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ABSTRACT 

 
The increasing complexity of wireless communication conditions presents noteworthy obstacles to the 

adaptability and flexibility of cognitive radio systems. The latter can alleviate the problem of spectrum 

shortages through proper spectrum management. However, cognitive radio has difficulty distinguishing 

between signals of interest and interference, which can be a general enemy since it is undesirable because 

it influences the signal's quality. Efficient detection and characterization of interference in wireless 

communication networks is critical for ensuring strong security. However, in this research, we use the 

Mask R-CNN methodology to present a new concept for automatic modulation recognition and radio 

frequency interference detection. Moreover, this algorithm can segment, detect, and recognize several 

types of interference that can affect wireless communication systems, such as chirp interference (CI), 

continuous wave interference (CWI), and multiple continuous wave interference (MCWI) within the signal 

of the interest (SOI), as well as the modulation kind present in the SoI. Overall, the combination of these 

distinct techniques can be very valuable in the field of signal processing, especially in anti-jamming 

strategies in wireless networks. Moreover, the proposed approach showcases exceptional performance in 

the validation dataset. For radio frequency interference detection, it achieves a mean average precision 

(mAP) of 0.946 and a mean average recall (mAR) of 0.954. For automatic modulation recognition, it 

attains a mAP of 0.898 and a mAR of 0.916. 
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1. INTRODUCTION  
 

The utilization of available radio frequency spectrum can be used intelligently and adaptably 

thank to cognitive radio (CR), a wireless communication technique. Cognitive radio seeks to 

increasethe efficiency and usage of the limited RF spectrum by allowing devices to change their 

transmission settings based on real-time spectrum sensing and evaluation[1]. It is predicated on 

the idea that the principal users (PUs) are the licensed spectrum owners who have unrestricted 

access to the spectrum. Unlicensed users who can opportunistically access the channel (spatially 

and temporally) without interfering with the PUs are referred to as secondary users (SUs). 

However, criminal investigations, military surveillance, threat evaluation, electronic 

countermeasures, and spectrum monitoring are among the many uses of cognitive radio [2],[3]. 

The numerous applications of cognitive radio technology demonstrate its importance in electronic 

warfare scenarios from a tactical and strategic viewpoint. In the field of electronic warfare, 

cognitive radio technology has two uses  [4]. It can be employed as an intelligent jammer that can 
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recognize and analyze adversary communication patterns to successfully thwart enemy attacks  

[5]. In contrast, a cognitive radio that has learned about the behavior of jammers may develop 

intricate anti-jamming strategies and anticipate and avoid jamming signals with great flexibility 

[6],[7].Interference is the term used to describe the presence of unwanted signals that disrupt or 

degrade the performance of a wireless communication system. There is interference between 

signals when they use the same spectral resources or frequency band, which has a huge impact on 

the effectiveness of wireless systems. In wireless communications, interference can take 

numerous forms and have different features, such as adjacent channel interference, self-

interference, co-channel interference, homogeneous technology interference, and heterogeneous 

technology interference  [8]. Additionally, there are situations when intentional interference, 

which is malevolent interference done on purpose to stop or hinder communication, may occur. 

Several types of malicious interference exist, including Regular jammers, Delusive jammers, 

Random  jammers, Responsive jammers, Go-next jammers[9].  

 

The use of automatic modulation recognition (AMR) is essential  in a variety of tasks, for 

example, electronic warfare, spectrum management, and spectrum sensing [10]. In this context, 

identifying the type of modulation utilized by the received signal is critical because it enables 

adaptive.Communication systems to adjust their parameters and configurations based on the 

recognized modulation, ensuring optimal signal reception and data demodulation. As wireless 

communication technologies advance, signal modulation schemes become more intricate and 

diverse in order to address the requirements of complex communication scenarios  [11]. In this 

dynamic environment, the development of robust AMR models is critical, especially in the 

presence of interference and jammers. The difficulties posed by harsh radio environments 

highlight the critical need for adaptive and effective AMR solutions that are capable of accurately 

identifying modulation schemes under adversarial conditions. However, likelihood-based (LB) 

and feature-based (FB) approaches are used in classic modulation recognition; the first has a 

large latency and requires extensive prior knowledge, while the latter is computationally light  

[12]. Equally traditional interference detection methods include a number of methods, such as the 

method to suppress narrowband interference in the spread spectrum system [13], the method to 

suppress broadband noise interference based on time-frequency distributing in the spread 

spectrum system [14], etc. They do not allow for automatic interference-type identification. In 

general, traditional interference suppression strategies suffer from three major drawbacks: 

reliance on domain expertise and interference properties; lack of generalizability; and complexity 

caused by determining the exact location of the interference [8]. On the other hand, according to 

a number of recent studies, Deep Learning (DL) approaches have attracted interest and become 

an alluring replacement for traditional methods in the field of communications[15]. As a case 

study, consider the fields of spectrum sensing [16], channel modeling and prediction [17], 

channel estimation [18], signal demodulation  [19], and so on. Expressing has proven to have 

good outcomes.  

 

Despite the initial success of deep learning in image classification, its capabilities have evolved 

significantly, extending beyond mere categorization. Object localization refines this process by 

focusing on precisely locating a single primary object.  Object detection has emerged, which 

enables the identification and localization of multiple objects inside an image through bounding 

boxes. The field has reached new heights with instance segmentation, a sophisticated task that 

goes beyond detection by providing pixel-level segmentation for each individual object in an 

image. In semantic segmentation, every pixel in an image is categorized into predetermined 

groups without making a distinction between different occurrences of the same class. To 

highlight the unique characteristics of each recognition task, Figure 1 presents a thorough 

comparison of output from them all[20]. However, this transformation demonstrates the 

versatility of deep-learning models and their capacity to handle a wide range of challenging 
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visual tasks. This progress has not only transformed the field of computer vision but has also 

opened up new paths for study and practical applications. 

 

Moreover, numerous deep learning algorithms that were created for object detection have also 

been successfully applied to signal detection problems, generating impressive results [21], [22]. 

These algorithms have persuasively demonstrated their appropriateness for signal detection, 

identification, and characterization [23].However, to the best of our knowledge, there have been 

few studies on jointly performing radio interference detection and automatic modulation 

recognition. In addition, the existing methods do not localize interference signals in the signal of 

interest and recognize various interference shapes. Because this information helps to distinguish 

between non-intentional and intentional interferences, which are commonly referred to as 

jamming. Overcoming these obstacles is critical for anti-jamming and cognitive radio decision-

making applications. However, by utilizing deep learning techniques, specifically object 

detection and instance segmentation, it is possible to address these limitations at the same time. 

 

 
 

Figure 1: Comparative Output Across Recognition Tasks: (a) Image Classification, (b) Object Bounding 

Box Localization, (c) Semantic Segmentation, and (d) Instance Segmentation [16]. 

 

In this study, Mask R-CNN is the chosen framework because it can detect objects and create 

precise segmentation masks. It can handle complex shapes, multiple objects, and fine details. It is 

flexible and can be used in different situations. It is easy to use and has been successful in many 

computer vision tasks. In this paper, we give a novel concept to radio frequency interference 

detection by treating Automatic Modulation Recognition (AMR) and Radio Frequency 

Interference (RFI) detection as both an object detection and segmentation task. Our proposed 

methodology demonstrates robust performance in addressing key challenges associated with 

AMR and RFI detection. Specifically, we focus on scenarios characterized by varying signal-to-

noise ratios (SNR), modulation complexities, and interference patterns. However, this research 

sets itself apart from earlier studies by making distinctive and noteworthy contributions in the 

following ways: 

 

 The classification of received signal types, as well as the segmentation of jamming signals 

from the signals of interest. 

 The multi-label segmentation features of Mask R-CNN are used to simultaneously detect 

multiple interference sources and recognize various interference shapes. 

 Automatic modulation recognition of various digital modulation methods in the presence of 

jamming signals, is performed under varying SNR. 
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The paper is structured as follows: The second section examines previous studies on the topic.  

Section 3 discusses the proposed approach and the dataset used. Section 4 covers algorithm 

evaluation and implementation. In Section 5, the results are thoroughly examined. Section 6 

contains an in-depth examination of the findings. Section 7 concludes by summarizing the key 

findings of the research and offering recommendations for future lines of research. 

 

2.  RELATED WORKS 
 

With the explosive development of deep learning technology (DL), it has been widely used in the 

fields of radio frequency interference (RFI) detection and automatic modulation recognition 

(AMR). However, in this section, we review previous research on AMR and RFI detection in 

cognitive radio, which is directly related to our research.  Various approaches have been 

developed on the subject of AMR. In the research [24], the authors proposed an RNN (recurrent 

neural network) for automatic Modulation Classification (AMC) that performs optimally over 

correlated non-Gaussian noise, white non-Gaussian noise, and white Gaussian noise 

circumstances. However, The authors of the study [25] presented a CNN model for AMC that 

performs well in Multipath fading channels. And even more, Fuxin Zhang et. al. [11]  examined 

Deep Learning for AMR techniques in the study. In-depth comparisons were also offered, 

allowing professionals to assess the various models in light of their applications. As well as 

discussing the available dataset and looking at the characteristics of comparative models. 

However, to the best of our understanding, all of this research does not take into account the 

presence of interference as a parameter, it solely focuses on noise. Notably, interference and 

noise are two different factors that might affect wireless communication systems. RFI detection 

has been investigated in numerous studies using various methods. In order to differentiate the 

astronomical signal from the numerous, intricate RFI characteristics. A revolutionary method for 

reducing RFI signals in radio data was suggested by Joël Akeret et. al. [26], and it was based on 

U-Net. This method has been applied to the issue of image segmentation, where each pixel in an 

input image is given a class label. A set of features that were taken from the input time-ordered 

data (TOD) from a radio telescope were learned by this U-Net. Moreover, Oyedare et al. [8] 

performed a comprehensive analysis of various methodologies that utilize deep learning to 

address interference mitigation. This involves the direct extraction of interference attributes from 

data, eliminating the reliance on expert systems for the identification of key characteristics. The 

paper also includes a systematic taxonomy of wireless communication difficulties. The paper 

covers an extensive variety of strategies that use deep learning to minimize interference. The 

methods investigated encompass both supervised and unsupervised DL methodologies. On the 

other hand, The authors  [22] combined the cyclostationary detector and the R-CNN (region-

based convolutional neural network ) for signal identification, detection, and characterization, 

demonstrating that it is powerful under the influence of additive white Gaussian noise (AWGN) 

and performs better than widely used network designs like AlexNet, GoogLeNet, and VGG 16.  

In this research [27], the authors present an automatic clutter and interference identification 

approach in range-doppler spectrum images produced by high-frequency surface wave radar 

(HFSWR) using Faster R-CNN. However ,the authors of the research [21] employ the Faster-

RCNN framework to locate and detect wireless RF signals of interest in frequency and time if 

undesired signals are generating RFI. They take Bluetooth and microwave oven signals into 

account as RFI and Wi-Fi signals that are of concern. For the multiuser automatic modulation 

categorization of compound signals, the authors of the research [28]  suggested a new deep multi-

label learning-based framework (MLAMC). Using the signals used to jam radar as an illustration. 

Three processingsteps are included in the proposed framework: the extraction of the time-

frequency representation image (TFRI) for signal pre-processing, the construction of the multi-

label convolutional neural network (MLCNN) for multi-label classification, and the multi-

decision threshold optimization for output label choice.  The researchers in the article  [29] 

studied two unsupervised machine learning algorithms for identifying radio frequency 
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interference (RFI), the SVDD (the support vector data description) approach and the one-class 

support vector machine (SVM) approach, in order to identify abnormal interference signals. They 

were then compared using the CI, CWI, and MCWI interference signals. They concluded that 

One-Class SVM is outperformed by SVDD. With the same datasets, The authors of the research 

[30]  used a DL-based approach leveraging transfer learning such as VGG-16, GoogleNet, 

ResNet-18, and AlexNet. In order to recognize the kind of received signals and the type of 

modulation utilized in those signals. And they showed that the performance of all the pre-trained 

architectures is largely identical. 

 

However, most studies have focused on AMR in the presence of signal-to-noise, with few studies 

addressing modulation recognition in the presence of jamming signals. Moreover, these studies 

have used classical classification approaches that require distinct classifiers or models for each 

type of interference, resulting in increased hardware requirements and computational costs. 

Additionally, these approaches do not give a deeper understanding of the types of interference 

required in the cognitive radio system to differentiate between intentional and malevolent 

interference.  In our study, we address these limitations by using the Mask R-CNN algorithm, 

which allows us to recognize the modulation type of the received signal and detect the type of 

interference. This provides us with a deeper understanding of the jamming signal and enables us 

to recognize multiple jammers in the signal of interest with the type of modulation used in the 

received signal. By using Mask R-CNN, we can simultaneously detect and classify modulated 

signals and interference sources in radio frequency-based communication systems, without the 

need for separate models for each type of interference. This reduces hardware requirements and 

computational costs while improving the accuracy and efficiency of the system. 

 

3.  MATERIALS AND METHODS 
 

3.1. System Model 
 

This study presents a Deep Learning (DL) approach for radio frequency interference (RFI) 

detection and automatic modulation recognition (AMR) that takes advantage of object 

classification, detection, and segmentation strategies. We employ a scalogram dataset. This 

dataset provides a detailed time-frequency representation of signals, providing valuable insights 

into signal variations caused by different types of interference. The dataset was carefully labeled 

to distinguish between the signal of interest (SOI) or modulation kind of the received signal and 

various interference types, such as continuous wave interference (CWI), multi-continuous wave 

interference (MCWI), and chirp interference (CI). The Mask R-CNN architecture was used to 

train models for AMR as well as interference detection. The training process involved leveraging 

the labeled dataset to teach the models to accurately recognize and localize modulation types and 

interference patterns. The performance of the trained models was rigorously evaluated. Figure 2 

shows an outline of the suggested framework. However, In the first phase of our research, we will 

only look at the signal of interest (SOI) and the type of interference without paying attention to 

the modulation utilized. These interferences are known as CWI, MCWI, and CI. Furthermore, in 

the second part, we will evaluate the suggested method in tree-type interference mixed with the 

signal of interest (SOI), where each signal of interest correlates to a known form of modulation 

such as 8 APSK, 16 APSK, 32 APSK, and QPSK. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.5, September 2024 

28 

 
 

Figure 2: Block diagram of the suggested AMR and radio interference detection framework. 

 

3.2. Mathematical Descriptions of Signal Jammers 

 

The three forms of interference that are especially addressed in this paper are chirp interference 

(CI), multi-continuous wave interference (MCWI), and continuous wave interference (CWI). The 

definition and mathematical representation of each type are as follows: 

 

Chirp Interference (CI): A signal that fluctuates in frequency over time is known as a chirp 

signal. It can be produced by sweeping the frequency of a sinusoidal signal within a 

predetermined frequency range. In a wireless communication system, chirp signals that are 

unintentionally or unwelcomely present and interfere with the desired signals are referred to be 

CI. The mathematical equation (1) for it is as follows [30]: 

 
𝐶𝐼 = 𝑒𝑥𝑝( 𝜋𝑚𝑡2 + 2𝜋𝑓0𝑡) 

Where 𝑚 =
𝑓1−𝑓0

𝑇
 

 
Where the signal sweeps from f0 to f1. such that T is the duration of the sweeping period. 

 

Continuous Wave Interference (CWI): is a type of interference that disrupts or interferes with the 

desired communication signals in wireless communication systems. CWI refers to any 

narrowband signal that may be properly displayed in the form of sinusoids in the GNSS bands. It 

can be produced intentionally by signal producers or jammers, unintentionally by unwanted 

emissions such as instrument landing system (ILS) harmonics, VHF TV and UHF, VHF 

omnidirectional radio range (VOR), or by any adjacent electronic equipment [31],[30].However, 

The CWI can be mathematically represented as follows: 

 
𝐶𝑊𝐼 = 𝑒𝑥𝑝( 𝑗2𝜋𝑓𝑐𝑓𝑡) 

 

Where  𝑡 and 𝑓𝑐𝑓 indicate the interference duration and center frequency, respectively. 

 

Multi Continuous Wave Interference (MCWI): refers to the interference that arises from several 

continuous wave transmissions interfering with a wireless communication system at the same 

time. These interfering signals can also have varied frequencies and power levels, and each 

interference can be characterized by continuous waveforms as shown by the equation (3). 
 

𝑀𝐶𝑊𝐼 = 𝑒𝑥𝑝( 𝑗2𝜋𝑓𝑐𝑓1𝑡) + 𝑒𝑥𝑝( 𝑗2𝜋𝑓𝑐𝑓2𝑡) 

 

 Where 𝑓𝑐𝑓1and 𝑓𝑐𝑓2 are the center frequencies of each wave. 

 

(1) 

(2) 

(3) 
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3.3. Datasets 
 

This dataset [30] comprises the scalogram of RFI signals for RFI classification and Modulation 

recognition applications. SoI is a video stream that is sent using DVB-S2 standards in real-time 

satellite-to-ground communication. CWI is formed by combining Continuous Wave Interference 

(CWI) and SOI. MCWI is an abbreviation for Multi-CWI and SoI combined, whereas CI is an 

abbreviation for SoI mixed with Chirp Interference. Furthermore, SoI has been transmitted 

utilizing QPSK, 8APSK, 16APSK, and 32APSK modulation patterns, among others. Signal-to-

noise ratio (SNR) conditions for the dataset ranged from 5 to 12 dB. Examples of the various 

scalogram images are displayed in Figure 3. Table 1 displays all dataset characteristics. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Examples of datasets used in this work are as follows: (a) 8APSK (SOI) with no interference, (b) 

8APSK(SOI) +CI, (c) 8APSK(SOI) +CWI, and (d) 8APSK(SOI) +MCWI. 
 

Table 1. the complete dataset characteristic 

 
 

 

 

 

Automatic Modulation Recognition 

(AMR) 

 

CI 

8APSK 300 pictures 

16APSK 300 pictures 

32APSK 300 pictures 

QPSK 300 pictures 

 

CWI 

8APSK 300 pictures 

16APSK 300 pictures 

32APSK 300 pictures 

QPSK 300 pictures 

 

MCWI 

8APSK 300 pictures 

16APSK 300 pictures 

32APSK 300 pictures 

QPSK 300 pictures 

 

SOI 

8APSK 300 pictures 

16APSK 300 pictures 

32APSK 300 pictures 

QPSK 300 pictures 

 

Radio interfernce detection (RFI) 

 

CI 1200 pictures 

CWI 1200 pictures 

MCWI 1200 pictures 

SOI 1200 ictures 
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3.3.1. Data Set Annotation 

 

Accurate and detailed annotations are essential for training robust models, especially Mask R-

CNN, which relies on precise instance segmentation. Data annotation entails outlining and 

labeling objects of interest within images (SOI, CI, CWI, MCWI, 8 APSK, 16 APSK, 32 APSK, 

and QPSK) thereby providing ground-truth information to the model for learning. In this study, 

the labeling tool Make Sense [32] is used to annotate the type of modulation and the area of 

interference for each transmission and generate corresponding JSON files. A sample of this 

process is shown in figure 4 and in figure 5. 

 

 
 

Figure 4. An illustration of the annotation process for "CI" and “32APSK” 

 

 
 

Figure 5. An illustration of the annotation process for "CWI" and "16APSK”. 

 

3.4. Mask R-CNN 
 

Mask R-CNN (Region-based Convolutional Neural Network), a multi-task deep neural network 

built on top of Faster R-CNN, performs tasks including object detection and instance 

segmentation. It belongs to the class of architectural detectors with two phases, which are 

renowned for their excellent precision and accuracy [33]. There are multiple phases that can be 

applied with the Mask R-CNN approach. However, figure 6 depicts the entire architecture of the 

proposed algorithm. 
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Figure 6. Illustration of Mask R-CNN architecture 

 

Backbone Network: In deep learning, the backbone network is a form of neural network that acts 

as the foundation for many other neural networks. A deep learning backbone network is a form of 

artificial neural network (ANN) made of numerous processing layers linked together. The term 

backbone often refers to the feature-extracting network that converts input data into a certain 

feature representation. There are many popular CNN architectures that we can use as a backbone 

in neural networks, such as ResNet101 [34] and ResNet-50 [35]. 

 

Region Proposal Network (RPN): RPN was created to solve the limitations of selective search, an 

offline method that is computationally expensive [36]. It is critical in the Mask R-CNN approach 

since it generates a list of recommended places known as regions of Interest (ROIs) where objects 

may be present. The RPN operates based on the feature map generated from the backbone 

network. It is also more efficient. 

 

ROI Align: A crucial step in the Mask R-CNN approach is called ROI Align, which aims to 

match the properties of recommended Regions of Interest (ROIs) with predetermined spatial 

dimensions. It eliminates the flaws of the past approach recommended Regions of Interest (ROIs) 

with predetermined spatial dimensions. It eliminates the flaws of the past approach (Faster 

R_CNN), such as quantization or pooling, which could lead to misalignments and incorrect mask 

predictions [33].  

 

Classification and Bounding Box Regression: The Mask R-CNN approach continues on to the 

classification and bounding box regression stages after obtaining aligned features from the ROI 

Align step. In order to accurately localize the objects, it is necessary to give object class labels to 

the suggested Regions of Interest (ROI) during this phase and improve the bounding box 

coordinates. The model can learn and generalize well across many instances of objects thanks to 

this sharing of parameters, which also enables quick calculations. 

 

Mask Prediction: The final stage in the Mask R-CNN procedure is to predict the pixel-level 

masks for each occurrence of an item within the indicated ROIs. Each ROI-aligned feature map is 

fed into the mask head to generate a binary mask for the object. Mask R-CNN extends the 

capabilities of classic object detection frameworks by adding pixel-level segmentation and mask 

prediction [33]. This allows for a more in-depth study and analysis of objects contained within an 

image. 

 

These components work together for object detection and instance segmentation tasks. The 

backbone network extracts high-level features from the input image. The FPN creates a multi-

scale feature pyramid, enabling the model to handle objects of various sizes effectively. The RPN 

generates region proposals, and ROIAlign ensures precise feature extraction for each region 
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proposal, leading to improved segmentation accuracy, particularly for small objects. The mask 

head generates segmentation masks for each detected object, enabling fine-grained pixel-level 

boundaries for accurate and detailed instance segmentation. 

 

3.4.1. Interference Detection Mechanisms 

 

The input image is suggested by the backbone network, which is built on a pre-trained deep 

convolutional neural network. In this study, we used ResNet101 [34] and ResNet50 [35] to 

extract the high-level features. The region proposal network (RPN) then makes use of these traits 

to provide candidate object suggestions, which include possible areas of interest (ROIs) where 

objects can be found. The proposed ROIs are then further refined and classified into distinct 

object categories through the application of fully connected layers and SoftMax functions. This 

allows for the precise identification of a variety of signal components, including the signal of 

interest (SoI), modulation types such as QPSK, 8APSK, 16APSK, and 32APSK, as well as 

interference sources, including CI, CWI, and MCWI. 

 

3.4.2. Loss Function Components in Mask R-CNN 

 

During training, the mask R-CNN approach establishes the multi-task loss function for each ROI 

sampled as follows: 

 
𝐿 = 𝐿𝐶𝐿𝑆 + 𝐿𝐵𝑂𝑋 + 𝐿𝑀𝐴𝑆𝐾  

Where 𝐿𝐶𝐿𝑆 stands for classification loss, 𝐿𝐵𝑂𝑋stands for boundary box loss, and 𝐿𝑀𝐴𝑆𝐾 stands 

for segmentation loss and L is the total cost loss function. 

 
 Classification Loss 𝐿𝐶𝐿𝑆: 

 

𝐿𝑐𝑙𝑠(𝑝𝑗, 𝑝𝑗
∗) = −𝑙𝑏[𝑝𝑗𝑝𝑗

∗ + (1 − 𝑝𝑗)(1 − 𝑝𝑗
∗)] 

Where:𝑙𝑏 depicts the log loss function. 𝑝𝑗 is the anticipated probability that the anchor point is the 

target; 𝑝𝑗
∗indicates the anticipated value of the associated real area label. 

 

 Bounding Box Regression Loss 𝐿𝐵𝑂𝑋: 
𝑙𝑏𝑜𝑥(𝑡𝑗, 𝑡𝑗

∗) = 𝑅(𝑡𝑗 − 𝑡𝑗
∗) 

Where 𝑡𝑗denotes the four parameterized coordinate vectors of the predicted frame, 𝑡𝑗
∗ represents 

the coordinate vector relating to the real area's boundary, and 𝑅  denotes the robust loss function. 

 
 Mask Segmentation Loss 𝐿𝑀𝐴𝑆𝐾 : 

 

𝑙𝑚𝑎𝑠𝑘 = −
1

𝑦
∑[𝑦𝑗

∗ 𝑙𝑔 𝑝 (𝑦𝑗) − (1 − 𝑦∗
𝑗
) 𝑙𝑔( 1 − 𝑝(𝑦𝑗))]

𝑗

 

Where y is the number of pixels, 𝑦∗
𝑗denotes the category label where a pixel is positioned, and 

the probability of the 𝑦𝑗  predicted category is represented by 𝑝(𝑦𝑗). 

 

4. EXPERIMENT AND ALGORITHM EVALUATION 
 

4.1. Implementation Detail 
 

Mask R-CNN with the backbone Resnet101 and Resnet50 architecture was utilized in this work 

to detect and segment interference as well as recognize signal modulation used by receivers. To 

realize the algorithm network, this experiment used the Mask R-CNN implementation as 

(4) 

(5) 

(6) 

(7) 
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provided by Matterport [37]. Python was specifically used for the work experiments through 

Anaconda, a distribution that combines TensorFlow 2.2 [38] and Keras version 2.3.1 [39] with 

Python 3.7. Moreover, the transfer learning technique was used to fine-tune the weights of the 

pre-trained model. This approach leverages pre-existing knowledge from models trained on large 

datasets to improve performance on our specific task. The dataset was randomly divided into two 

groups for training and validation: 80% for training and 20% for validation. This partitioning 

process was used to guarantee that there is enough data for model learning while also retaining a 

separate set for evaluating the model's performance on unseen samples.  The training set was 

used to maximize the parameters of the model, while the validation set was used to fine-tune the 

model and avoid overfitting. The following Table 2 provides an overview of the training 

parameters:  

 
Table 2. training settings 

 
settings value 

Learning rate 0.001 

LEARNING_MOMENTUM               0.9 

WEIGHT_DECAY                   0.0001 

STEPS_PER_EPOCH                 100 

POOL_SIZE                       7 

MASK_POOL_SIZE                  14 

Steps per Epoch 100 

Validation Steps 50 

Number of Classes AMR 7 

RFI detection 4 

 

5. PERFORMANCE EVALUATION 
 

This section depicts the simulation results of the proposed methodology for RFI recognition as 

well as AMR. Object detection and image segmentation are critical problems in computer vision 

with different evaluation parameters. The goal of object detection is to accurately locate and 

identify items in a picture. However, the accuracy and effectiveness of the models are typically 

assessed using performance metrics like mean average precision (mAP), mean average recall 

(mAR), and F1 score in tasks that include object detection and instance segmentation. 

Furthermore, accuracy defines the frequency with which a model generates accurate predictions. 

It is determined by dividing the total number of predictions the model makes by the number of 

accurate predictions. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

True negatives (TN) represent cases where the model accurately predicted the negative category. 

True positives (TP) occur when the ground truth is positive, and the model correctly predicts it as 

positive. False positives (FP) correspond to cases where the model predicts the positive category, 

but the ground truth is negative. False negatives (FN) denote instances where the model predicts 

the negative category, but the ground truth is positive. 

 

The equation for mAP is as follows: 
 

∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛(𝐴𝑃)𝐽
𝐽=𝐾
𝐽=1

𝐾
 

 

(8) 

(9) 
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considering that  (𝐴𝑃)𝐽 indicates the average precision of the Jth class, K represents the total of 

classes being assessed.  

 

The equation formAR: 

𝑚𝐴𝑅 =
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒 𝑐 𝑎𝑙𝑙(𝐴𝑅)𝐽

𝐽 = 𝐾
𝐽=1

𝐾
 

 

Where  (𝐴𝑅)𝐽 denotes the average precision of the Jth class, K represents the total of classes 

being assessed. 

The equation for F1_score: 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
(2 ∗ 𝑚𝐴𝑃 ∗ 𝑚𝐴𝑅)

(𝑚𝐴𝑅 + 𝑚𝐴𝑃)
 

 

These metrics provide a detailed understanding of different aspects of the model's effectiveness 

and ensure a robust evaluation of the model's performance. 

 

6. RESULTS 
 

6.1. Radio Frequency Interference Detection 
 

In this part, we trained our algorithm to detect and segment the various types of interferences 

present in interest signals, such as MCWI, CWI, and CI, using ResNet101 and ResNet50 with the 

same hyperparameter values. These experiments were conducted under different AWGN power 

levels in the range of -168 to -125 dBm, approximately equivalent to Signal-to-Noise Ratios 

(SNR) of 5 to 12 dB. The models demonstrated their efficacy by providing excellent results 

across a variety of performance indicators, as shown in Table 3. Furthermore, figure 7 depicts 

outputs, providing a qualitative perspective on the effectiveness of our method, and provides 

visual insights into the model's capabilities. 

 
Table 3.The evaluation values of our model for RFI using ResNet101 and ResNet50 

 
Validation test 

 mAP mAR F1_secore accuracy 

ResNet101 0.946 0.954 0.947 0.952 

ResNet50 0.937 0.946 0.941 0.945 

 

The models precisely detect the objects and give high-quality bounding boxes for the three 

classes on the test dataset, with a high mAP score of 0.946 for ResNset101 and 0.937 for 

ResNet50. The high mAP score demonstrates that the models can accurately determine whether 

objects are there and where they are. Besides, Mask R-CNN architecture with a ResNet101 

backbone has a mAR value of 0.954, while ResNet50 has a value of 0.946, indicating good 

effectiveness in object recall under different scenarios. These mAR scores demonstrate the 

model's ability to recall and correctly identify "CWI", "MCWI" and "CI" objects within the signal 

of interest. Moreover, the F1scores of 0.947 and 0.941 for Resnet101 and Resnet50, respectively, 

are balanced statistics that account for both recall and precision. Because they have a high 

harmonic mean between recall and precision, they are an effective overall measure of the model's 

performance. With these values of the F1score, the models appear to have a decent balance 

between identifying true positives and reducing false positives and false negatives.Moreover, 

both models demonstrate high accuracy, with ResNet101 achieving 0.952 and ResNet50 reaching 

0.945, highlighting their overall correctness in predictions. However, as shown in the table, 

(10) 

(11) 
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ResNet101 outperforms ResNet50 due to superior results, which can be attributed to a variety of 

factors, including its deeper architecture and enhanced ability to capture complex information. 

 

 
 

 

 

 
 

Figure 7. A and B illustrate the results of object detection and instance segmentation, respectively.  They 

were accurately generated from the same input using Mask R-CNN. Both outputs clearly show the 

presence of ‘SOI’ without any interference. The output pictures C and D, which were generated from the 

same input using Mask R-CNN, demonstrate the outcomes of object detection and instance segmentation, 

respectively. They show the existence of 'CWI' interference in the SOI. The output pictures E and F, which 

were generated from the same input using Mask R-CNN, demonstrate the outcomes of object detection and 

instance segmentation, respectively. They show the existence of multiple continuous wave interference 

(MCWI) in SOI. The output pictures G and H, which were generated from the same input using Mask R-

CNN, demonstrate the outcomes of object detection and instance segmentation, respectively. They show 

the existence of 'CWI' interference in the SOI. 
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6.2. Automatic Modulation Recognition 
 

In this section, we utilized the Mask R-CNN algorithm with two different backbones, ResNet101 

and ResNet50, to train and recognize various types of modulation including 8APSK, 16APSK, 

32APSK, and QPSK. Additionally, the algorithm was trained to accurately segment different 

types of interference in signal modulation, such as MCWI, CWI, and CI. The training dataset 

encompassed a range of Additive White Gaussian Noise (AWGN) power levels from -168 to -

125 dBm, approximately corresponding to Signal-to-Noise Ratios (SNR) ranging from 5 to 12 

dB. The results presented in Table 4 demonstrate the effectiveness of the Mask R-CNN model for 

automatic modulation recognition under diverse interference scenarios, leveraging ResNet101 

and ResNet50 architectures. Notably, the performance metrics including mAP, mAR, F1 score, 

and accuracy values for ResNet50 and ResNet101 reveal a significant performance disparity 

between the two models. Specifically, the findings indicate that ResNet101 consistently 

outperformed ResNet50 across all evaluation criteria, highlighting its superior performance in 

this context. 

 
Table 4. The evaluation values of our model for AMRusing ResNet101 and ResNet50 

 
Validation test 

 mAP mAR F1_secore accuracy 

ResNet101 0.898 0.916 0.907 0.914 

ResNet50 0.891 0.91 0.9 0.909 

 

The models demonstrate robust performance across critical parameters, highlighting their 

proficiency in achieving high mAP, mAR, and accuracy levels. These metrics emphasize the 

models' exceptional ability to accurately identify a wide range of modulation schemes and 

effectively segment interference zones within received signals. The combined capabilities of 

Mask R-CNN in precise interference detection and AMR establish it as a valuable tool with 

versatile applications. Figure 8 visually presents the distinct masks generated by our model to 

pinpoint instances of CWI, MCWI, and CI, alongside the modulation types utilized in the primary 

signal, such as 8APSK, 16APSK, 32APSK, and QPSK. Each uniquely color-coded mask 

signifies a specific type of interference present within the signal of interest, enhancing the clarity 

and accuracy of both interference identification and modulation recognition processes. 

 

7. DISCUSSION  
 

In this study, we have presented a comprehensive analysis of the use of Mask R-CNN for 

automatic modulation recognition and interference identification in radio frequency-based 

communication systems. Our results demonstrate that Mask R-CNN is a promising solution for 

addressing the challenges posed by the coexistence of modulated signals and interference in 

wireless communications. Despite the different goals of the two models, we achieved notable 

performance in both tasks. The RFI model achieved high precision and recall by optimizing the 

labeling strategy with fewer categories, while the AMR model recognized four discrete 

modulation schemes (8APSK, 16APSK, 32APSK, and QPSK) and three interference classes (CI, 

CWI, and MCWI). However, the need to differentiate among different background modulation 

schemes added complexity, which reduced the AMR model's performance compared to the RFI 

model. Moreover, our research provides a comprehensive analysis of ResNet101 and ResNet50, 

revealing a consistent and notable trend: ResNet101 consistently outperforms ResNet50 across all 

performance metrics in both tasks. The deeper architecture of ResNet101 confers distinct 

advantages, enabling it to excel in multiple facets of object detection and segmentation. This 

superiority is evident in its elevated mAP, mAR, and accuracy scores. The persistent dominance 

of ResNet101 underscores its effectiveness in capturing intricate features and subtle patterns, 
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thereby enhancing its overall performance in the designated tasks. The outcomes have shown the 

Mask R-CNN's effectiveness in addressing the difficult issue of interference detection and 

localization and have offered valuable knowledge that can considerably progress interference 

analysis, jamming countermeasures, and interference. The segmentation results from Mask R-

CNN have proven to be a goldmine of information, and the high-resolution segmentation maps 

offer a visual representation of the interference shapes and strategies used by jammers.  

 

 
 

 
 

Figure 8. The two images, A and B, illustrate the results of object detection and instance segmentation, 

respectively. They were accurately generated from the same input using Mask R-CNN. Both outputs 

clearly show the presence of ‘QPSK’ without any interference. The output pictures, C and D, obtained 

from the same input using Mask R-CNN, demonstrate the outcomes of object detection and instance 

segmentation, respectively. These results effectively demonstrate modulation recognition ('8APSK') and 

interference detection ('CI'). The output pictures, E and F, obtained from the same input using Mask R-

CNN, demonstrate the outcomes of object detection and instance segmentation, respectively. These results 

effectively demonstrate automatic modulation recognition ('32APSK') and interference detection ('CWI'). 

The output pictures, A and B, obtained from the same input using Mask R-CNN, demonstrate the outcomes 

of object detection and instance segmentation, respectively. These results effectively demonstrate 

automatic modulation recognition ('8APSK') and interference detection ('MCWI'). 
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Moreover, the Mask R-CNN technique introduces additional parameters not typically available in 

classification-based methods. Prior studies utilized two unsupervised machine learning 

algorithms [29] and deep learning models like VGG-16, GoogleNet, ResNet-18, and AlexNet 

[30] for RFI identification through transfer learning. Table 5 underscores the differences between 

our approach and existing research. While previous studies focused on training separate models 

to detect specific interference types within AMR contexts, our method achieves simultaneous 

detection of multiple interferences and identifies all four modulation types using a unified model, 

yielding promising outcomes. This advancement not only improves performance but also 

significantly reduces hardware requirements. Furthermore, this method enhances understanding 

of jamming mechanisms and reveals previously undetected interference types. This knowledge 

enables proactive adjustments to enhance countermeasures against evolving interference tactics. 

 

However, notable constraints must be recognized regarding the proposed algorithm, particularly 

concerning its computational complexity and the time required for model training. The intricate 

nature of interference detection, coupled with the complexity of the data, demands substantial 

computational resources. Consequently, the training process can be significantly time-consuming, 

potentially extending over many hours. 
 

Table 5 . A comprehensive comparison of our proposed method to existing method 

 
Accuracy 

Ref Algorithm 

 

RFI 

detection 

Automatic modulation recognition (AMR) 

 

remarks 

In 

presence 

only of 

CWI 

In 

presence 

only of 

MCWI 

In 

presence 

only of 

CI 

In 

presence 

only of 

SOI 

In 

presence 

of all 

jammers 

at same 

time 

[30] AlexNet 97.1% 90.30% 71.4 % 79.2% 95% X Suitable for 

isolated 

classification 

tasks 

VGG-16 97.5% 86.1% 71.9 % 87.3% 90.08% X 

GoogleNet  96.9% 88.1% 71.10 % 87.10% 89.7% X 

ResNet-18 98.3% 92.2% 71.7 % 81.90% 93.6% X 

[29] one-class support 

vector machine 

(SVM) 

91.67 % X X X X X It doesn't 

provide any 

information 

about the 

modulation of 

the received 

signal. 

support vector data 

description 

(SVDD) 

90.74 % X X X 

 

X X 

Our 

proposed 

method 

 

Mask

RCNN 

ResNet101 95.2% X X X X 91.4% -Provides 

detailed spatial 

analysis 

- Simultaneous 

detection of 

multiple 

interference 

sources 

ResNet50 94.5% X X X X 90.9% 

 
X: Not tested 
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7.1. Practical Implementation 
 

The trained Mask R-CNN model, meticulously tailored for AMR and RDI Detection 

applications, finds practical deployment avenues in real-world cognitive radio systems. Its 

implementation is notably adaptable to FPGA SDR platforms [40] and specialized hardware such 

as the Xilinx ZCU111 RFSoC platform [41]. These platforms offer the computational power 

necessary for efficient real-time processing, guaranteeing swift and responsive actions in the face 

of dynamic radio environments. The inherent compatibility of Mask R-CNN with existing 

hardware infrastructure further streamlines its integration into cognitive radio systems. This 

compatibility ensures a seamless fit, providing a cost-effective and practical solution for spectrum 

management and interference mitigation within wireless communication networks. 

 

 By harnessing the capabilities of FPGA SDR platforms and specialized hardware like the Xilinx 

ZCU111 RFSoC, our proposed model not only aligns with the demanding processing 

requirements of cognitive radio but also delivers a robust and feasible approach to address real-

world challenges in wireless communication scenarios. The parallel processing capabilities of 

FPGAs facilitate real-time processing, reducing latency and ensuring timely responses to 

incoming signals. Additionally, FPGAs offer efficient resource utilization, allowing for optimized 

implementation of complex deep learning models on hardware, which is crucial for real-time 

processing in cognitive radio systems. Furthermore, FPGA platforms provide flexibility and 

reconfigurability, enabling easy adaptation to changing modulation types, interference patterns, 

and system requirements in dynamic radio environments. 

 

8. CONCLUSION AND FUTURE WORK 
 

 In this research, we presented a novel approach based on the mask R-CNN algorithm for 

automatic modulation recognition and radio frequency interference detection. The experimental 

results in the scalogram of the received signal demonstrate that the proposed method is best 

suited and effectively enhances the accuracy of interference detection and automatic modulation 

recognition in radio frequency-based communication systems. Its ability to provide insights into 

interference patterns, combined with extra characteristics and real-world applicability, makes it a 

potent and indispensable instrument in the field of cognitive radio and wireless communication, 

especially for anti-jamming. In addition, these findings highlight the significance of adopting a 

suitable backbone architecture depending on the task's individual requirements. While ResNet101 

exhibits greater performance, the related computational cost must be considered, making the 

decision between ResNet50 and ResNet101 dependent on achieving a compromise between 

performance and resource efficiency. 

 

In the future, we will enrich the datasets of various environments to train our model on all types 

of jammers in order to predict all jammers and detect and identify dangerous signals in a wide 

range of communications. As a result, it can be immediately applied to cognitive radio, the 

Global Navigation Satellite System (GNSS), and generally in the field of signal processing to 

detect and identify harmful signals, and by doing so, we can increase the quality of our wireless 

radio network. 
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