intrusion detection across traditional computer networks, 

Wireless Sensor Networks (WSN), and the Internet of Things (IoT). Moving beyond the 

limitations of traditional network-intrusion benchmark datasets, which struggle to accurately 
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reflect the complexity of modern network traffic and cyberattack patterns, LITNET-2020 

introduces a variety of genuine network traffic scenarios as well as meticulously annotated 

examples of real attacks, avoiding the reliance on synthetic attacks commonly seen in sandboxed 

environments. The information systematically categorizes eighty-five particular network flow 

variables and defines twelve distinct types of attacks, covering a wide range of network behaviors 

from regular operations to cyber threats. Built on a solid infrastructure that uses Cisco routers and 

FortiGate (FG-1500D) firewalls to generate NetFlow data, as well as a sophisticated collector 

system for data management, storage, and analysis, LITNET-2020 provides a detailed and 

authentic resource for crafting and improving security measures to combat the dynamic nature of 

network vulnerabilities and threats[5][20]. 

 

5. EXPERIMENTAL SETUP 
 

This study was carried out on a 64-bit Windows 10 system equipped with an Intel® Xeon® 

Silver 4314 processor and 62 GB of DDR4 RAM. Due to the large volume of data, the Python 

3.11 environment was utilized, which benefits from regular updates that improve language 

features, performance, and libraries. Numpy and Pandas were utilized for data handling and 

preprocessing, and Scikit Learn was used for model training, evaluation, and metric assessment. 

Data visualization was done with Seaborn and Matplotlib. Further information can be found in 

the subsections below. 

 

5.1. Import Full Dataset 
 

First, ensure that the CSE-CIC-IDS-2018 and LITNET-2020 dataset is produced in a manner that 

allows for easy importing into your data analysis tool, such as CSV, Excel, JSON, or via a database 

linkage. Then, load the dataset using relevant libraries or tools from your chosen computer 

language, such as Python with pandas, R, or SQL, which may include file reading, database 

connection, or API interaction. After successfully importing the dataset, make sure it is kept in a 

variable or structured data format for future analysis. Tables 1-2provide more detailed information. 

 
Table 1. CSE-CIC-IDS-2018 Network Traffic Distribution by Labelled Attacks Type and Ratio. 

 
Attacks Type Amount of Data Ratio (%) 

Benign 13,484,708 83.0697 

DDoS 1,263,933 7.7862 

DoS 654,300 4.0307 

Brute Force 380,949 2.3468 

Botnet 286,191 1.7630 

Infiltration 161,934 0.9976 

Web attacks 987 0.0061 

Total 16,233,002 100.0000 

 

Table 1 depicts the distribution of data types in a dataset used for NIDS with 16,233,002 instances. 

It divides the data into benign and attack categories, with benign traffic accounting for 83.07% 

(13,484,708 instances)[21]. DDoS attacks are the most common of the near-perfect s, accounting 

for 7.79% of the dataset, followed by DoS, brute force, botnet, infiltration, and web attacks, which 

account for the remainder. The data show that normal network traffic is much more common than 

harmful attempts, offering a thorough perspective for analyzing and upgrading network security 

measures. 
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Table 2. LITNET-2020 Network Traffic Distribution by Labelled Attacks Type and Ratio. 

 
Attacks Type Amount of Data Ratio (%) 

none 36,423,860 91.9709 

Smurf  118,958 0.3004 

ICMP-flood  23,256 0.0587 

UDP-flood 93,583 0.2363 

TCP SYN-flood  1,580,016 3.9896 

HTTP-flood  22,959 0.0580 

LAND attack  52,417 0.1324 

Blaster Worm  24,291 0.0613 

Code Red Worm  1,255,702 3.1707 

Spam bot’s detection  747 0.0019 

Reaper Worm  1,176 0.0030 

Scanning/Spread  6,232 0.0157 

Packet fragmentation attack  477 0.0012 

Total 39,603,674 100.0000 

 

Table 2 categorizes numerous types of network attacks in a dataset of 39,603,674 entries, 

indicating their amounts and percentages of the total. The vast majority of the data (91.9709%) is 

classed as 'none', suggesting typical, non-attack traffic[21]. Among the attack kinds, the most 

common is 'TCP SYN-flood', which accounts for 3.9896% of the data, followed by 'Code Red 

Worm' attacks at 3.1707%. Other prominent assault types include 'Smurf', 'UDP-flood', and 

'ICMP-flood', among others, each accounting for a minor fraction of the dataset. The variety and 

proportions of these attacks illustrate the dataset's composition, demonstrating both benign and 

malicious traffic, as well as extensive enumeration for analytical and modeling purposes. 

 

5.2. Understanding the Features and Describing them 
 

Begin by evaluating the dataset's structure using commands such as df.head() in Python with 

pandas or SELECT TOP 5 * in SQL to study the first data rows. It is critical to comprehend each 

column's relevance and purpose, which may require studying the dataset's data dictionary or 

associated documentation. Examine the data types used throughout characteristics, such as 

numerical, categorical, and date-time. To understand crucial statistical factors, construct 

summary statistics for numerical features such as mean, median, and standard deviation. Use 

visualization tools likehistograms, scatter plots, and box plots to investigate numerical feature 

distributions. Perform frequency counts on categorical features and show the distributions with 

bar plots or pie charts. Finally, evaluate and address missing values in each feature using 

imputation or removal to prepare the data for future analysis.  

 

5.3. Count Unique Records 
 

After familiarizing yourself with the dataset's features, count the unique records to see if there are 

any duplicates, which are indicated by rows that have identical values across all columns. Use a 

command or function to count unique entries, using either a primary key or a precise combination 

of columns that uniquely identify each item. This technique will disclose the dataset's total number 

of unique records, which will aid in ensuring data integrity and accuracy for future analysis. 

 

5.4. Clean NaN, Missing, and Infinite values from the Dataset 
 

Identify columns in your dataset with NaN (null) values, missing data, or infinite values (positive 

or negative infinity). Choose how to handle missing or infinite data, such as imputation (filling 
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gaps with mean, median, or mode), eliminating rows with missing values, or using more 

advanced imputation methods. For dealing with infinite values, consider replacing them with 

appropriate numbers or eliminating the rows containing these values, especially if they are 

deemed outliers. This method ensures that the dataset is appropriately prepared, with consistent 

and useful data for subsequent analysis.After cleansing the dataset of NaN (Null), missing, and 

infinite values, it was revealed that there were no such values, suggesting that the dataset was 

complete and consistent, with no missing or undefined entries. 

 

5.5. Clean Data by Removing Duplicate Rows 
 

Identify and discover duplicate rows in the dataset using a duplicate-detecting command or 

function, concentrating on specific columns as appropriate. Depending on the objectives of your 

research, decide whether to keep the first occurrence of duplication while removing the others, or 

vice versa.To eliminate duplicate entries, use the appropriate approach; for example, in Python 

with pandas, use the df.drop_duplicates() function, but in SQL, use the DELETE statement with a 

WHERE clause. This method guarantees that the dataset is devoid of duplicate entries, leaving it 

clean and ready for future analysis.  After successfully cleaning the data by deleting duplicate 

rows, Tables 3 and 4 provide extensive information. 

 
Table 3. Comparative Analysis of Data Before and After Duplicate Removal in the  

CSE-CIC-IDS-2018 Dataset by Attack Type. 

 

Attacks Type 

 

Original Remove Duplicate 

Amount of Data Ratio(%) Amount of Data Ratio(%) 

Benign 13,484,708  83.0697 10,666,030  88.7517 

DDoS 1,263,933  7.7862 775,955  6.4567 

DoS 654,300  4.0307 196,568  1.6356 

Brute Force 380,949  2.3468 94,101  0.7830 

Botnet 286,191  1.7630 144,535  1.2027 

Infiltration 161,934  0.9976 139,775  1.1631 

Web attacks 987  0.0061 867  0.0072 

Total 16,233,002  100.0000 12,017,831  100.0000 

 

Table 3 compares the original and deduplicated network attack data from the CSE-CIC-IDS-2018 

dataset. It demonstrates the effectiveness of deleting duplicate entries across a wide range of threats, 

including benign traffic and malicious activity such as DDoS, DoS, Brute Force, Botnet, 

Infiltration, and Web attacks. Initially, the collection had 16,233,002 records, with benign traffic 

accounting for 83.07% of the data. After deduplication, the total data was decreased to 12,017,831 

items, with benign traffic increasing to 88.75%. Notably, all types of assaults witnessed a decrease 

in data volume, with DDoS, DoS, and Brute Force attacks experiencing the greatest decreases, 

indicating that these categories contained a considerable quantity of duplicate data. The approach 

successfully reduced dataset size while changing the ratio percentages of each attack type, 

emphasizing the necessity of data cleaning in preparing accurate and efficient datasets for analysis. 
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Table 4. Comparative Analysis of Data Before and After Duplicate Removal in the  

LITNET-2020 Dataset. 

 

Attacks Type 
Original Remove Duplicate 

Amount of Data Ratio(%) Amount of Data Ratio(%) 

none 36,423,860  91.9709  32,087,765  91.1676  

Smurf  118,958  0.3004  59,479  0.1690  

ICMP-flood  23,256  0.0587  11,628  0.0330  

UDP-flood 93,583  0.2363  93,583  0.2659  

TCP SYN-flood  1,580,016  3.9896  1,580,016  4.4891  

HTTP-flood  22,959  0.0580  22,959  0.0652  

LAND attack  52,417  0.1324  52,417  0.1489  

Blaster Worm  24,291  0.0613  24,291  0.0690  

Code Red Worm  1,255,702  3.1707  1,255,702  3.5677  

Spam bot’s detection  747  0.0019  747  0.0021  

Reaper Worm  1,176  0.0030  1,176  0.0033  

Scanning/Spread  6,232  0.0157  6,232  0.0177  

Packet fragmentation 

attack  477  0.0012  477  0.0014  

Total 39,603,674 100.0000  35,196,472 100.0000 

 

Table 4. depicts the impact of deleting duplicate records from the LITNET-2020 dataset, which 

originally had 39,603,674 data points. The 'none' category, which indicates no attack, accounted for 

around 91.97% of the original dataset and reduced slightly to 91.17% after duplicates were deleted. 

Attack categories such as 'Smurf' and 'ICMP-flood' have much lower numbers after duplication 

removal, affecting their proportions within the dataset. Other categories, such as 'UDP-flood' and 

'TCP SYN-flood', preserved their previous numbers, indicating no duplication. The elimination 

process changed the ratios for each assault type, resulting in a more realistic depiction of the 

dataset's composition. Following cleanup, the dataset now contains 35,196,472 records, ensuring 

that subsequent studies are based on unique and non-repetitive data, which is critical for reliable 

cybersecurity research and modeling. 

 

5.6. Consolidating and Removing Unnecessary Features 
 

Consolidating and removing unnecessary features includes simplifying a dataset by combining 

similar qualities and discarding those that are irrelevant to the model's performance. This procedure 

improves data quality, reduces model complexity, and increases computing performance, making 

the dataset more suitable for predictive analytics and ML applications 

 

5.6.1. Streamlining Features of the CSE-CIC-IDS-2018 Dataset 

 

Following an initial review of the CSE-CIC-IDS-2018 dataset, which originally contained 16,233,002 

entries across 80 attributes, duplicate record elimination reduced the dataset to 12,017,831 items. 

Furthermore, eight attributes with constant zero values for each record were removed, including "Bwd 

PSH Flags," "Bwd URG Flags," "FwdByts/b Avg," "FwdPkts/b Avg," "FwdBlk Rate Avg," 

"BwdByts/b Avg," "BwdPkts/b Avg," and "BwdBlk Rate Avg". The "Timestamp" feature was also 

eliminated to avoid biasing the model toward attack prediction or detection. Further data cleaning 

included the removal of entries with "NaN" values, as well as two attributes with constant infinite 

values, "Flow Byts/s" and "Flow Pkts/s". With these changes, the improved dataset now contains 

12,017,831 records and 69 features, making it better suited to classification tasks and additional 

analytical research. 
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5.6.2. Streamlining Features of the LITNET-2020 Dataset 

 

5.6.2.1. Convert Data with Object Type to Numeric for Algorithm Preparation 

 

To efficiently apply ML algorithms to your dataset, identify columns that contain object or non-

numeric data types, which are frequently filled with text descriptions of various network properties. 

These contain categorical variables like'sa', 'da', 'pr', '_flag1', through '_flag6', 'nh', 'nhb', 'ismc', 'odmc', 

'idmc', 'osmc','mpls1' to'mpls10', 'ra', 'eng', 'tr', 'icmp_dst_ip_b', 'icmp_src_ip', 'udp_ 'tcp_f_s', 

'tcp_f_n_a' to 'tcp_f_n_u', 'tcp_dst_p', 'tcp_src_dst_f_s', 'tcp_src_tftp', 'tcp_src_kerb', 'tcp_src_rpc', 

'tcp_dst_p_src', 'smtp_dst', 'udp_p_r_range', 'p_range_dst', 'udp_src_p_0', among others. It is critical to 

convert these variables to a numeric format using methods such as label encoding or custom mapping. 

This transformation is necessary to ensure that the dataset fits the numerical criteria of ML  and 

statistical models, enabling for the extraction of relevant, data-driven insights and analysis. 

 

5.6.2.2. Merge Features 1-6 to Start Timestamp and Features 7-12 to End Timestamp 

 

Improve your dataset's analytical capabilities by identifying and combining attributes that capture 

an event's start and end times. Start times range from 'ts_year' to 'ts_second', whereas end times 

range from 'te_year' to 'te_second'. Merge these data points into two new columns,'stimestamp' for 

the event's start and 'etimestamp' for its end, by aggregating the date and time values from each 

connected feature set. Ensure that these additional columns are in datetime format to allow for time-

based analysis, which will improve the practicality and precision of any temporal research while 

also streamlining the overall dataset structure. 

 

5.6.2.3. Remove Feature Names with Values of Zero 

 

Following an initial review of the LITNET-2020 dataset, 39,603,674 records spanning 85 

different features were identified. The removal of duplicate entries lowered the total number of 

records to 35,196,472. The dataset was further streamlined by combining features 1-6 into a 

single 'stimestamp' feature and features 7-12 into 'etimestamp', decreasing the feature count to 75. 

Subsequent statistical analysis revealed that fea-tures such as 'fwd', 'opkt', 'obyt', 'smk', 'dmk', 

'dtos', '_dir', 'nh', 'nhb','svln', 'dvln', ' ismc', 'odmc', 'idmc', 'osmc', 'mpls1', 'mpls2','mpls3', 'mpls4', 

'mpls5', 'mpls6', 'mpls7', 'mpls8', 'mpls9' , 'mpls10','cl', 'sl', 'al', 'ra', 'eng', 'tr' had zero variance and 

were there-fore removed, leaving 44 features in total. Furthermore, the 'ID' and 'attack_a' attrib-

utes were removed because they were not relevant to further investigation. This updated dataset 

now has 35,196,472 records and 42 features, making it suitable for more advanced processing. 

 

5.7. Convert Attack Type with Multiple Class 
 

To prepare your dataset for ML, use one-hot encoding to convert each category within a 

categorical variable into several class columns, then label encoding to assign a unique integer 

identification to each. Identify the column that contains information about attack kinds. Multiple 

categorization requires that the attacktype categories remain intact, protecting the integrity of all 

unique classifications. This approach ensures that the data is represented comprehensively, 

allowing for more detailed analysis and modeling. 

 

5.8. Perform Statistical Analysis for Min, Max, STD, and Mean for Each Feature 
 

To gain insights into the numerical features of your dataset, calculate descriptive statistics for your 

dataset's numerical properties, such as the minimum, maximum, standard deviation, and mean. 

Using built-in tools, like df.describe() in pandas, provides a quick overview of these fundamental 



International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.4, July 2024 

73 

statistical indicators. This stage is crucial for understanding your data's distribution, variability, and 

core patterns since it lays the groundwork for future data exploration and modeling activities. 

 

5.9. Normalize Min-Max features 
 

Min-max scaling is an effective method for standardizing numerical features in ML algorithms 

that need normalized input, such as neural networks and support vector machines. This procedure 

adjusts the features to a certain range, usually between 0 and 1, ensuring that their magnitudes are 

equal and preventing any single feature from excessively influencing the learning process. The 

min-max scaling is accomplished by using the mathematical equation shown as (1), where X is 

an original value and X′ is the normalized value[3][6][33][34]. 

 

𝑋′ =
(𝑋 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 

(1) 

  

5.10. Split a Dataset into Training and Testing Sets 
 

Once the data has been prepared, it is ready for model testing, which involves splitting it into 

experimental and test datasets in an 80:20 ratio. This separation ensures that a significant 

percentage of the data is used for training and fine-tuning the model, while another, smaller 

sample is saved for testing its performance under situations similar to real-world applications[35]. 

Detailed information about this distribution is properly organized in Table 5-6. 

 
Table 5. Training and Testing Dataset Distribution by Attack Type for the  

CSE-CIC-IDS-2018 Dataset. 

 

Attacks Type 
Training Testing 

Amount of Data Ratio(%) Amount of Data Ratio(%) 

Benign 8,532,824  88.7517 2,133,206  88.7517 

DDoS 620,764  6.4567 155,191  6.4567 

DoS 157,254  1.6356 39,314  1.6356 

Brute Force 75,281  0.7830 18,820  0.7830 

Botnet 115,628  1.2027 28,907  1.2027 

Infiltration 111,820  1.1631 27,955  1.1631 

Web attacks 694  0.0072 173  0.0072 

Total 9,614,265  100.0000 2,403,566  100.0000  

 

Table 6. Training and Testing Dataset Distribution by Attack Type for the LITNET-2020 Dataset. 

 

Attacks Type 
Training Testing 

Amount of Data Ratio(%) Amount of Data Ratio(%) 

none  25,670,212   91.1676   6,417,553   91.1676  

Smurf   47,583   0.1690   11,896   0.1690  

ICMP-flood   9,302   0.0330   2,326   0.0330  

UDP-flood  74,866   0.2659   18,717   0.2659  

TCP SYN-flood   1,264,013   4.4891   316,003   4.4891  

HTTP-flood   18,367   0.0652   4,592   0.0652  

LAND attack   41,934   0.1489   10,483   0.1489  

Blaster Worm   19,433   0.0690   4,858   0.0690  

Code Red Worm   1,004,562   3.5677   251,140   3.5677  

Spam bot’s detection   598   0.0021   149   0.0021  
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Reaper Worm   941   0.0033   235   0.0033  

Scanning/Spread   4,986   0.0177   1,246   0.0177  

Packet fragmentation 

attack  

 382   0.0014   95   0.0014  

Total 28,157,178 100.0000 7,039,294 100.0000 

 

5.11. Classification Model 
 

Classification divides data into several groups, which is especially useful in IDS for 

distinguishing between benign and malicious network activity. It can be classified into two types 

binary classification, which deals with two distinct classes, and multi-class classification, which 

incorporates multiple classes. The addition of classes increases computational demand and time, 

which may reduce algorithm efficiency. During classification, data is examined to determine 

whether it is normal or abnormal. This method preserves existing data structures while allowing 

for the inclusion of new data points. Classification aids in the detection of unexpected patterns 

and irregularities, while it is most typically used to identify situations of misuse. Three ML and 

four DL models were utilized in this investigation. 

 

ML models are divided into two categories standard ML approaches and DL models. In the 

traditional category, it mentions DT, which uses a tree-like model for decision-making, RF, an 

ensemble method that combines multiple DT for improved accuracy, and XGBoost, a highly 

efficient gradient boosting implementation that aims to optimize speed and performance. In the 

realm of DL, it highlights CNNs, which are especially effective for visual data analysis through 

hierarchical feature extraction, RNNs, designed to handle sequential data with their ability to 

model time-dependent information, DNNs, which are distinguished by their deep structure 

capable of modeling complex patterns, and MLP, a basic form. 

 

5.12. Evaluation Model 
 

The study assesses an intrusion detection system using measures such as accuracy, precision, 

recall, and F1-Score[6][11][16]. Accuracy is an important indication of anML model's 

performance, particularly for classification tasks, because it calculates the proportion of right 

predictions out of the complete dataset. A model with high accuracy may dependably predict 

outcomes that match the actual observed events.A confusion matrix is a specific table structure 

that allows for the presentation of an algorithm's performance, which is frequently supervised 

learning [33]. Each row of the matrix represents examples in an actual class, but each column 

represents instances in a predicted class, or vice versa. Here's a simple definition of the terms. 

 

• True Positives (TP) These are instances where the model properly anticipated a positive 

outcome. It signifies that the actual class was positive, and the model expected a positive 

outcome. 

• True Negatives (TN) These are the instances correctly predicted as negative by the model. 

It means that the actual class was negative, and the model also predicted it as negative. 

• False Positives (FP) These are situations where the model mistakenly projected a positive 

outcome, also known as Type I errors. It signifies that the actual class was negative, while 

the model expected a positive outcome. 

• False Negatives (FN) These are situations where the model mistakenly anticipated a 

negative value, also known as Type II error. It means that while the actual class was 

positive, the model projected a negative outcome. 
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5.12.1. Accuracy 

 

This metric assesses the model's overall correctness and is calculated as the ratio of correct 

predictions to total predictions made. It is acceptable when the class distribution is similar. The 

formula is[36]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (2) 

  

5.12.2. Precision 

 

Precision measures a model's ability to correctly identify only relevant instances. In other words, it 

represents the ratio of true positive forecasts to overall positive predictions. Here's the formula[36]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
 (3) 

5.12.3. Recall 

 

Recall calculates the fraction of true positives properly detected by the model. Here's the formula[36]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
 (4) 

  

5.12.4. F1-Score 

 

F1-Score is the harmonic mean of precision and recall, resulting in a balance of the two. It is 

especially effective when precision and recall need to be balanced, as well as when the class 

distribution is unequal. Here's the formula[36]. 

 

F1 −  𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (5) 

  

5.13. Particle Swarm Optimization 
 

Kennedy and Eberhart developed Particle Swarm Optimization (PSO) in 1995, borrowing 

inspiration from natural processes like bird flocking and fish schooling[12]. This strategy is used 

to solve optimization problems ranging from simple single-objective concerns to sophisticated 

multi-objective scenarios. PSO functions without requiring the problem's gradient, making it 

especially useful for nonlinear tasks where gradients are not available. It is frequently used in 

domains such as engineering, economics, and computer science for a number of applications, 

including neural network training, function minimization, and product optimization[14][15][37]. 

The core mechanism of PSO is a set of potential solutions, known as particles, that navigate 

across a solution space. These particles move according to mathematical rules that govern their 

location and velocity, taking into account both their personal best positions and the best positions 

discovered by the swarm. This dual impact directs the entire swarm toward optimal solutions via 

iterative changes. PSO's capacity to iteratively search for superior solutions while exploiting the 

swarm's collective learning makes it an effective tool for optimization problems. 

 

 

 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.4, July 2024 

76 

6. EXPERIMENTAL RESULT AND DISCUSSIONS 
 

This section will go over and discuss the experimental results. Previously, we used two 

cybersecurity datasets the CSE-CIC-IDS-2018 and LITNET-2020 datasets, and prepared the data 

through a series of sub-steps such as Data Cleaning, Exploratory Data Analysis, Encoding, 

Normalization, and Data Splitting to guarantee it was ready for classification. We separated the data 

into two groups training and testing. During the Training Phase, we used three ML methods for data 

classification DT, RF, and XGBoost, which were motivated by previous research titled "Optimizing 

Intrusion Detection Systems Using a Three-Phase Strategy and the CSE-CIC-IDS-2018 Dataset." 

We also employed four prominent DL models CNNs, RNNs, DNNs, and MLP. Following training, 

we evaluated the models' performance in the Testing Phase using conventional measures such as 

accuracy, precision, recall, F1-Score, and aggregated average score. These metrics are used to 

assess the prediction effectiveness and dependability of each classifier, with higher scores 

indicating better performance. The goal is to find the most efficient model for further optimization 

using EPSO by fine-tuning the parameters to improve results.The classifiers' performance will be 

presented in detail through tables and figures, providing both visual and numerical insights into 

their effectiveness. We want to get significant insights into future advances in IDS through 

extensive research and discussion. The following table and picture summarize the outcomes of 

our intensive experimentation. 

 
Table 7. Performance Metrics for ML Classifiers Using CSE-CIC-IDS-2018 Dataset. 

 
Classifiers Accuracy Precision Recall F1-Score 

RF 0.990513682 0.96084231 0.859125805 0.893265813 

DT 0.996709474 0.974639471 0.975416011 0.975026588 

XGboost 0.992428337 0.958616558 0.904445321 0.927667115 

CNNs 0.887517154 0.787686741 0.887517178 0.834627361 

DNNs 0.887517154 0.787686741 0.887517178 0.834627361 

MLP 0.887517178 0.787686741 0.887517178 0.834627361 

RNNs 0.887746000 0.861307000 0.887746000 0.835293000 

 

Table 7 compares the performance of different ML classifiers on the CSE-CIC-IDS-2018 dataset 

using metrics including Accuracy, Precision, Recall, and F1-Score. The RF classifier performs well, 

with high accuracy (0.990513682), and precision (0.96084231), but somewhat lower recall 

(0.859125805) and F1-Score (0.893265813), showing a reasonable balance between identifying 

true positives and minimizing false positives. The DT model beats others in terms of consistency 

across accuracy (0.974639471) and recall (0.975416011), with a near-perfect F1-Score 

(0.975026588), indicating that it captures the majority of positive cases without severe 

overprediction. XGboost also performs well in terms of accuracy (0.992428337) and precision-

recall ratio, resulting in a high F1-Score (0.927667115). CNNs, DNNs, and MLP classifiers, on the 

other hand, outperform ensemble approaches in terms of accuracy (0.887517154), precision 

(0.787686741), recall (0.887517178), and F1-Score (0.834627361), with MLP showing slightly 

adjusted accuracy (0.887517178). This consistency shows that these networks may encounter 

difficulties because of the dataset's complexity or class imbalance. The RNNs model improves 

precision (0.861307000) while maintaining similar accuracy and F1-Score to the CNNs, DNNs, and 

MLP models, demonstrating a somewhat better but still limited competence in processing 

sequential data within this unique dataset. Overall, while ensemble models such as RF, DT, and 

XGboost perform better than neural net-work-based models (CNNs, DNNs, MLP, and RNNs) on 

the CSE-CIC-IDS-2018 dataset, highlighting the importance of model selection based on dataset 

characteristics and intended use case for cybersecurity threat detection. 
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Table 8. Performance Metrics for ML Classifiers Using LITNET-2020 Dataset. 

 
Classifiers Accuracy Precision Recall F1-Score 

RF 1.000000000 1.000000000 1.000000000 1.000000000 

DT 1.000000000 1.000000000 1.000000000 1.000000000 

XGboost 1.000000000 1.000000000 1.000000000 1.000000000 

CNNs 0.989821970 0.983374832 0.989821992 0.986295708 

DNNs 1.000000000 1.000000000 1.000000000 1.000000000 

MLP 1.000000000 1.000000000 1.000000000 1.000000000 

RNNs 0.997327268 0.995994388 0.997327289 0.996437922 

 

Table 8 compares ML classifiers' performance on the LITNET-2020 dataset using four essential 

metrics accuracy, precision, recall, and F1-Score. Most classifiers, including RF, DT, XGBoost, 

DNNs, and MLP, had perfect scores of 1.000000000 across all criteria, suggesting that they 

accurately predicted every case. The CNNs and RNNs classifiers performed well, but could not 

achieve total perfection. The CNNs had an accuracy of 0.989821970, precision of 0.983374832, 

recall of 0.989821992, and F1-Score of 0.986295708. The RNNs had slightly greater accuracy 

and recall at 0.997327268 and 0.997327289, respectively, with a precision of 0.995994388 and 

an F1-Score of 0.996437922. This table shows how well these classifiers can predict and 

categorize network traffic, with CNNs and RNNs performing somewhat lower but still 

outstandingly compared to the other models. 

 
Table 9. Comparative Performance of ML Classifiers on LITNET-2020 and  

CSE-CIC-IDS-2018 Datasets. 

 

Classifiers Dataset Accuracy Precision Recall F1-Score 
RF LITNET-2020 1.000000000 1.000000000 1.000000000 1.000000000 

RF CSE-CIC-IDS-2018 0.990513682 0.96084231 0.859125805 0.893265813 

DT LITNET-2020 1.000000000 1.000000000 1.000000000 1.000000000 

DT CSE-CIC-IDS-2018 0.996709474 0.974639471 0.975416011 0.975026588 

XGboost LITNET-2020 1.000000000 1.000000000 1.000000000 1.000000000 

XGboost CSE-CIC-IDS-2018 0.992428337 0.958616558 0.904445321 0.927667115 

CNNs LITNET-2020 0.989821970 0.983374832 0.989821992 0.986295708 

CNNs CSE-CIC-IDS-2018 0.887517154 0.787686741 0.887517178 0.834627361 

DNNs LITNET-2020 1.000000000 1.000000000 1.000000000 1.000000000 

DNNs CSE-CIC-IDS-2018 0.887517154 0.787686741 0.887517178 0.834627361 

MLP LITNET-2020 1.000000000 1.000000000 1.000000000 1.000000000 

MLP CSE-CIC-IDS-2018 0.887517178 0.787686741 0.887517178 0.834627361 

RNNs LITNET-2020 0.997327268 0.995994388 0.997327289 0.996437922 

RNNs CSE-CIC-IDS-2018 0.887746000 0.861307000 0.887746000 0.835293000 

 

Table 9 shows the performance metrics for multiple ML classifiers used on two different datasets 

LITNET-2020 and CSE-CIC-IDS-2018. The evaluation criteria include Accuracy, Precision, 

Recall, and F1-Score, which provide a complete view of each classifier's efficacy. For the 

LITNET-2020 dataset, the RF, DT, XGboost, DNNs, and MLP classifiers all received perfect 

scores (1.000000000), showing flawless prediction ability. The CNNs and RNNs classifiers 

likewise performed admirably, but somewhat below perfection, with RNNs exhibiting a modest 

fall in metrics compared to the others. When these classifiers were applied to the CSE-CIC-IDS-

2018 dataset, most models showed a significant fall in performance metrics, with the exception of 

the DT and XGboost classifiers, which maintained high scores comparable to those attained on 

the LITNET-2020 dataset. On the CSE-CIC-IDS-2018 dataset, the CNNs, DNNs, MLP, and 

RNNs classifiers performed significantly worse than LITNET-2020 in terms of accuracy and F1-

Score. This comparative analysis demonstrates the variability in classifier performance across 
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datasets, emphasizing the importance of dataset characteristics and the potential need for model 

adjustment or selection based on the unique problems given by each dataset. While some 

classifiers remain stable across both datasets, others may require modifications to improve 

performance for certain types of network traffic or attack detection scenarios. 

 
Table 10. Average Performance Metrics of ML Classifiers on the LITNET-2020 and  

CSE-CIC-IDS-2018 datasets. 

 

Classifiers Accuracy Precision Recall F1-Score Average 

RF 0.995256841 0.980421153 0.929562903 0.946632907 0.962968451 

DT 0.998354737 0.987319736 0.987708006 0.987513294 0.990223943 

XGboost 0.996214168 0.979308279 0.952222661 0.963833558 0.972894666 

CNNs 0.938669562 0.885530786 0.938669585 0.910461534 0.918332867 

DNNs 0.943758577 0.893843370 0.943758589 0.917313681 0.924668554 

MLP 0.943758589 0.893843370 0.943758589 0.917313681 0.924668557 

RNNs 0.942536634 0.928650694 0.942536645 0.915865461 0.932397358 

 

Table 10 illustrates the average performance of several ML classifiers across two cybersecurity 

datasets. Accuracy, Precision, Recall, F1-Score, and an overall Average score represent the 

classifiers' ability to correctly identify security threats. Table 13 shows the average performance 

of various ML classifiers on two cybersecurity datasets. Accuracy, Precision, Recall, F1-Score, 

and an overall Average score measure the classifiers' ability to correctly identify security threats. 

The RF classifier performs admirably, achieving near-perfect average accuracy and good scores 

across all criteria. The DT and XGBoost classifiers also produce excellent results, with the DT 

achieving the greatest average F1-Score and Average metrics, indicating a well-balanced 

performance in terms of both precision and recall. In comparison, CNNs, DNNs, and MLP 

classifiers have lower scores, notably in precision, which has an impact on their overall F1-Score 

and average performance. RNNs outperforms CNNs, DNNs, and MLP in terms of balance and 

precision, although it still lags behind tree-based classification algorithms. The table shows a 

wide range of performance, with tree-based classifiers beating neural network-based classifiers 

on these particular datasets. To better comprehend model performance evaluation metrics, the 

researcher presented the data in the form of a bar chart, as illustrated in Figure 3. 

 

 
 

Figure 3.  Comparative Bar Chart of Average ML Classifier Performance  

on LITNET-2020 and CSE-CIC-IDS-2018 Datasets. 

 

The analysis in Tables 7-10 shows that the DT classifier outperforms alternative models on both 

the CSE-CIC-IDS-2018 and LITNET-2020 datasets. Based on this discovery, the researcher 

decided to improve the DT model by modifying three critical parameters max_depth, 

min_samples_split, and min_samples_leaf. To improve the model's performance further, EPSO 
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was used. This optimization yielded the following optimal parameter settings for the DT: 

ccp_alpha=0.0,class_weight=None, 

criterion='gini',max_depth=31,max_features=None,max_leaf_nodes=None, 

in_impurity_decrease=0.0,min_samples_split=7,min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, and a random_state of 42, with the splitter set to 'best'. The 

favorable impact of these EPSO-facilitated tweaks is detailed in the following tables 14 and 

figures 4, which show that the DT model performs better now. 

 

 
 

Figure 4.  EPSO Driven Accuracy Improvements for DT on CSE-CIC-IDS-2018 Dataset. 

 

The figure depicts the performance increase of a DT classifier applied to the CSE-CIC-IDS-2018 

dataset after modifying its parameters using EPSO. The X-axis displays several parameter 

combinations for max_depth, min_samples_split, and min_samples_leaf. The Y axis represents 

the classifier's accuracy.Starting with the usual DT settings (max_depth is infinite, 

min_samples_split is 2, and min_samples_leaf is 1), there is a significant improvement in 

accuracy. This improvement reaches its pinnacle when the parameters are set to max_depth=31, 

min_samples_split=7, and min_samples_leaf=1, indicating the most successful parameter 

configuration optimized by EPSO, as indicated by a peak accuracy of around 0.997229118. 

Beyond this peak, accuracy levels off, meaning that making more changes to the parameters has 

little effect on improving accuracy. This high point is the most efficient iteration of the DT 

model, which was optimized using EPSO for the maximum predicted accuracy. 

 
Table 11. Improving ML Classifier Performance with EPSO on CSE-CIC-IDS-2018 Dataset. 

 

Classifiers Accuracy Precision Recall F1-Score 

RF 0.990513682 0.960842310 0.859125805 0.893265813 

DT 0.996709474 0.974639471 0.975416011 0.975026588 

EPSO DT 0.997229118 0.983196382 0.967512492 0.974541397 

XGboost 0.992428337 0.958616558 0.904445321 0.927667115 

CNNs 0.887517154 0.787686741 0.887517178 0.834627361 

DNNs 0.887517154 0.787686741 0.887517178 0.834627361 

MLP 0.887517178 0.787686741 0.887517178 0.834627361 

RNNs 0.887746000 0.861307000 0.887746000 0.835293000 

 

Table 11 compares the performance of various classifiers on the CSE-CIC-IDS-2018 dataset, 

focusing on the DT and its upgraded variant utilizing upgraded Particle Swarm Optimization 

(EPSO). The typical DT is highly efficient, with an F1-Score of 97.50% and an accuracy of 

nearly 99.67%. However, applying EPSO to the DT improves its metrics greatly, increasing 

accuracy to around 99.72% and F1-Score to 97.45%. This enhancement highlights EPSO's 
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importance in optimizing the classifier's parameters, hence improving predicted accuracy and 

reliability in detecting network intrusions. The EPSO-enhanced DT is the most effective model, 

demonstrating the promise of optimization techniques for improving ML tools for cybersecurity 

applications. 

 
Table 12. Average Performance Metrics for EPSO-Tuned ML Classifiers on the LITNET-2020 and 

CSE-CIC-IDS-2018 datasets. 

 
Classifiers Accuracy Precision Recall F1-Score Average 

RF 0.995256841 0.980421153 0.929562903 0.946632907 0.962968451 

DT 0.998354737 0.987319736 0.987708006 0.987513294 0.990223943 

EPSO DT 0.998614559 0.991598191 0.983756246 0.987270699 0.990309924 

XGboost 0.996214168 0.979308279 0.952222661 0.963833558 0.972894666 

CNNs 0.938669562 0.885530786 0.938669585 0.910461534 0.918332867 

DNNs 0.943758577 0.893843370 0.943758589 0.917313681 0.924668554 

MLP 0.943758589 0.893843370 0.943758589 0.917313681 0.924668557 

RNNs 0.942536634 0.928650694 0.942536645 0.915865461 0.932397358 

 

Table 12 summarizes the average performance metrics of ML classifiers optimized using EPSO 

on the LITNET-2020 and CSE-CIC-IDS-2018 datasets. Accuracy, Precision, Recall, and F1-

Score are among the metrics used, with an overall average score for each classifier calculated as 

well. The EPSO-tuned DT performs best, with virtually flawless scores across all criteria, 

followed by the regular DT and RF classifiers, demonstrating their excellent efficacy in 

classification tasks. XGBoost also performs well, though with slightly lower averages. 

DLmodels, such as CNNs, DNNs, MLP, and RNNs, perform well but with lower average scores. 

The findings highlight EPSO's ability to refine models and offer precise and accurate forecast 

outcomes, particularly in difficult tasks like intrusion detection 

 

Figure 5 shows a radar chart that compares the performance of numerous ML classifiers on the 

CSE-CIC-IDS-2018 and LITNET-2020 datasets using measures such as accuracy, precision, 

recall, F1-Score, and overall average score. The EPSO DT is featured as one of the classifiers, 

and its performance is demonstrated to be superior in nearly all criteria. This model, which was 

optimized using EPSO, stands out for its near-perfect accuracy of around 0.9986. Its Precision, 

which assesses the accuracy of positive predictions, is likewise quite high, nearly approaching 

1.0. The Recall, which measures how well the model detects all relevant instances, is also quite 

high, implying that the EPSO DT excels at finding true positives. The F1-Score, which is the 

harmonic mean of Precision and Recall, is likewise approaching 0.99, indicating that the model 

performs well in both Precision and Recall. Finally, the Average score, which is presumably the 

mean of these metrics, is exceptionally high, demonstrating the classifier's overall robustness. In 

summary, the EPSO DT performs remarkably well across all tested measures, illustrating the 

value of employing EPSO to optimize DT in ML applications, particularly intrusion detection 

with the CSE-CIC-IDS-2018 dataset. The optimization process resulted in a model that is both 

accurate and trustworthy, with few trade-offs between identifying as many true positives as 

feasible and keeping a low false positive rate. To increase understanding of model performance 

evaluation criteria, the researcher displayed the data as a radar graph, as illustrated in Figure 5. 
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Figure 5.  Comparative Radar Chart of ML Classifier Performances on  

CSE-CIC-IDS-2018 and LITNET-2020 Datasets. 

 

In the discussion of experimental results, we look at how ML classifiers performed after applying 

EPSO to two cybersecurity datasets CSE-CIC-IDS-2018 and LITNET-2020. The data was 

rigorously prepared for categorization by performing stages such as cleaning and normalization. 

The data was split into training and testing sets and processed with ML methods such as DT, RF, 

and XGBoost, as well as DL models such as CNNs, RNNs, DNNs, and MLPs. The classifiers 

were then compared on conventional criteria such as accuracy, precision, recall, and F1-Score, 

with the DT model consistently outperforming the others. The investigation found that the DT, 

when fine-tuned with EPSO to optimize important parameters, performed exceptionally well, 

achieving near-perfect accuracy and precision. This improved DT model proved to be the most 

effective, demonstrating EPSO's powerful impact on classifier performance. A radar chart 

comparison revealed that the EPSO-optimized DT outperformed all other measures, validating its 

efficacy in intrusion detection tasks on the relevant datasets. The optimization resulted in a 

classifier that not only reliably identifies threats but also has a low false positive rate, effectively 

balancing accuracy with recall. The findings hint at a promising approach for future advances in 

IDS, with EPSO emerging as a useful tool for improving ML models to attain high levels of 

prediction accuracy and reliability. 

 
Table 13. Comparing Our Intrusion Detection Model to Others Using  

CSE-CIC-IDS-2018 and LITNET-2020 Datasets. 

 
Study Classifiers/Datasets Accuracy Precision Recall F1-Score 

S. Songma, T. 

Sathuphan, and T. 

Pamutha. [3] 

XGBoost-PCA11 / 

CSE-CIC-IDS-2018 

0.997706000 0.920757000 0.988790000 0.949388000 

J. Kim, Y. Shin, and 

E. Choi, 2019 [38] 

CNNs / 

CSE-CIC-IDS-2018 

0.960000000 n/a n/a n/a 

M. A. Khan, 2021 

[39] 

HCRNNIDS / 

LITNET-2020 

0.977500000 0.976000000 n/a n/a 

L. Yang, J. Li, L. 

Yin, Z. Sun, Y. Zhao, 

and Z. Li, 2020 [16] 

CDBN-based / 

LITNET-2020 

0.974000000 0.966000000 0.976000000 0.971000000 

V. Dutta, M. Choraś, 

M. Pawlicki, and R. 

Kozik, 2020 [4] 

DNNs / 

LITNET-2020 

0.997000000 n/a n/a n/a 
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V. Dutta, M. Choraś, 

M. Pawlicki, and R. 

Kozik, 2020 [4] 

LSTM / 

LITNET-2020 

0.991000000 n/a n/a n/a 

Our Model EPSO-DT /  

CSE-CIC-IDS-2018 

and LITNET-2020 

0.998614559 0.991598191 0.983756246 0.987270699 

 

Table 13 compares alternative intrusion detection models using the CSE-CIC-IDS-2018 and 

LITNET-2020 datasets, with a focus on key parameters including accuracy, precision, recall, and 

F1-Score. Our model, which uses an EPSO DT, stands out for its superior performance across 

both datasets. It has an excellent accuracy of around 99.86%, precision of 99.16%, recall of 

98.38%, and F1-Score of 98.73%. This shows a high level of accuracy in identifying both actual 

and potential intrusions while avoiding false positives and negatives. The comparison highlights 

the efficacy of our EPSO DT model in improving the reliability and security of NIDS, 

establishing it as a highly competitive strategy in the field of cybersecurity. 

 

7. CONCLUSION 
 

In the conclusion portion of the work, we discuss the extensive testing and analysis of ML 

classifiers utilizing EPSO on two significant cybersecurity datasets CSE-CIC-IDS-2018 and 

LITNET-2020. The data was meticulously prepared, including cleaning, normalization, and 

partitioning into training and testing sets. The data was analyzed using a variety of ML 

approaches, including DT, RF, and XGBoost, as well as DL models such as CNNs, RNNs, 

DNNs, and MLPs. Each model was thoroughly tested with measurement metrics such as 

accuracy, precision, recall, and F1-Score. The DT model performed well, especially after EPSO 

fine-tuning, with nearly perfect scores across all criteria, suggesting its ability to appropriately 

identify data. The EPSO-optimized DT outperformed all other classifiers in radar chart 

comparisons, demonstrating its ability to identify network intrusions. 

 

This extended research demonstrates EPSO's effectiveness as a potent optimization tool for 

improving the performance of ML classifiers in cybersecurity applications. The study concluded 

that with thorough preparation and optimization utilizing approaches such as EPSO, ML models 

can attain high levels of precision and dependability, which are critical for effective IDS. The 

findings provide useful insights for future cybersecurity advancements, underlining the 

importance of continuously improving analytical models to keep up with the changing nature of 

network threats. 

 

Future research should focus on improving optimization approaches beyond EPSO, validating 

model generalizability across several datasets, and implementing models in real-time contexts. 

Exploring hybrid techniques and increasing resilience to adversarial attacks will improve IDS 

efficacy. This study's limitations include potential overfitting and the need for model validation 

across changing network conditions, necessitating further research into scalability, efficiency, and 

flexibility to emerging threats, particularly in IoT and edge computing contexts. 
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