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ABSTRACT 
 
In wireless sensor networks (WSNs), sensor nodes are constrained by resource constraints. The limited 

energy supply and susceptibility to failure greatly affect WSN lifespan, hindering long-term deployment. 

ENIAO is an Integrated cross-layer Optimized Routing Approach for WSNs that is fault-tolerant and 

energy-efficient. A bio-inspired clustering architecture and adaptive duty cycling are incorporated into 

ENIAO's routing optimization. In a clustering protocol, the network is partitioned, and paths are 
dynamically optimized within and between clusters. By optimizing active/sleep schedules, duty cycling 

optimizes energy efficiency. A variety of network conditions have been simulated to assess ENIAO's 

performance. Regarding fault tolerance and energy consumption, ENIAO significantly prolongs the 

network lifetime. As compared to benchmark protocols, it achieves higher throughput. As a result of the 

cross-layer design, ENIAO is automatically adapted to optimize energy usage and routing reliability. In the 

long run, large-scale IoT deployments are possible with ENIAO due to the integrated approach. 
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1. INTRODUCTION 

 

The wireless sensor network is an important technology for monitoring the environment, 
controlling traffic, and monitoring health. A WSN consists of spatially distributed autonomous 

sensors monitoring temperature, motion, and sound conditions [1]. A severe resource constraint is 

hindering the widespread deployment of WSNs, especially limited energy availability and high 

sensor failure rates [2]. 
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A sensor node is typically powered by a battery with limited capacity. Batteries cannot be 
replaced frequently for networks with hundreds or thousands of nodes. In order to maximize 

network lifetime [3], the time until the first node fails due to battery depletion needs to be 

maximized. Energy consumption in WSNs is dominated by communication activities like data 

transmission and reception. Furthermore, sensors fail prematurely because of hardware faults, 
software errors, and communication links. A node failure can lead to network segmentation and 

lost sensing coverage. A practical deployment of WSNs requires energy-efficient fault tolerance 

techniques [4]. A variety of approaches have been proposed to improve energy efficiency and 
fault tolerance in WSNs [5]. During idle times, duty cycling allows nodes to sleep, which reduces 

energy waste. In network process, it reduces communication costs with data aggregation [6]. For 

recovering from failures, redeployment and replication are investigated [7]. The majority of 
techniques do not integrate energy efficiency and fault tolerance across layers. 

 

This paper proposes an energy-aware faulty node replacement technique based on duty cycling 

and dual clustering and routing optimizations. Through efficient fault handling, this work 
develops a holistic approach that maximizes energy usage across all layers. A duty cycling and 

dual-stage routing optimization method maximizes network lifetime through energy-aware node 

replacement. 
 

In real-world scenarios the ENIAO's innovative design offers diverse applications. By monitoring 

soil and climate conditions, it allows precision agriculture to optimize crop yield and manage 

energy efficiently. The ENIAO platform facilitates distributed sensor networks for environmental 
monitoring, such as tracking pollution and detecting wildfires. A joint optimization approach 

allows the system to monitor infrastructure, traffic, and utilities efficiently in smart cities. 

ENIAO's capabilities allow industrial IoT to optimize processes through reliable and energy-

efficient data collection and actuators in factories and warehouses. In disaster response situations, 
ENIAO's design is especially beneficial since it enables rapid deployment of sensor networks 

under severe constraints. With these applications, ENIAO demonstrates its potential to improve 

the efficiency and reliability of wireless sensor networks in various sectors. 
 

Novelties and contributions are introduced to Wireless Sensor Networks with this approach. The 

paper presents a cluster-based fault detection and replacement method that minimizes the energy 

overhead associated with fault detection. ENIAO uses a dual-optimization strategy using 
weighted clustering and Adaptive Fish School Search, which reduces data transmission energy 

costs significantly. A dynamic sleep interval adjustment mechanism allows nodes to adjust their 

sleep intervals according to network conditions and application requirements. With ENIAO, fault 
tolerance, duty cycling, clustering, and routing are all considered jointly, ensuring they work in 

coordination rather than separately. Simulations have demonstrated the effectiveness of ENIAO 

in enhancing network lifetime and reliability compared with other state-of-the-art methods, 

indicating its potential for WSN optimization. 
 

The key contributions have been made, this proposed method uses clustering to detect faults and 

replace nodes in an energy-efficient manner. In this approach, clustering is performed using 
Improved Harmony Search, the routing is carried out using Fish School Search. The optimization 

of duty cycles based on the current conditions in the network is adaptive. An approach that 

combines fault tolerance, duty cycling, clustering, and routing at the cross-layer level.  During the 
research, ENIAO, a cross-layer framework that optimizes energy efficiency and fault tolerance 

autonomously, was developed. In order for WSNs to operate long-term, this balance must be 

maintained. A reliable and long-lasting sensing system across large areas can be achieved with 

this method. Using its algorithmic mechanisms, a wide range of monitoring scenarios can be 
implemented. 
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This paper is organized as follows: Section 2 provides an overview of related work on fault 
tolerance and energy efficiency in WSNs. A detailed description of the architecture, models, and 

algorithms of the proposed ENIAO approach is presented in Section 3. A comprehensive 

simulation is performed in Section 4 to evaluate ENIAO's performance in comparison to other 

state-of-the-art methods. The paper concludes with Section 5 which discusses possible future 
extensions. 

 

2. LITERATURE REVIEW 
 
Various coverage optimization protocols were discussed by Avinash et.al [8]. A clustering 

protocol and a distributed protocol can be broadly classified as clustering protocols. These 

protocols can also be classified based on the type of sensing model used, node location 

information, and the mechanism used to determine neighbouring nodes. 
 

Ali Forghani Elah Abadi et.al [9] presented an energy-efficient control and routing protocol for 

wireless sensor networks. Reinforcement learning is used to manage energy in the network. By 

using reinforcement learning, this protocol optimizes routing policies to maximize long-term 
rewards for each node. Wireless sensor networks can be improved through three energy 

management approaches. Reduction in route length and energy consumption can be achieved by 

using reinforcement learning. A second approach is to improve node energy consumption by 
utilizing sleep scheduling. Data transmission is restricted based on the change rate of received 

data.  A fault node recovery (FNR) algorithm is proposed by Chaitrali Brahme et.al [10] to 

enhance the lifetime of a wireless sensor network. When the sensor nodes have run out of battery 
power or reached their operational limit, they shut down. Network failures must be detected in 

advance and appropriate measures taken to sustain network operation. The algorithm combines 

grade diffusion and genetic algorithms. Sensor nodes can be replaced fewer times and routing 

paths can be reused. 
 

An improved method based on deep reinforcement learning (DRDC) has been proposed by 

Razieh Mohammadi et.al [11]. To avoid emergency packet loss and unnecessary frequent 

sleep/wake, DRDC considers the change rate of data sensed by BN in addition to its energy. In 
order to accurately determine BN's duty cycle, Deep Q-Network (DQN) is combined with light 

neural networks. With limited EH-BN resources, a three-layered communication architecture is 

used to preserve memory constraints and computational power. EH-BN receives only the trained 
policy, which is executed on a local server. To realize the DQN algorithm's optimal performance, 

(4) it design a reward function. A hybrid meta-heuristic approach using particle swarm 

optimization and gravitational search algorithms was presented by Chen et al. [12], aimed at 

optimizing coverage, connectivity, and energy efficiency in wireless sensor networks. It does not 
explicitly address reliability factors such as fault tolerance. 

  

Using EH methods, energy storage technologies, and EH system architectures, Williams et.al 
[13] surveyed the current state of EH technology for small-scale WSNs. The work combines 

methods and storage, including multi-source and multi-storage architectures, as well as other 

optimizations.  The novel cluster-based routing method presented by Nageswararao Malisetti [14] 
maximizes the network lifetime by making routing progress more effective. It consists of two 

phases: selecting the optimal cluster head using the new Moth Levy Artificial Electric Field 

Algorithm (ML-AEFA), and transmitting the data using the new Customized Grey Wolf 

Optimization (CGWO). In this case, the optimal CH is selected based on energy, node degree, 
distance between sensor nodes, distance between CH and Base Station (BS), and time of death. 

The performance of the implemented method is compared with existing schemes. L. Van Hoesel 

[15] presented a cross-layer approach for wireless sensor networks. Compared to ad hoc wireless 
networks, WLANs use energy-efficient networking protocols. In dynamic network topologies, 
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nodes should be able to last several years on a single battery. To achieve highly energy-efficient 
WSNs, an integrated set of networking protocols is a good solution. Combining medium access 

and routing is our approach. 

 

According to Yu et.al [16], faulty data is detected and discarded locally, thereby minimizing 
network resource consumption and reducing the terminal processing burden. According to 

simulation results, the proposed algorithm improves fault detection accuracy. A WSN fault 

detection and identification approach was developed by Mariachi et.al [17]. It is essential to 
identify and classify data and system fault types to perform accurate recovery actions. HMMs 

capture the fault-free dynamics in an environment and the dynamics of faulty data using our 

method. This HMM is then structurally analyzed to determine the type of data faults and system 
faults. 

 

Since the 1970s, WSN research has advanced considerably to improve energy efficiency and 

fault tolerance. Initially, duty cycling, data reduction, and energy-aware routing were investigated 
to reduce energy consumption. For handling failures reactively, node replication [11], spare 

deployment [12], and mobility-based recovery [13] were investigated. Recently, some researchers 

have looked at combining duty cycle and routing [14], or utilizing mobility to optimize energy 
consumption [15].  

 

I.Abdoulaye et.al [20] propose combining clustering principles with data prediction for smart 
cluster-head selection. By electing an effective CH from among the cluster nodes, SDPM reduces 

transmission and conserves energy by predicting data for the cluster nodes. SDPM reduces 

energy consumption significantly, it potential for real-world WSNs to achieve better energy 

management and longer network lifetimes. R.Jia et.al [21] designed energy-efficient coverage 
methods for WSN nodes, focusing on improving energy efficiency and data transmission 

reliability. An energy-saving node coverage model is based on hierarchical and flat routing 

protocols. Meanwhile, the study explored an energy-efficient coverage method based on the 
improved gray wolf algorithm. It optimizes the deployment of sensor nodes and enhances their 

effectiveness. Results show that the algorithm performs significantly in network coverage 

optimization and achieves 100% coverage. With the 30-dimensional condition, the improved gray 

wolf algorithm shows excellent average performance. 
  

The majority of techniques, however, still deal with problems separately. The combination of 

fault tolerance, routing, duty cycling, and other mechanisms is rare. According to the literature 
review, several research gaps have been identified. It is difficult to combine energy efficiency 

and fault tolerance, and cross-layer solutions to unify multiple wireless sensor networks (WSNs) 

are lacking. The holistic optimization of WSNs does not consider Interdependencies between 
different aspects. Techniques that adapt to changing network conditions are also lacking. 

Additionally, a comprehensive solution is lacking that addresses both energy efficiency and 

reliability. It is necessary to compare proposed methods with state-of-the-art techniques in more 

extensive evaluations. With ENIAO, energy efficiency, and fault tolerance are optimized in a 
coordinated manner across multiple layers. This is a novel approach to joint energy-reliability 

improvements using clustering, routing, and spanning. With ENIAO, dynamic duty cycling is 

combined with clustering-based energy-aware node replacement. 
  

3. PROPOSED SYSTEM  
 

In this work, System nodes are grouped into clusters in a hierarchical cluster architecture. The 

cluster head aggregates data from member nodes and communicates with the base station. 
Among the three key components of the ENIAO architecture are the sensor nodes that collect 

data and serve as sensing, cluster heads, or cluster members; the cluster heads, which manage the 
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member nodes and route data to a base station; and the base station.  In this workflow, nodes 
gather neighbour information and adjust communication range. Using improved harmony search 

optimization, weighted clusters are formed and cluster heads selected. A cluster head detects 

faulty nodes based on missed keep - alive messages and replaces them efficiently. With fish 

school search, cluster heads and base stations are routed. Routing strategy adjusts over rounds 
according to parameters such as energy levels based on duty cycling. A cluster head aggregates 

and routes data to a base station over an optimized topology from nodes. A repetitive cycle of 

clustering, routing, and duty cycling ensures the network's longevity and reliability by 
maintaining an energy-efficient and fault-tolerant topology. Figure 1 shows the flow of the 

proposed work phases. 

 

  
 

Figure 1. Flow of the Proposed System 

 

3.1. Collecting Phase: Collecting Local Information 
 

Each node collects information about its neighbour in this phase. Each sensor node can adjust its 
power level to adapt to a certain communication distance, and each node at its highest power 

level can communicate with another. As communication distance increases, energy is dissipated 

from sending messages. In ENIAO, there is a heterogeneous network of sensor nodes with 
various capabilities and levels of energy at the beginning. It is possible to adjust nodes' roles 

(sensing, routing, etc.) and transmission power. The flexibility allows for optimized energy 

efficiency and network reliability. To conserve power, low-energy nodes can cycle between sleep 
and active states, while high-power nodes handle repetitive tasks. Each node collects local 

neighbour information, adapting its range as necessary. By adapting to dynamic node capabilities 

and constraints, this approach extends network lifetime and improves performance overall. 
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Input: Set of sensor nodes S = {s1, s2..., sn} , Set of initial node energies E0 = {e01, e02,..., 
e0n}, Network area A, Maximum transmission range Rmax, Duty cycling period T 

Output: Network topology at time t, Gt(Vt,Et) , Node roles at time t, Xt 

Algorithm: Collecting Phase 

1. Initialize network 
2. Deploy |S| sensor nodes randomly in the 2D area A 

3. Assign initial energy e0i ~ U(Emin,Emax) to each node si 

4. Set communication range ri = Rmax for all nodes 
5. Node roles Xi = {sensing} 

6. Select CH ⊆ S based on weight wi ~ f(ei) 

7. Group member nodes si ∈ S - CH into clusters based on distance d(si, chj) < rcluster 

8. Duty cycling schedule & Set duty cycle period T 
9. Schedule each node si to sleep/wake up based on ei 

10. Role assignment & Update roles Xi based on ei and available resources 

11. Eligible roles = {sensing, routing, aggregation, dormant} 
12. Adjust transmission range ri of nodes based on ei 

13. Establish routes b/w CH and base station 

14. Periodically update Gt and Et 

15. Return Gt, Xt 

End Algorithm 

 
Algorithm 1. Collecting Phase 

 
This algorithm (1) initializes a heterogeneous network model with random deployment, 

integrating clustering, duty cycling, and role assignment. Depending on resources and 

capabilities, sensor nodes perform sensing, routing, and aggregation. In a duty cycle mode, low-
energy nodes alternate between sleeping and active states. Every sensor node is capable of 

adjusting its transmission power, thereby modifying its communication range. A node's get 

neighbors method allows it to communicate with all its immediate neighbors. Enhanced 

reliability and energy efficiency are achieved by optimizing node roles and communication 
ranges over time. This network's adaptive nature supports dynamic task allocation in response to 

individual nodes' capabilities and constraints, improving system longevity. 

 

3.2. Clustering Phase 
 

To balance energy consumption, a distributed algorithm groups sensor nodes according to 
proximity. It is the Cluster Heads (CHs) who aggregate and transmit data to the Sink Node. A 

node broadcasts its identifiers and energy levels, and a 1-hop neighbor is calculated based on the 

average energy. Those with above-average energy declare themselves as prospective CHs. Nodes 
send Join-Requests to neighboring CHs based on energy and distance criteria. Communication 

schedules are created by CHs and communicated to Sinks. In order to further optimize cluster 

formations, ENIAO incorporates a Harmony Search algorithm that takes weighted attributes into 
account. 

 

3.2.1. Weighted Clustering 

 
Many node attributes affect clustering objectives, including remaining energy, distance to CH, 

and node degree. As determined by sensitivity analysis, ENIAO normalizes the weights of each 

attribute. By calculating the weighted sums of the attribute values of the member nodes, an 
attribute vector is created for each cluster. A vector representation encapsulates cluster properties. 

A number of parameters such as coverage, connectivity, and lifetime are used to evaluate cluster 



International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.5, September 2024 

97 

fitness. A higher probability of selection is associated with clusters with better fitness attribute 
vectors. 

 

Let C as Cluster consists of nodes {i}, then the attribute vector for cluster C is denoted as AC. For 

a node i, the weighted sum Si is given by, 

   
where Aik is the kth attribute of node i, and wk is the weight for the kth attribute. The 

attribute vector for a cluster C, AC is the weighted sum of the attribute vectors of all member 

nodes in the cluster: 

 
The fitness FC of a cluster C is evaluated based on its attribute vector AC: 

 
A function f represents the fitness evaluation criteria (e.g., coverage, connectivity, 

lifetime). A higher fitness cluster has a higher probability of being selected. Cluster C probability 

of selection P(C) is: 

 
where the sum in the denominator is over all clusters Cj. 

 

3.2.2. Improved Harmony Search 

 

Optimizing clustering with Improved Harmony Search (HS) seeks balanced solutions to 
objectives like network lifetime, reliability, and energy efficiency. A harmony memory stores 

historical best solutions, and new clusters are generated by modifying these stored vectors, 

adding random variations controlled by a pitch adjustment rate parameter. Weighed multi-

objective functions evaluate solutions, and superior solutions replace those in memory. To 
enhance exploration, randomization parameters introduce random clusters. Near-optimal cluster 

formation is achieved by repeating this process until a termination criterion is met. A 

combination of weighted attributes and optimization optimizes cluster performance by adapting 
to dynamic network conditions. 

 

In the first phase, ENIAO divides the network into clusters, with one node chosen as cluster head 

(CH). This initial clustering lays the foundation for weighted cluster optimization. Steps to 
follow: 

 

i. Advertisement Phase: Every eligible node broadcasts an advertisement message 
containing its identifier and current energy level to its single-hop neighbors. Identifier IDi 

and energy level Ei are broadcast to single-hop neighbors by node i.  

 
ii. Cluster Set-up Phase: A node decides to join a cluster based on its signal strength after 

receiving advertisement messages. For each cluster, the CH is selected based on its signal 

strength/energy. As each node i receives advertisement messages from its neighbors, it 

joins the cluster with the strongest signal strength Si. 

.  
 

The node with the highest energy Ei within each cluster Ck is selected as the CH: 

 (7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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iii. Scheduling Phase: Member nodes are assigned timeslots by CH nodes using Time 
Division Multiple Access (TDMA). For intra-cluster communication, all cluster nodes 

receive this schedule. 

 
iv. Steady-State Phase: During allocated timeslots, member nodes begin sending data to CHs. 

Before transmitting data to sink nodes, CHs aggregate and compress it. 

 
 

Using the received signal strength, intermediate nodes with higher energy are selected as CHs in 

this initial clustering. A distributed protocol enables self-organization. Schedules prevent 
interference within clusters, improving reliability. Input for improving HS clustering optimization 

is this baseline formation. Load balancing requires periodic re-clustering as nodes deplete energy. 

After initial clustering, ENIAO optimizes cluster formations using weighted attributes and 
Harmony Search. Accordingly, we assign the following near-optimal clustering configuration: 

 

i. Base Station Assignment: The sink node is the Base Station (BS), which collects all 

sensor data. The location is predetermined and known to all nodes. 
 

ii. Cluster Head and Member Assignment: In Cluster Heads (CHs), nodes aggregate and 

transmit members' data. With the improved HS solution, CH assignments are optimal. 
Nodes periodically send keep alive messages to cluster heads. If there is no message within 

a timeout, the member is marked as potentially faulty. Using test requests, cluster head 

verifies suspected nodes. No response marks it as faulty. A faulty node is reported to the 
cluster head. The remaining nodes are assigned to their CHs. Each CH's optimal mapping 

is stored in HS memory. 

 

iii. Role Assignment Notification and Setup: Each node receives its CH/member assignment 
from the BS. The nodes learn their roles and the identities of their CHs. A CH determines 

intra-cluster routes based on connectivity. When needed, multi-hop inter-cluster routing is 

configured to the BS. For balanced data collection and dissemination, ENIAO formalizes 
the cluster structure with optimal node roles and routes. Using this as a basis, it optimizes 

across layers. Figure 2 shows the Assigning of the Base Station. 

 

 
 

Figure 2. Base station Assignment 

 

3.2.3. Fault Detection Phase & Energy Aware Replacement 

 

Nodes in wireless sensor networks fail frequently because of hardware faults, battery 
degradation, and environmental interference. For reliability, local fault detection is essential. By 

monitoring missed keep-alive messages, cluster heads in ENIAO detect failures within their 

(8) 

(9) 
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clusters. Specifically, cluster heads expect periodic keep-alive messages from their members (M). 
The cluster head CHi updates a list of suspected faulty nodes if no message is received from 

member Mj: 

 

                      (10) 
 

Here, FNi is the faulty CHi node list. Mj receives a test request message from CHi: 

send_test_request(CHi, mj). When mj does not acknowledge within a timeout, CHi confirms it as 

a failed node by updating the list: 
 

 
 
With this distributed mechanism, failures are detected locally. Detected failures are reported to 

base stations once identified. It disseminates the faulty node information across the network. 

Keeping neighborhood lists and routing paths current prevents failures.  By replacing faulty 
nodes, ENIAO maintains sensing coverage and connectivity. As a replacement, the node with the 

highest remaining energy is preferentially used. Nodes are ranked by residual energy by cluster 

heads and the highest energy node Ej is selected to replace the faulty node mf: 

 

 

 
 
As a result, sj may move to mf's location. As soon as sj is deployed, it resumes sensing and 

transmitting data. By using high energy nodes as replacements, overhead is minimized. In the 

long run, the network can sustain more faults before partitioning. 

 
Distributed fault detection and targeted energy-aware node replacement in ENIAO enhance 

reliability and fault tolerance without consuming significant energy. It reduces topology 

knowledge and mass redeployment by allowing localized failure handling. In ENIAO, cluster 
heads monitor keep-alive messages and test acknowledgements, and mark unresponsive nodes as 

faulty. Based on residual energy and proximity to the fault, the base station selects the top-ranked 

node as the new member of the cluster. Upon failure of a cluster head, a new election occurs 
among functional members. Through its self-healing capability, ENIAO is able to continuously 

detect and address faults, thereby optimizing resilience and lifetime. Let N be the total number of 

sensor nodes, BS be the base station (sink node), CH be the cluster head, M be the cluster 

members, and F be the set of faulty sensors. Throughout the network, the base station relays 
faulty node info as follows:  

 
 
As a result, Nodes update their data routing paths to avoid sending traffic through faulty nodes. 

 

 (14) 

 
If a cluster head becomes faulty, an election is triggered to replace it. A faulty node is detected 

based on unacknowledged test requests and missed keep alive messages. 

 

 (15) 
The cluster heads notify the base station about faulty nodes. Update routing paths to avoid 

sending traffic through faulty nodes. A new election is triggered when a cluster head fails. 

 

 (16) 

(11) 

(12) 

(13) 
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INPUT: N = set of all sensor nodes {n1, n2, ..., nn}, Ei = Residual energy of node ni, 

Tkeep_alive = Keep-alive message interval, Ttimeout = Fault detection timeout, F = Set of 

detected faulty nodes 

OUTPUT: F = Updated set of detected faulty nodes 

Algorithm: FaultDetection(N, Tkeep_alive, Ttimeout) 
1. for each Cluster Head ni do 

2. Initialize FaultyNodeList Fi 
3. while network active do 

i. For each cluster Cj: 

ii. The cluster head Cj monitors the member nodes Mj in its cluster. 

iii. It maintains the current set of member nodes Mj. 
iv. At periodic intervals of Tkeep_alive, it expects to receive a keep-alive 

message from each node ni in Mj. 

v. If a keep-alive is not received from a node ni within the interval: 
1. Cj sends a test request message to ni to verify the fault 

2. It starts a timer and waits up to the timeout period Ttimeout 

vi. If no acknowledgement (ACK) is received from ni before the timeout: 
1. The node ni is marked as suspected faulty 

2. Cj adds ni to the faulty node set Fj for that cluster: Fj ← Fj ∪ {ni} 

vii. If a keep-alive is received, ni is marked as functional 

1. The sets Mj and Fj are dynamically updated as nodes change state 
viii. Once detected, faulty nodes in Fj are reported to the base station 

ix. By locally tracking member states, faults can be identified quickly for 

localized handling 
x. END FOR 

xi. Wait Tkeep_alive 

xii. for each Member nj do 

1. if no keep-alive from nj then 
a. SendTestRequest(ni, nj) 

b. Wait Ttimeout 

2. if no ACK from nj then 

a. Fi ← Fi ∪ {nj} 

xiii. EndFor 

4. EndWhile 
5. NotifyBaseStation(Fi) 

6. EndFor 

End Algorithm 

PROCEDURE EnergyAwareReplacement(N, F, E) 

1. for each faulty node nf ∈ F do 

a. Rank survivors N\F by energy Ei 

b. ns = HighestEnergyNode(N\F) 
c. RequestReplace(ns, nf) 

d. if Approved then 

i. UpdateRoutes(ns, nf) 

e. EndIf 
2. EndFor 

END PROCEDURE 

 
Algorithm 2. Fault Detection 
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3.3. Routing Phase 
 

The routing phase optimizes data transmission paths from sensor nodes to the base station using a 

hybrid approach. Using Kruskal's algorithm, it combines Fish School Search (FSS) for node-to-
cluster routing and minimum spanning trees (MST) for inter-cluster communication. This creates 

a routing backbone for data aggregation. Further, ENIAO uses adaptive duty cycling, which puts 

nodes to sleep if they reach an energy threshold. Duty cycling ratios are continuously optimized 
to meet changing network requirements. Route optimization and adaptive duty cycling together 

significantly reduce energy consumption. To route data from cluster heads to base stations, inter-

cluster routing paths need to be constructed. An energy-efficient routing topology is optimized 

using a bio-inspired Fish School Search (FSS) algorithm. It is based on fish schools' collective 
behavior [18], where fish exchange information to find food. 

 

3.4.1. Fish School Search 

 

As swimming fish expand and contract to find food, Fish School Search (FSS) uses a population-

based metaheuristic algorithm. Using n-dimensional locations, each fish represents an 
optimization solution. There is a feature called weight for each solution that represents how 

successful the search has been [19].  

 
A FSS is composed of feeding and movement operators: individual, collective-instinctive, and 

collective-volitive. Each fish in the school performs a random local search in the search space for 

promising regions. According to this equation, this component is computed: 
 

 
 

This is represented by xi(t) as well as xi(t+1) as the position of a fish i before and after the 

individual component's movement. r ∈ R N with rj ∼ Uniform [−1, 1], for j = {1, . . ., n}. For this 

movement, step-ind is responsible for setting the maximum displacement. If f (xi (t+1)) > f(xi(t)), 

then xi(t+1) is accepted as a new position. When there is no change in position, xi(t + 1) = xi (t).  

Movements consist of a collective-instinctual component that averages all xi. A vector I ∈ R N is 

calculated by multiplying the displacements of each xi by: 

 

 
S is the school size, where ∆xi is a shorthand for xi(t + 1) − xi(t), and ∆fi is a shorthand for f(xi(t + 

1)) − f(xi(t)). Using the displacement, I, fish with a higher improvement will attract other fish to 
their position. Based on I, every fish moves as follows: 

 

 
During the search process, the collective-volitional component helps regulate school 
exploration/exploitation. In Eq. 1, each fish position xi is equal to the weight wi of the school, 

which is the bary center B ∈ R N. During the search process, collective-volitional components 

are used to regulate school exploration/exploitation abilities. A barycenter B ∈ R N is calculated 
based on fish positions xi and weights wi, as described in Eq. 4: 

 

 
Fishes move towards B if the total school weight PS i=1 wi has increased from t to t + 1. If not, 

fishes are far from the bary center. Besides movement operators, feeding operators update 

weights according to: 

(17) 

(18) 

(19) 

(20) 
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wi(t) is only allowed to vary from 1 up to wscale, which is a hyper-parameter. All weights are 
initialized with the value wscale/2. 

 

To optimize routing paths between sensor nodes and cluster heads, Fish School Search (FSS) is 
employed. In the algorithm, each fish represents a potential routing solution, traversing the search 

space and exchanging position and path information. After a series of iterations, the most 

efficient routes are configured within clusters using FSS. To find energy-efficient transmission 
routes, this approach uses collective intelligence. Initial node positions and cluster head statuses 

of each fish are randomized, then refined by averaging neighboring solutions iteratively. It is 

determined which nodes are cluster heads by optimizing them and assuming 'cluster_head' roles. 

It maximizes network efficiency and adaptability by dynamically constructing optimized routing 
paths tailored to the current network state. Additionally, it optimizes node active/sleep schedules 

based on an adaptive duty cycling mechanism. It combines Fish School Search (FSS) with 

adaptive duty cycling for routing optimization. Using FSS, nodes, cluster heads, and base stations 
are connected efficiently. Low-energy nodes can sleep periodically by using the duty cycling 

mechanism. The integrated approach enhances energy efficiency and routing reliability by 

optimizing both network topology and node schedules. 
 

Input: G(V,E) = Sensor network graph, C = Set of clusters, B = Base station node 

Output: best_paths = Optimized paths from nodes to clusters 

Algorithm: FSS_ROUTING (G, C, B) 
1. Initialize FSS population 

FSS = {} 

2. for i=1 to POPULATION_SIZE do 

a. f = Fish () 
b. f.position = RANDOM_NODE(V) //Random node as fish position 

c. FSS.add(f) 

3. end for 
4. While not terminated do 

a. for each fish f in FSS do 

i. r = RANDOM_VECTOR () 
ii. f.next_position = f.position + r 

iii. f.next_position += INDIVIDUAL_MOVEMENT(FSS) 

iv. f.next_position += COLLECTIVE_MOVEMENT(FSS) 

v. if f.EVALUATE(f.next_position) > f.EVALUATE(f.position) then 
1. f.position = f.next_position 

vi. end if 

b. end for 
c. for each fish f in FSS do 

i. f.weight = UPDATE_WEIGHT(f) 

d. end for 
5. end while 

6. best_paths = SELECT_BEST_SOLUTIONS(FSS) 

7. Return best_paths 

END Algorithm 
 

Algorithm 3. FSS_ROUTING 

 

(21) 
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Based on MST topology with the base station as the root node, the system facilitates energy-
efficient routing. Kruskal's algorithm constructs this MST by adding edges between nodes 

iteratively. In ascending order of cost (the distance between nodes), edges are selected to connect 

each cluster head into a single MST with the base station at the center. As a result, the sensor data 

aggregation topology is optimized to ensure minimal edge costs. In order to avoid low-energy 
nodes and balance routing load, the MST is periodically reconstructed. This MST-based approach 

ensures efficient data transmission and network longevity by employing Fish School Search for 

routing paths from nodes to cluster heads. The minimum spanning tree topology centered at the 
base station can be used to route aggregated sensor data back to the base station for collection. 

Specifically, cluster heads use the tree to determine next hops when forwarding data. By 

analyzing its routing table, a cluster head will determine the next hop node on the path to the base 
station.  

 

Consider a tree T= (V, E) where V is the set of nodes and E is the set of edges. Let A, B∈V 

where A is B's parent. Let BS ∈ V be the root of the tree Utilizing the minimum spanning tree 
(MST) topology, we minimize total transmission distance and overall energy consumption from 

cluster heads to base stations. By eliminating unnecessary hops, suboptimal paths are avoided. A 

logical topology is maintained over a physical network by periodically recompiling the MST 
using updated node energy levels as edge weights. Combining MST routing with fish school 

search for paths to cluster heads, our hybrid method ensures comprehensive energy optimization. 

 Using residual energy, dynamically update the tree edges to avoid nodes with low energy. 

 
While the minimum spanning tree (MST) optimizes routing, node energy levels fluctuate during 

operation, depleting batteries faster. Periodically, we reconfigure the MST based on current 

residual energy. When energy levels are low or after a set number of rounds, run Kruskal's 
algorithm again. As a result, the MST maximizes the minimum residual energy across paths. 

With dynamic routing, energy bottlenecks are prevented and the load is balanced, extending 

network lifespan. When a cluster head is low on energy, a different cluster head may be used, 
ensuring that data routing continues despite node failures. 

 

3.4. Duty Cycling Phase: Optimize Duty Cycling 
 

By periodically sleeping and waking nodes, duty cycling conserves energy. By keeping enough 

nodes active, an optimal duty cycle balances energy savings and latency. Every communication 
round, the approach adjusts active/sleeping ratios. A threshold of 17% is set based on the average 

energy of active nodes. A node below this threshold enters sleep mode, while a node above it 

remains active, maximizing energy use. 

 
By implementing the active node ratio based on the network's energy distribution, low-energy 

nodes can sleep and recover during non-essential rounds. A threshold of 17% of the average 

energy ensures that sufficient active nodes are available for data forwarding. A key innovation is 
using dynamic average energy as a threshold for scheduling and adjusting duty cycles every 

round. As a result, idle listening is reduced and energy-constrained nodes can recharge. By 

setting the threshold based on current average energy, fragmentation and loss of coverage are 

prevented. Using this method, energy is conserved and latency is reduced, extending network life 
by minimizing energy waste and providing responsive sensor data. 
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Input: V: Set of sensor nodes 
Output: Active Ratio: Ratio of active to sleeping nodes 

Algorithm: DUTY_CYCLING 

1. Get current active nodes 

2. ActiveNodes = {} 
3. for each node v in V do 

a. if v.status == ACTIVE then 

i. ActiveNodes.add(v) 
b. end if 

4. end for 

5. energy_sum = 0 

6. for each node n in ActiveNodes do 
a. energy_sum += n.energy 

7. end for 

8. E_avg = energy_sum / ActiveNodes 
9. Set energy threshold = 0.8 * E_avg 

10. Update node statuses 

11. for each node v in V do 
a. if v.energy < threshold then 

i. v.status = SLEEP 

b. else 

i. v.status = ACTIVE 
c. end if 

12. end for 

13. num_active = 0  
14. for each node v in V do 

a. if v.status == ACTIVE then 

i. num_active += 1 
b. end if 

15. end for 

16. ActiveRatio = num_active / |V| 

17. return ActiveRatio 
END PROCEDURE 

 
Algorithm 4. DUTY_CYCLING 

 
In addition to optimizing routes initially, it dynamically adapts the routing strategy in response to 

changing network conditions and application needs to maintain performance and extend network 

lifetime. The adaptive routing involves periodically re-evaluating routing paths and duty cycling 

settings based on the current network state. Specific adjustments include recomputed Minimum 
Spanning Tree (MST) Edges: Using updated node energy levels, it recomputed MST edges. In 

the MST, E(v) represents the residual energy of node v. Increase their edge weights to avoid low-

energy nodes, thus prioritizing higher-energy nodes. Node u and node v's edge weight w(u,v) is 
updated to reflect their inverse energy levels: 

 

 
 
Cluster Head Elections: The current cluster head is elected if its energy ECH falls below a 

threshold TCH. It can be expressed as: 

 

 

(22) 

(23) 
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Duty Cycling Adjustments: Based on overall network energy, it adjusts the duty cycling ratio. 

To reduce the active node ratio when Enet falls below Tnet: 

 

 
 

Increasing Node Density: Based on application demand, we adjust node density dynamically in 

critical areas. Let D(a) represent the density in area 'a'. The following are done to meet this 
density: 

 
 
To improve resilience and balance load, rerouting paths around faulty or congested nodes and 

adjusting transmission power and communication rates. A periodic update of routing tables and 

duty cycling schedules is guided by application needs, network metrics, and node failures. By 

utilizing this dynamic approach, our sensor network can maximize performance and extend its 
lifetime in real-time. Figure 3 shows the Network Data transmission. 

 

 
 

Figure 3. Network Data Transmission 

 

4. PERFORMANCE RESULTS AND ANALYSIS 
 

4.1. Simulation Settings 
 

 ENIAO's performance is determined through Python code simulation. Simulations are conducted 

with networks consisting of 10 to 50 random nodes placed in a 100m X1000m area. Each 
simulation runs for 60-130 seconds. Each scenario is simulated with a different number of sensor 

nodes. The sensor nodes are randomly selected through regulating simulation time. The 

simulation parameters are listed in Table 1. 
 

 

 

 
 

 

(24) 

(25) 
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Table 1. Simulation parameters. 

 
Parameters Values 

Base Station (BS) 2 

Nodes (N) 10-50 

Network Area (NA) 100 X 100 m 

Initial Energy (IE) 1.5 

Clusters (C) 5-10 

Transmission Range 30 m 

Communication Radius (RC) 20 m 

Node Placement Algorithm Way Point 

 

4.2. Energy Distribution  
 

 In Wireless Sensor Networks (WSNs), energy distribution refers to how energy is allocated and 

consumed across sensor nodes. It involves strategies for balancing energy consumption, so that 
no single node depletes its energy resources too quickly, resulting in network failures or 

performance degradation 

 

 
 

Figure 4. Energy Distribution 

 

 Figure 4 shows multiple rounds of energy dissipation. The charts show a consistent trend: the 

energy dissipation initially high gradually decreases as rounds progress. According to this 
progression, as resources deplete, the network will experience near-zero dissipation as it goes 

through its lifecycle from high energy use to optimization and finally to near-zero dissipation as it 

comes to the end of its lifespan. 
 

4.3. Network Lifetime 
 
During the lifetime of a WSN, the network remains functional and meets its operational 

requirements. The metric indicates how long the sensor nodes can effectively perform sensing, 

processing, and communication tasks before the energy runs out [22]. Figure 5 shows a wireless 
sensor network lifespan over rounds, revealing rapid declines followed by stability. Fig.A and 

Fig.B show stable network lifetimes for several initial rounds at approximately 0.5 units. In 

wireless sensor networks, predictive maintenance and energy management are crucial to 

preventing such abrupt performance degradation. 
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Figure 5. Network Lifetime 

 

4.4. Initial Cluster Head Distribution 

 

WSN cluster heads are initially selected and positioned among sensor nodes in wireless sensor 

networks (WSNs). Data transmission efficiency, energy consumption, and network coverage are 
all affected by CH distribution. 

 

 
Figure 6. Initial Cluster Head Distribution 

 

Figure 6 illustrates the network lifetime over rounds for wireless sensor networks, showing a 

pattern of stability followed by rapid decline. Figures A and B show a stable network lifetime of 
approximately 0.5 units during the initial rounds. 

 

4.5. Cluster Distribution 
 

 Cluster Head Distribution (CHD) refers to the method of assigning and positioning cluster heads 

(CHs) within wireless sensor networks. CH distribution ensures that energy consumption is 
balanced, communication distances are minimized, and network efficiency is enhanced. 
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Figure 7. Cluster distribution 

 

Fig-A and Fig-B (7) show two side-by-side graphs titled "Cluster Head Distribution Over 
Rounds". In both graphs, cluster head counts increase over rounds. Cluster heads increase over 

time, eventually plateauing. 

 

4.5. Duty Cycle Efficiency Over Rounds 
 

Wireless Sensor Networks (WSNs) describe how sensor nodes alternate between active and sleep 
states across multiple operational cycles. Duty cycling conserves energy by reducing the time 

nodes spend in power-consuming active states and increasing their sleep times.  

 

 
 

Figure 8. Duty Cycle Efficiency 

 
Figure 8shows the duty cycle efficiency of a wireless sensor network over multiple operational 

rounds, revealing its performance and longevity. Both figures show a declining efficiency pattern 

after a high initial efficiency. 
 

5. CONCLUSION AND FUTURE ENHANCEMENT 
 

In this work, we propose ENIAO, an integrated energy-efficient routing protocol for wireless 

sensor networks with limited energy resources. With bio-inspired clustering, optimized routing, 
and adaptive duty cycling, ENIAO optimizes network energy usage. Routing protocols 

benchmarked by ENIAO outperformed benchmarks. A 30% increase in network lifetime was 

demonstrated through efficient usage of node energies. With ENIAO, latency and throughput 
were similar. Its distributed algorithm design makes it scalable to large and dynamic WSNs.  
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The research contributed to the development of ENIAO, a cross-layer framework that optimizes 

energy efficiency and fault tolerance autonomously. This balance is needed for stable long-term 

WSN operation. It is an effective solution for prolonged and reliable sensing across large areas. A 

wide range of monitoring scenarios can be implemented using its algorithmic mechanisms. 
Among them are precision agriculture, wildlife tracking, flood detection, infrastructure integrity, 

and smart cities. In ENIAO's self-managed optimization approach, sensor network deployments 

cost less, network uptime increases, and humans need to intervene less. An energy management 
approach coordinates across layers for maximum reliability and lifetime. Using ENIAO, WSN 

operational lifetimes can be extended autonomously. The benefits of ENIAO are not without 

limitations. The following work are some future research directions: 1. A time-varying 
deployment architecture is extended with a clustered architecture. 2. IoT scenarios involving 

hundreds to thousands of nodes can be evaluated to determine ENIAO's scalability. 3. The use of 

emerging unsupervised learning techniques like clustering can enhance self-organization. 4. 

WSNs that respond dynamically to changing operating conditions can benefit from stochastic 
processing. 
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