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ABSTRACT 
 
The channel estimation is crucial in the “millimeter Wave (mmWave) Massive Multiple-Input Multiple-

Output (MIMO) and Non-Orthogonal Multiple Access (NOMA)” devices. Hybrid beamforming techniques 

are employed nowadays to minimize the complexity and equipment price. However, the absence of digital 

beam forming in mmWave affects the dynamic range and accuracy of the channel estimation. Previous 

research has concentrated mainly on predicting narrow-band mmWave channels using deep learning 

networks, as the wideband channels of mmWave create a considerable range and noise issue. Accurate 
channel estimation in the MIMO system is challenging because of the increased number of antennas and 

radio frequency (RF) chains. MIMO system communications using mmWave are frequently chosen because 

of their massive spectrum resources. Therefore, it is essential to tackle the obstacles obtained in the 

standard channel estimation framework by developing a MIMO-NOMA network with the help of deep 

learning methods Hence, this paper proposes an efficient hybrid deep learning model for channel 

estimation in MIMO-NOMA for mmWave systems. At first, the channel estimation is carried out using the 

Adaptive Hybrid Deep Learning (AHDL) model, where it combines both Autoencoder and Recurrent 

Neural Network (RNN). Here, the parameters are optimized using the Improved Red-tailed Hawk 

Algorithm (IRHA). Later the hardware cost and system complexity are reduced by performing the hybrid 

beam-forming process. Numerical results show that the proposed channel estimation and pilot estimation 

process outperforms the state-of-the-art approaches. 
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1. INTRODUCTION 
 
Nowadays, mmWave communication devices have developed as an effective innovation for the 

future generation of wireless communications [1]. The mmWave utilizes high-frequency bands of 

mmWave, where the spectrum is underused and less crowded. The NOMA is a significant 
principle for future networks and radio access in 5G [2]. NOMA is on the basis of the concept 

that numerous candidates are multiplexed against the same orthogonal resource module [3]. 

Nowadays, the NOMA has been suggested as an effective access mechanism that can fulfill the 

present 5G and beyond requirements including high connection density, improved user coverage, 
and low latency [4]. The significance of the NOMA is to assign the non-orthogonal resources to 

assist the numerous candidates providing better spectral effectiveness while having minimum 

disturbance at the receivers [5]. Though there is a large amount of spectrum present in the 
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mmWave band, the utilization of NOMA in the mmWave band is significant because of the mass 
connectivity of the NOMA with the mmWave network, higher spectral efficacy, and also less 

delay [6]. Precise CSI is significant to attain the overall merits of mmWave with NOMA 

innovation. But, the most complex task is to achieve precise CSI [7]. 

 
The combination of MIMO and NOMA has been experimented with conventional 

communication standards [8]. The conventional standards employed the beamforming model that 

reduces the transmission power [9]. Moreover, in conventional works, an efficient transmission 
approach is implemented that confirms the network coverage in that multi-antenna BS that sends 

various individual antenna elements employing NOMA [10]. It is significant to employ the 

NOMA in mmWave because of the numerous merits including the channels of distinct users in 
the same way are highly correlated in the mmWave [11]. This unique channel feature of 

mmWave is highly applicable to utilizing the NOMA. Moreover, the wide-scale antenna array 

offers very effective directional beams in the mmWave [12]. This provides better beamforming 

gains and lower interferences, where the transmissions of NOMA are given to each beam [13]. 
The overload of the user is enhanced by employing NOMA in mmWave transmission enhances 

the spectral efficiency. 

 
Compressive sensing (CS) is an effective field to regenerate the sparse physical signal from the 

pending sequential model of derivations [14]. In the past years, numerous CS-aided models have 

been employed for NOMA devices by employing various sparsity frameworks [15]. However, 
these models consider that the channels for overall candidates are referred a priori which is not 

highly practical. This is because of the truth that numerous candidates are idle and the CSI is 

outdated [16]. Deep learning has attained enhancing popularity in the modern days. Deep 

learning is a data-driven technique, where the frameworks are implemented over a huge amount 
of data sources and an effectively trained mathematical system is not necessary [17]. These 

attributes are a result of employing deep learning in the transmission model. A learned denoising-

aware approximate message-transmitting model is employed to determine the channel for the 
MIMO model. The traditional channel estimation technique has a tractable technique. However, 

the practical channel estimation can be ineffective and highly complex. 

 

The contributions of the designed channel estimation framework are listed below. 
 

 To present a new channel estimation framework in MIMO-NOMA for the mmWave 

system by utilizing the deep learning method that minimizes the interferences and error 

rates of the network. Moreover, it improves the data transmission rates and signal 
connectivity. 

 To present an AHDL network by integrating the autoencoder and RNN techniques that 

effectively perform the channel estimation in MIMO-NOMA. Here, the IRHA is also 

applied for optimally determining the AHDL network’s parameters. This AHDL-based 
channel estimation framework optimizes the data transmission by offering significant 

data.  

 To recommend an IRHA model by utilizing the necessary features of the existing RHA 

that supports the channel estimation framework with its higher convergence rates and 

capacity to choose the optimal solutions. Moreover, it fine-tunes the parameters such as 
epochs and hidden neuron counts in the designed AHDL network. 

 

This paper is framed as follows. Part II illustrates the conventional channel estimation works in 
MIMO-NOMA. Part III demonstrates the basic model of MIMO-NOMA with mm-wave system 

and problems related to channel estimation. Part IV explains the description of IRHA for 

parameter optimization. Part V offers the channel estimation employing the AHDL model and its 
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fitness formulation. Part VI displays the research findings of the designed channel estimation 
framework. Part VII provides the conclusion of the recommended channel estimation framework. 

 

2. EXISTING WORKS 
 

2.1. Related Works 
 

In 2021, Pawar et al. [18] offered a max-min power control factor that increased the low noise 
achievable value. In addition, the authors examined two distinct grouping mechanisms and 

analyzed their impacts on this noise achievable rate. The authors validated the functionality 

attained by the highest ratio decoder. The simulations and the extensive evaluations display that 

the developed model provided a high max-min achievable value between the overall considered 
grouping and decoding mechanisms. 

 

In 2023, Ahmad et al. [19] have introduced the channel estimation of the massive MIMO NOMA 
models and the identification technique that employed deep learning to mitigate the problems of 

erroneous signal identification created by the imperfect CSI. The experiment displayed that the 

deep learning-aided estimation of the channel and the identification technique canceled the 

interference more effectively than the traditional channel estimation models. In addition, the 
wavelet-aided technique was compared to the conventional techniques. The simulation solutions 

displayed that the designed technique outperformed the existing techniques. 

 
In 2023, Mathews and Tamilarasi [20] recommended a Black Window Optimization (BWO)-

aided network to validate the channel for the mmWave-MIMO devices. The implemented model 

employed the hybrid beamforming mechanism to minimize the hardware complexity of the 
model and the hardware expenses of the MIMO system. The simulation experiments ensured that 

the implemented technique offered enhanced classification functionality and spectral efficiency 

when compared with the existing channel estimation approaches. 

 
In 2019, Gao et al. [21] examined the issue of wideband beamspace channel validation without 

general support consideration. The authors initially confirmed that wideband beamspace's path 

factor offered a special frequency-relied sparse framework by utilizing the beam squint's effect. 
The author's method effectively validated the overall sparse path factors following the 

conventional concept of interference mitigation. The experimental outcomes revealed that the 

designed model minimized the pilot overhead and also obtained enhanced accuracy of the 

channel estimation. 
 

In 2022, Audu and Oyerinde [22] employed a 3D geometric channel system to implement a very 

realistic technique for extra signal perturbations. The developed estimator named Singular Value 
Decomposition (SVD) focussed on tolerating the system burdens and minimizing the correctness 

of the channel estimation. The recommended system's outcome displayed timely convergence 

during the research and scaled the complexity than the earlier developed techniques. 
 

In 2024, Oyerinde et al. [23] aimed to develop a channel estimation technique with enhanced 

functionality in comparison with other traditional estimation models. The developed channel 

estimation framework utilized the hybrid mechanism to integrate the enhanced Compressive 
Sensing Algorithm (CSA). The recommended estimator displayed enhanced functionality when 

contrasted with the other conventional channel estimators. 

 
In 2024, Van [24] examined the security and reliability of the “MIMO NOMA transmission with 

energy harvesting-aided full-duplex jammer (MMnOehFD)”, where numerous evaluation factors 
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were considered. In addition, the practical attributes were also utilized in this validation. The 
designed model could prevent the overall outage and achieve optimal functionality with a specific 

configuration of the device. The functionality of the model was enhanced with an enhanced 

amount of antennas. In addition, the model performed better than the conventional techniques. 

 
In 2024, Chandra and Borugadda [25] considered the integrated framework uplink 

communication for the MIMO NOMA model's power effectiveness and beam forming 

enhancement via three-layer candidate grouping. In this grouping process, the K-means algorithm 
was employed in the starting layer for grouping the candidates and minimizing the clustering 

faults in the 3rd layer. The 2nd layer was employed for integrating the small clusters. The beam 

selection was performed to reduce the intrusion. The solutions displayed that the implemented 
technique provided a better sum rate. 

 

2.2. Research Gaps and Challenges 
 

NOMA techniques are being developed to mitigate several primary limitations in future wireless 

transmissions. Especially, the channel estimation is highly complex where the NOMA techniques 
are combined with the mmwave massive MIMO. A precise channel estimation is crucial in 

utilizing the merits of connecting mmWave and NOMA. Various methodologies have been 

offered in the recent years. Nevertheless, these models need some improvements and some of the 

research experiments are explained below. 
 

 The traditional channel estimation techniques are complex and have poor interpretability. 

Therefore, a simple channel estimation framework is necessary. 

 The conventional deep learning-aided channel estimation models utilize only one 

optimization technique. These techniques are prone to error and ignore the significant 
features. Therefore, a hybrid deep learning model is significant for performing the 

channel estimation. 

 Some of the existing channel estimation models are not suitable for practical use. 

Therefore, a suitable and efficient channel estimation model is necessary for MIMO-
NOMA. 

 The traditional channel estimation models utilize more processing time and encounter 

overfitting issues. Hence, optimizing the channel estimation models is necessary with the 

support of optimization algorithms. 

 Some other classical models could not process the vast amount of data and were also 

sensitive to noise. To rectify these difficulties, a new technique is important.  
 

Hence, an effective channel estimation system is implemented in this work for MIMO-NOMA 

using deep learning. 
 

3. BASIC MODEL OF MIMO-NOMA WITH MM-WAVE SYSTEM AND 

PROBLEM-RELATED TO CHANNEL ESTIMATION 
 

3.1. MIMO-NOMA: System View 
 

MIMO is a wireless antenna innovation that employs numerous antennas at both receiver and 

transmitter to enhance wireless communication efficiency. The MIMO model can improve the 

data throughput by sending numerous data streams continuously. The signal quality is also 
improved by the MIMO which minimizes the interference and fading effects. The MIMO can 

increase the wireless communication’s range by enhancing the signal-to-noise ratio (SNR) at the 

receiver. The MIMO-NOMA is a mechanism that integrates the merits of MIMO and NOMA. It 
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enables numerous users to send and obtain data continuously employing numerous antennas, 
and improved signal processing mechanisms. In the implemented channel estimation framework, 

the input data is forwarded to the data converter. Here, the input data stream is converted into 

parallel information. Further, the obtained parallel information is provided to the 64-QAM model 

that utilizes the individual radio wave to indicate the six bits of achieved parallel information. 
With the subcarrier module, the modulator is connected to generate the pilot modules. In this, the 

signals are transformed to the time sector by employing the mechanism named Inverse Fast 

Fourier Transform (IFFT). Additionally, in the dispute multipath fading, the Cyclic Prefix (CP) is 
included. In this, the multipath fading’s length increases the channel’s largest latency speed. An 

effective IRHA is utilized to optimize the pilot symbol supports to improve the estimation 

efficiency of the channel. The channel estimation is conducted on the designed AHDL technique 
by considering the channel matrix. The primary objective of the channel estimation is to 

minimize the MIMO-NOMA system’s error rate by optimizing the parameters employing IRHA. 

 

3.2. Motivation for Channel Estimation 
 

Channel estimation [27] is the operation of validating the features of the wireless channel 
between the receiver and transmitter including interference, delay, fading, and path loss. The 

channel estimation is necessary for developing and tuning the wireless transmission devices. 

However, channel estimation encounters numerous difficulties in dynamic environments, where 

the conditions of the channel quickly vary because of the environment, traffic, and mobility 
attributes. Some of the limitations and motivations in the channel estimation are given as follows. 

 

 Time-varying channel: One of the primary complexities in dynamic environments is the 

channel’s time-varying nature. The channel is not static, yet the variations over time are 
because of the transmitter motions, objects, or receivers in the environment. This creates 

the channel to face delay spread, multipath fading, and Doppler shifts that impact the data 

rate and the signal quality. To mitigate this issue, the wireless systems require accurate 
and frequent channel estimation. 

 Spatial diversity: The channel is not uniform, yet changes across distinct directions and 

regions. This creases the channel to face the angular spread, shadowing, and spatial 

fading that impact the interference level and the signal strength. To utilize the channel’s 

spatial diversity, the wireless devices require employing numerous antennas or relaying 
mechanisms that improve the coverage and signal quality. But, these strategies also 

improve the overhead and difficulty of the channel validation. 

 Channel estimation techniques: The channel is not simple to validate as it includes 

resolving difficult mathematical issues. There are numerous channel estimation modes, 
which have been divided into distinct types. Each type has its own limitations, merits, 

and assumptions concerning adaptability, robustness, complexity, and so on. Hence, 

selecting a suitable channel estimation model is important for satisfying the user 

requirements. 

 Channel model: There is no single channel design that has the capacity to capture overall 
variations and the features of the channel in dynamic environments. Hence, the systems 

require employing distinct channel models for distinct applications and scenarios. In 

addition, the systems require estimating and validating their channel designs periodically 
which demands more data evaluation and collection. 

 Non-linear distortion: The channel is not linear and utilizes non-linear impacts including 

clipping, harmonic distortion, and inter-modulation that affect the spectral efficiency and 

the signal integrity. To reduce this problem, wireless systems require employing 
improved signal processing models. But these models also demand more robust and 

accurate channel estimation.  



International Journal of Computer Networks & Communications (IJCNC) Vol.16, No.5, September 2024 

118 

3.3. Proposed CE Technique 
 

With an increased requirement for radio spectrum resources, the underused mmWave band has 

attained wide attention because of its higher spectral efficiency and large bandwidth. Since the 
transceiver compensates for the greater loss of propagation employing the beam gain provided by 

the wide-scale antenna array, the mmWave integrated with the wide-scale antenna array becomes 

the fundamental supporting innovation in the 5G transmission devices. The combination of 
NOMA and the MIMO has been analyzed in numerous works in the past years. But, these 

MIMO-NOMA approaches are all concentrated on low frequency and cannot be employed for the 

mmWave transmission, where the sparsity of the channel, number of conflicting user uncertainty, 

and so on also require to be focus. It is understood that the overall merits of the mmWave with 
the NOMA innovation relatively depend on the accurate CSI validation that is also considered as 

one primary complexity for mmWave NOMA devices. Some of the channel validation 

approaches for the mmWave device have been recommended on the basis of numerous traditional 
models. However, the traditional channel estimation models are highly on the basis of an on-grid 

mechanism that is always troubled by functionality loss because of energy leakage. Hence, some 

experts implemented off-grid channel estimation techniques. However, conventional techniques 
face limitations including complex signal processing. Hence, an effective channel validation 

framework is necessary for the MIMO-NOMA in the mmWave system. Figure 1 displays the 

functional diagram of the implemented estimation of the channel system for the MIMO-NOMA 

in the mmWave system. 
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Figure 1. Functional diagram of proposed channel estimation framework for MIMO-NOMA in mmWave 

system 

 

A hybrid deep learning framework is suggested in this work for channel estimation in MIMO-

NOMA for the mmWave system. Initially, the estimation of the channel is performed by 

employing the AHDL technique. The suggested AHDL mechanism is the combination of the 
autoencoder and RNN techniques. In this, the AHDL model's parameters are optimally tuned by 

the IRHA technique. Further, the complexity and the hardware expenses are minimized by 

performing beamforming. In the end, the efficacy of the presented model is correlated with some 
other traditional methods to display its superiority over others. 
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4. IMPROVED RED-TAILED HAWK ALGORITHM FOR PARAMETER 

OPTIMIZATION AND HYBRID BEAMFORMING TECHNIQUE 
 

4.1. Red-Tailed Hawk Algorithm 
 

The existing RHA [26] is a meta-heuristic approach motivated by the bird named red-tailed 
hawk. The RHA utilizes the hunting mechanism of the red-tailed hawk and it follows three 

primary phases. 

 

High soaring: The mathematical stage of this phase is shown in Eq. (1). 
 

        strdmLvysAAAsA mnbst ..1       (1) 

 

Here, the region of the red-tailed hawk at the iteration s  is given as
 sA

. The achieved best 

region is taken as bstA  and the mean region is considered as mnA . The function of levy flight 

distribution is represented as Lvy that is estimated based on Eq. (2). Further, the transition factor is 

indicated as
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Here, the variable t is a fixed value (0.01), and the issue dimension is indicated as ‘dm’. The 

constant is taken as  (1.5).  
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Here, the highest iteration is declared as Rmax. 

 
Low soaring: This phase is designed in Eq. (4). 
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Here, the direction coordinates are given as a and b, and these factors are estimated in Eq. (5). 
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Here, the radius’s starting value is given as C0 in the range of [0.5-3], and the factor ‘E’ indicates 

the angle gain between 5 to 15. The control gain is denoted as ‘d’ from the range of [1, 2] and the 

updated arbitrary gain is denoted as ‘ra’.  

 
Swooping and stopping: This phase is derived in Eq. (6). 

 
           sstpszesbsstpszesaAssA bst 2.1..                   (6) 

 
Here, each step size is determined based on Eq. (7). 
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Here, the gravity and acceleration attributes are taken as ‘F’ and ‘β’ accordingly and these factors 
are determined in Eq. (8). 
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The acceleration of the hawk is given as ‘β’ enhanced with the improvement of ‘s’ to increase the 

speed of convergence. The variable ‘F’ is the gravity impact that minimizes to decreases the 

exploitation diversity. Algorithm 1 shows the pseudo-code of conventional RHA.  
 

Algorithm 1: Traditional RHA 

Random creation with search region 

For max1 Rtor   

   Best member updating as a hole 

 For popNtoi 1  

  High soaring: 

  Estimate the distribution of Levy flight using Eq. (2) 

  Estimate the transition attribute using Eq. (3) 

  Upgrade place using Eq. (1) 

  Low soaring 

  Estimate direction coordinates using Eq.(5) 

  Upgrade place using Eq. (4) 

  Stooping and Swooping 

  Estimate the gravity and acceleration attributes using Eq. (8) 

  Estimate the size of the step using Eq. (7) 

  Upgrade place using Eq. (6) 

 End for 

End for 

Return best solutions 
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4.2. Improved Red-tailed Hawk Algorithm 
 

The IRHA is designed to optimally determine the parameters in the AHDL model. The IRHA is 

improved from the existing RHA with an innovative mechanism. This IRHA helps to conduct the 
channel validation by optimizing the AHDL network parameters including epochs and hidden 

neurons. Thus, this method minimizes the “Bit Error Rate (BER) and Mean Square Error (MSE)” 

of the overall channel estimation process. As explained earlier, the IRHA is developed from the 
existing RHA. The RHA utilizes the hunting mechanism of the red-tailed hawk as an inspiration 

and solves complex optimization problems. Moreover, this algorithm provides higher 

performance with optimal solutions. However, the RHA includes the random gain in the phase 

named low soaring. This random gain ranges from 0 to 1. When the iteration count is high, the 
random gain factor demands more time to determine the better solutions. This negatively impacts 

the convergence and also leads to unsatisfactory solutions. Therefore, the IRHA is implemented, 

where the arbitrary gain is upgraded by the values of fitness. This helps to improve the 
convergence rates and offers satisfactory solutions. The improved random gain ‘ra’ is determined 

in Eq. (9). 

 
improved random gain ra  is determined in Eq. (9). 

 

 
 2*wfw

mfmcfc
ra




                   (9) 

 

In this, the current fitness is taken as cfc, and the mean fitness is represented as mfm. Then, the 
worst fitness is considered as WFW. By the derived new arbitrary gain, Eq. (5) in the low soaring 

phase is modified and optimal solutions. The pseudo-code of recommended IRHA is given in 

Algorithm 2 and the flowchart of the presented IRHA is shown in Figure 2. 
 

Algorithm 2: Suggested IRHA 

Random creation with search region 

For max1 Rtor   

   Best member updating as a hole 

 For popNtoi 1  

  Derive new arbitrary gain ra  by Eq. (9) 

  High soaring: 

  Estimate the distribution of Levy flight using Eq. (2) 

  Estimate the transition attribute using Eq. (3) 

  Upgrade place using Eq. (1) 

  Low soaring 

  Estimate direction coordinates using Eq.(5) 

  Upgrade place using Eq. (4) 

  Stooping and Swooping 

  Estimate the gravity and acceleration attributes using Eq. (8) 

  Estimate the size of the step using Eq. (7) 

  Upgrade place using Eq. (6) 

 End for 

End for 

Return best solutions 
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Figure 2. Flowchart of IRHA 

 

4.3. Hybrid Beamforming Model 
 

Consider the MIMO-NOMA model in a macro cell with a 500m radius. The BS provides the 
power of transmission ‘Pwb’ and equally divides it among the antenna ‘C’. Hence, the 

superimposed signals are transmitted by the BS based on the NOMA attributes. Each User 

Equipment (UE) ‘M’ is randomly provided to the cells to produce the conditions of MIMO-

NOMA. In this, the power delivered through the individual antenna is specified as C

wb
P

c
p 

. The 
nearby BS to the UE utilizes the SIC mechanism to prevent the interference signal in the MIMO-

NOMA. The Rayleigh fading and the “Additive White Gaussian Noise (AWGN)” have an effect 

on the signals achieved from all UEs. The transmitted signal with the support of BS is formulated 

in Eq. (10). 
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In this, the power transmitted attributes on each beam with K candidates transferred signals, and 

the coefficient of power allocation is specified as
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 and respectively. The obtained 

signals with the support of kcUE ,  are given in Eq. (11). 
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In this, the factor of Rayleigh fading channel is indicated as
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In this, the attribute
kc

t
,

 points to the division among kcUE ,  and BS. Eq. (13) gives the coefficient 

of power allocation kc,  on the basis of the NOMA principle. 
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In this, the attribute  specifies the set of reliable power allocation variables. The end receiver 

includes of C count of isotropic antenna factors that are partitioned into antenna arrays 

L subgroups, where all subgroups have M a number of antenna factors. The hybrid beamforming 

framework attains the required signal   eysi
xs

b
e

2
 with k as the “Angle Of Arrival (AOA)” and 

k the number of interference signals   eysi
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2
with a changing AOA l . Here Ll ,,3,2,1  . 

The obtained l sub-array signal  sam  in each thm antenna factor includes an AWGN signal, 

interference signal, and necessary narrow signal band. Hence, the obtained thl sub-array  sal is 

formulated in Eq. (14). 
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           (14) 

 

Here, the variable t specifies the distance between the nearby antenna array factors taken as 5.0 .  

The propagation delay of the required and interference signals is given as kt and  . The light 

intensity is specified as y . According to the estimated baseband signal, each subset is validated 

in Eq. (15). 
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     cdH
Sg

EcMbH
Sg

Eca                  (15) 

 

Here, the matrix diagonal is given as H
Sg

E , and the variable  cMb indicates the analog 

beamforming stage’s input. The noise vector is specified as  cd . While utilizing the digital 

beamforming factor to the digital beamforming state, Eq. (15) changes as given in Eq. (16). 

 

     cdH
Sg

EH
T

ecMbH
Sg

EH
T

ecz                 (16) 

 
The signal amplitude and the stage are distinguished by varying the digital beamforming 

attribute te . Hybrid beamforming is employed in the technique for improving spectral 

effectiveness. 

 

5. CHANNEL ESTIMATION USING AN ADAPTIVE HYBRID DEEP LEARNING 

MODEL 
 

5.1. Autoencoder 
 

The autoencoder [28] is a feed-forward neural network with three layers. It consists of a decoder 

and an encoder. The variable h ’s hidden representations are determined by the encoder with x  a 

sized m vector as given in Eq. (17). 

 
    11 ehFm                   (17) 

 

Here, the bias attribute and the nx weight matrix is specified as    11 Fande  respectively. The 

activation function is pointed as   . The hyperbolic tangent is estimated in Eq. (18) as it is 

utilized in this model. 
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The input vector h  is reconstructed by the decoder from the hidden vector m  to achieve the 

resultant vector h
~

 as given in Eq. (19). 

 
    22~

exFh                   (19) 

 

Here, the reproduced vector is considered as h
~

 , and the bias vector is represented as  2e . Further, 

the weight matrix is taken as  2F .  
The parameter validation of the autoencoder is conducted by reducing the following MSE 

regeneration MSEY  concerning the group of attributes         2211 ,,, eFeF utilizing the MSE as 

shown in Eq. (20). 

 

  2~1~
,

1
   QhQh MSEMSE hh

q
hhy

q
Y                           (20) 

 

The architecture of the autoencoder is provided in Figure 3. 
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Figure 3. The architecture of the existing autoencoder model 

 

5.2. Recurrent Neural Network 
 

The RNN [29] is employed to forecast future data with the support of historical data samples. The 

RNN technique is very effective and utilized in implementing the sequence information. 
Moreover, the RNN method efficiently captures the long-term dependencies. The outcome of the 

RNN is determined by repeatedly executing Eq. (21) and Eq. (22) from :1 Vvtov  . 

 

 gvggvbgv kgCbCSg  1                 (21) 

rvgrv kgCr                               (22) 

 

Here, the resultant sequence is represented as r  , and the input is specified as b . Then the weight 

matrix is specified as C  and the sequence of hidden vectors is pointed as g . The hidden layer 

function is S and the bias factor is k . The diagrammatic illustration of RNN is given in Figure 4. 
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Figure 4. RNN network  

 

5.3. Proposed AHDL for Estimation 
 

The AHDL technique is implemented for performing the channel validation in the MIMO-

NOMA model. The AHDL model is a combination of autoencoder and RNN techniques. The 
autoencoder is highly effective for capturing significant features and showing accurate solutions. 

The RNN technique can improve the training efficiency and handle any length of input data. 

Though these techniques are effective, these techniques can’t offer satisfactory estimated 
solutions in terms of error rates and interference while processing individually. Hence, these two 

techniques are hybridized to offer the channel estimation properly. Thus, the HDL network is 
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constructed for the developed model. However, when integrating the autoencoder, and RNN 
techniques causes overfitting troubles due to the high number of parameters such as epochs and 

hidden neurons in these models. To rectify this difficulty, the IRHA is utilized. This algorithm is 

suitable for choosing the optimal solutions and also has rapid convergence. Therefore, the IRHA 

is selected for this model. By utilizing the IRHA, the epochs and hidden neuron counts are 
optimally determined and its objective function is displayed in Eq. (23). 

 

 
 BERMSEob

RNNAEAE hnephn


,,

minarg                 (23) 

 

In this, the autoencoder’s epoch count is pointed as AEep  varied from [5-255]. The autoencoder’s 

hidden neuron count is denoted as AEhn  varied from [5-50]. Then, the RNN’s count of hidden 

neurons is given as RNNhn  varied from [5-255]. Further, the MSE and BER are minimized in this 

process. These measures are explained as follows. 

 
BER: It is the bit count estimation, which is obtained in error contrasted to the total bits sent on 

the transmission technique. It is derived from Eq. (24). 

 

bt

bt

Ol

Tl
BER                    (24) 

 

Here, the overall bit count obtained with error is taken as btTl  , and the overall bit transformed in 

the network is given as btOl . 

 

MSE: It is the mean square variation between the actual and validated values. It is formulated in 

Eq. (25). 

 

 



g

i
gg NN

g
MSE

1

2ˆ1
                 (25) 

 

Here, the “predicted and actual” values are given as gg NandN̂ . The count of the data points is 

taken as g . 

 
AHDL: The channel matrix is provided as input for the AHDL mechanism, which is the 

integration of autoencoder, and RNN. The autoencoder and RNN techniques separately predicted 

the outcomes. Further, the predicted outcomes from both these techniques are averaged to obtain 
the effective channel estimated outcome. Thus, the AHDL technique helps to achieve the channel 

estimated solution for the MIMO-NOMA model. Figure 5 shows the pictorial illustration of 

AHDL for channel validation. 
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Figure 5. AHDL-based channel estimation system for the MIMO-NOMA system 

 

6. RESULTS AND DISCUSSIONS 
 

6.1. Simulation Setup 
 
The developed channel estimation system was executed by the MATLAB 2020a platform. The 

implemented IRHA’s length of chromosome was 3 and the highest iteration was 50. The number 

of population of the IRHA was 10. Some of the existing models such as “DWT [2], BWO [3], 

CSA [6], and HDL [28] [29]” were utilized for the experiments. Moreover, several algorithms 
including “Clouded Leopard Optimization (CLO) [30], Wild Horse Optimization Algorithm 

(WHOA) [31], Coati Optimization Algorithm (COA) [32], and RHA [26]” were considered for 

the analysis. The parameter setting of the presented channel estimation framework is shown in 
Table 1. 

 
Table 1. Parameter setting for the implemented Channel estimation Framework 

 
Parameters Values 

Symbol’s time period  171ms 

Small cell coverage 500 m 

Carrier frequency 28 GHz 

RF chains count 4 

Channel Bandwidth 1 GHz 

The number of BS antenna 64 

Pilot count 200 

CP Length 10 ms 

 

6.2. Performance Evaluation of Developed Channel Estimation Framework based 

on SNR Values 
 

The designed channel estimation system’s performance is analyzed by utilizing the SNR values. 

This experiment is shown in Figure 6 over conventional related techniques. The developed 
channel estimation system’s MSE is decreased by 2.8% of DWT, 30% of BWO, 15.7% of CSA, 

and 11.4% of HDL appropriately when the SNR value is 5. This experiment explains that the 

implemented channel estimation model gives better outcomes than the existing techniques. Thus, 
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it has been proved that the designed channel estimation system achieves more effective solutions 
than the classical models. 

 

6.3. Performance evaluation of developed channel estimation framework based on 

user count 
 

Figure 7 depicts the implemented channel estimation framework’s performance validation over 
traditional techniques using user counts. The throughput of the developed channel estimation 

model is enhanced by 24.24% of DWT, 7.27% of BWO, 6.66% of CSA, and 23.6% of HDL 

correspondingly for the 20th user count in Figure 7(d). Thus, it has been elaborated that the 
presented model offered more satisfactory solutions than the conventional models. Moreover, it 

has been explained that the implemented channel estimation framework minimizes the error 

values. 
 

 
 

Figure 6. Performance investigation of implemented channel estimation framework based on SNR values 

over conventional techniques in terms of “ (a) Spectral efficiency, (b) BER, (c) MSE, (d) Throughput, (e) 

NMSE, (f) Sum rate, (g) BLER, and (h) Effective achievable rat 
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 
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Figure 7. Performance investigation of implemented channel estimation framework based on user count 

over conventional techniques in terms of “ (a) Spectral efficiency, (b) BER, (c) MSE, (d) Throughput, (e) 

NMSE, (f) Sum rate, (g) BLER, and (h) Effective achievable rate” 
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7. CONCLUSIONS 
 
This paper has explored the hybrid deep learning for performing the channel estimation in 

MIMO-NOMA for mmWave devices. In the very beginning, the channel estimation was 

conducted with the support of the AHDL mechanism. The recommended AHDL model was a 

combination of the existing RNN and autoencoder techniques. Here, the IRHA was exploited for 
optimally tuning the AHDL network parameters. Next, the complexity and the hardware 

expenses were reduced by conducting the beamforming task. Finally, the efficacy of the 

implemented model was contrasted with the existing models. The spectral efficiency of the 
designed channel estimation framework was enhanced by 2.5% of DWT, 1.25% of BWO, 35% of 

CSA, and 47.5% of HDL respectively when the user count was 40. From this research findings, it 

has been illustrated that the designed channel estimation system provided very low error rates and 

higher throughput than the traditional methods. In future work, the implemented channel 
estimation framework will be strengthened with other recent deep learning and optimization 

concepts for minimizing network interference. 
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