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ABSTRACT 
 
Software-Defined Networking (SDN) is a sophisticated network architecture that offers enhanced flexibility 

and streamlined management through a centralized controller. While these advantages allow SDNs to 

adapt to growing network demands, they also introduce potential security risks. Specifically, the 

centralized nature of SDN makes it vulnerable to network attacks, such as Distributed Denial of Service 

(DDoS) attacks, which can overwhelm network resources and cause widespread congestion. In this study, 

we propose a DDoS detection model that combines entropy-based features with Support Vector Machine 
(SVM) machine learning to create a hybrid approach. This model capitalizes on the strengths of both 

methods to improve detection accuracy. Our results, based on simulations and practical SDN 

implementation, show that our approach effectively and rapidly detects DDoS attacks with high precision. 

This paper addresses the challenge of enhancing the efficiency and accuracy of DDoS attack detection by 

providing a comprehensive dataset collected from both simulated and practical environments, thereby 

improving the detection system's performance in real-time situations. 
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1. INTRODUCTION 
 

In recent years, the global surge in network-connected devices has reached unprecedented levels, 
leading to an exponential increase in network traffic. It is projected that the number of these 

devices will reach 29.3 billion by 2023 [1], making it essential to enhance network performance 

continually. To address this challenge, Software-Defined Networking (SDN) has emerged as a 

significant advancement in the field. The introduction of the SDN architecture in 2011 marked a 
major development in computer networking, offering programmable features that significantly 

improve network monitoring and performance. Compared to traditional networks, SDN provides 

greater centralization and flexibility in system management. By separating packet forwarding in 
the data plane from routing functions in the control plane, as illustrated in Figure 1, SDN 

overcomes the limitations of conventional networks' static architecture, enabling more efficient 

packet routing. 

https://doi.org/10.5121/ijcnc.2024.16607
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Figure 1. Traditional and SDN network architecture 

 

The SDN architecture consists of three distinct layers: the application layer, the control layer, and 
the infrastructure layer [2]. The application layer plays a critical role in managing network 

applications, allowing administrators to effectively monitor and control the network by 

interacting with the control layer through the Northbound API. Operating at a higher level, the 

control layer is responsible for directing packets to the forwarding devices in the infrastructure 
layer for further processing. However, this architecture also introduces challenges and 

vulnerabilities, particularly concerning cyber-attacks. The most common and dangerous attack on 

this network architecture is a Distributed Denial of Service (DDoS) attack. In a DDoS attack, 
hackers flood the network with an overwhelming volume of virtual packets, leading to bandwidth 

overload and resource exhaustion, which can render the controller unable to manage user 

services. Given these risks, it is crucial to proactively detect and prevent DDoS attacks to ensure 

network security. Several approaches have been proposed to address this issue [3]. Most existing 
methods rely on public or outdated datasets and lack real-time detection capabilities. 

Additionally, they are primarily implemented in simulations rather than real-world environments. 

This paper provides a comprehensive review of research combining entropy and machine 
learning techniques, with a focus on the application of Support Vector Machine (SVM) 

mechanisms trained on our dataset. The objective is to introduce a high-performance hybrid 

model for effectively detecting DDoS attacks. Notably, most studies in this area are restricted to 
simulation environments, making real-world deployment a significant challenge. After proposing 

a hybrid model with superior performance metrics compared to existing methods, we implement 

it in a practical SDN environment to test and compare its results with previous approaches. This 

contribution improves the practicality and reliability of our findings, bringing them closer to real-
world application. 

 

2. RELATED WORKS 
 
In recent years, various methods have been proposed to detect DDoS attacks in SDN. In papers 

[4] and [5], the authors identified a new type of DDoS attack in SDN that is difficult to detect 

using conventional machine learning techniques. They introduced a real-time DDoS detection 

system for SDN environments using Principal Component Analysis (PCA) to analyze network 
traffic data. This technique, applied to each subnet after dividing the network, successfully 

detected DDoS attacks targeting controllers or switches with a 95.24% success rate. However, 

this method's fixed threshold reduces its adaptability. 
 

Several studies have addressed the challenge of detecting DDoS attacks using statistical methods, 

such as entropy-based detection. In [6], the authors used a real-time approach and sFlow-RT 
technology to calculate the entropy of network traffic within an SDN architecture. Another study 

[7] utilized a Modified Adaptive Threshold Algorithm (MATA) based on a traffic baseline, 

achieving a false alarm rate of 0.7% and an accuracy of 99%. However, this threshold is 
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susceptible to fluctuations when large volumes of legitimate traffic reach the controller, causing 
the moving baseline to produce inaccurate results for the detection system. Other papers, such as 

[8] and [9], also used entropy-based detection, achieving impressive accuracy rates of 99.73% 

and 95%, respectively. While these methods are easy to calculate and quickly detect DDoS 

attacks, they share similar limitations, such as susceptibility to spoofing and false positives when 
network behaviour changes [10-12] 

 

In addition, several researchers have explored machine learning or deep learning methods, 
particularly the SVM model. In [13], an SVM-based algorithm classified six-tuple characteristic 

values to distinguish between normal and abnormal traffic, achieving a 95.24% average detection 

accuracy and a 1.26% false alarm rate. Another study [14] used feature entropy to train a 
nonlinear one-class SVM, achieving approximately 95% accuracy. Similarly, works in [15] and 

[16] using SVM methods achieved detection accuracies of 85% and 95.98%, respectively. A 

hybrid method combining Information Entropy and Deep Learning [17] achieved an accuracy 

detection rate of 98.98%. Other examples include [18, 19, and 20], where methods such as 
Extreme Learning Machines, Deep Neural Network (DNN), and SVM combined with Self 

Organizing Map (SOM) were proposed for real-time DDoS detection, with accuracy rates 

ranging from 96-98%. 
 

In [21], an effective real-time DDoS detection method using a Deep Neural Network (DNN) 

within an SDN framework was introduced, boasting a 97.59% accuracy. This model used a four-
layer DNN to process specifically chosen features, with key steps including data normalization 

and conversion of non-numeric values to numeric, enhancing the model's ability to differentiate 

between normal and DDoS traffic. Besides, paper [26] also made a comparison between different 

machine models. They applied ICIDS2017 and CICDDoS2019 datasets support vector machines 
(SVMs), K-nearest neighbours (KNNs), Decision Trees (DTs), Multiple Layer Perceptron 

(MLP), and Convolutional Neural Networks (CNNs), and compares their performance. Finally, 

the results showed that SVM achieved a good accuracy compared to the remains, it’s considered 
to have the ability to correctly and simply detect DDoS in SDN architecture. 

 

The researchers in [22] conducted a critical analysis of 12 recent DDoS detection methods using 

benchmark data, summarizing detection methods for application-layer DDoS attacks from 
January 2014 to November 2021. The authors in [23] proposed a feature selection-whale 

optimization algorithm-deep neural network (FSWOA-DNN) to mitigate DDoS attacks, 

achieving a 95.35% accuracy. Notably, to enhance the security of the proposed model, normal 
data was secured using homomorphic encryption and stored securely in the cloud. 

 

Despite the significant progress in DDoS detection methods, many studies remain limited to 
simulated environments and lack the accuracy required for effective DDoS attack detection in 

practical settings. According to paper [27], although there was much research related to detect 

DDoS attacks in SDN using ML/DL, many problems still exist. Particularly, most of the papers 

use an offline dataset for verification and no deployment of automated real-time defense models, 
which neglects the crucial need to evaluate the performance of these models in real-time 

situations where DDoS attacks actually occur. To address these limitations, we propose a new 

and innovative hybrid approach that leverages the benefits of a dynamic entropy threshold and an 
advanced SVM model. This approach was developed after thoroughly reviewing the Existing 

literature on static entropy [6, 12], dynamic entropy [24], and SVM [14-16]. Our hybrid approach 

offers a more comprehensive and robust solution for detecting DDoS attacks in practical 
environments where the limitations of previous studies are evident. By combining the strengths 

of dynamic entropy thresholds and advanced SVM modeling, our approach aims to provide a 

more accurate and reliable method for detecting DDoS attacks at the practical and real-time 

environment. 
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The rest of this article is structured to present the proposed method and its evaluation. Section 3 
outlines the hybrid approach, which combines a dynamic entropy threshold with an enhanced 

SVM model for DDoS detection, emphasizing its key features and advantages over traditional 

methods. Section 4 details the results from both simulations and practical environments, 

including performance metrics. Section 5 evaluates the system's accuracy, reliability, and 
efficiency. Section 6 compares the method’s performance with existing approaches, providing an 

in-depth analysis of the findings. Finally, Section 7 summarizes the key conclusions and future 

directions, discussing the research’s implications and suggesting areas for further study. Overall, 
this article provides a comprehensive evaluation of the hybrid method for detecting DDoS 

attacks, contributing significantly to network security. 

 

3. PROPOSED DDOS DETECTION SYSTEM 
 
This section introduces our novel methods for detecting DDoS attacks, which combine a dynamic 

threshold method based on entropy values and an enhanced SVM model inspired by [13]. The 

flowchart of the model is depicted in Figure 2. In the proposed hybrid model, the entropy module 
plays a crucial role in identifying potential network anomalies by measuring the variation in 

information within network traffic. Due to entropy's high sensitivity to shifts in network traffic,its 

effectiveness for anomaly detection can be hindered by frequent unexpected drops. These 

drops often occur when a large number of packets are transmitted to the same target host, 

potentially leading to false positives for DDoS attacks. To mitigate this risk, the model 

incorporates a warning condition that prompts further validation to ensure accurate detection. 

 

 
 

Figure 2. Hybrid Model 

 

The enhancedSVM module then provides reliable and precise validation of the detected anomaly. 

Trained to distinguish between normal and malicious network traffic, the SVM model enables us 
to make informed decisions about the nature of the identified network anomaly. By integrating 

both the entropy module and the enhanced SVM module, our hybrid model offers a robust 

solution for detecting DDoS attacks while minimizing false alarms. 

 
As shown in the flowchart in Figure 2, the proposed hybrid method for DDoS attack detection 

comprises two distinct stages, each addressing specific challenges and contributing to a more 

comprehensive solution: 
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First Stage, Entropy Module: In this stage, the entropy module continuously monitors 
network traffic and analyses information variation in the data. By examining data 

patterns, this module detects anomalies and triggers a warning message, acting as an 

early warning system for administrators and users. This early detection capability allows 

for proactive measures to be taken before the attack escalates, thereby enhancing network 
security. 

 

Second Stage, Enhanced SVM Module: Once the entropy module detects a potential 
anomaly, the enhanced Support Vector Machine (SVM) model is activated to validate the 

anomaly. Trained on large datasets, the SVM model proficiently categorizes network 

traffic into two classes: normal and malicious. If the anomaly is confirmed as an attack, 
an alert is generated to notify about the ongoing threat. Conversely, if the traffic is 

deemed normal, the system reassures with a message stating "Network is normal." This 

second stage of validation ensures the hybrid approach's exceptional accuracy and 

reliability in detecting DDoS attacks in real-world environments. 
 

The following subsections will present the proposed method in detail, providing a thorough 

explanation of its key components. The content is organized as follows: starting with the 
definition and formula used to calculate threshold values for the entropy module, followed by an 

outline of the process for training the SVM to enhance its detection capabilities, and concluding 

with a discussion on the concept of DDoS attacks and the various techniques employed for their 
detection. 

 

3.1. Entropy Module 
 

This section explains the formula and methodology used by the system to calculate the entropy 

value. The central controller continuously monitors the status of network traffic by collecting 
incoming packet header information, including the target IP addresses. The entropy value is 

calculated based on this data. A high entropy value suggests that the network traffic is evenly 

distributed across different destination addresses. Conversely, an unexpected surge in the number 

of packets directed to a single destination address can reduce the entropy value, signalling a 
potential network anomaly. To maintain normal network operations, it is essential to keep the 

entropy value within a specific threshold range. 

 

Let's consider 𝑾 as a window containing 𝑁 IP addresses, where 𝑛 (with 𝑛 < 𝑁) represents the 

number of distinct destination IP addresses in the incoming packet headers within this window. 

We can define the window 𝑾 as: 

 

𝑾 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]  (1) 

 

In this context, 𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑛 represent the distinct destination IP addresses observed in the 

window 𝑾. The entropy calculation will be based on the distribution of these distinct addresses, 
which helps in detecting any anomalies in network traffic. 

 

The entropy value 𝐻 is calculated using the following formula: 

𝐻 = − ∑ 𝑝𝑖 log(𝑝𝑖)
𝑁
𝑖=1   (2) 

 

where 𝑝𝑖 represents the probability of an IP address in the window 𝑾, calculated by: 

𝑝𝑖 =
𝑥𝑖

𝑁
  (3) 

Here, 𝑥𝑖 is the count of IP address 𝑥𝑖 in the window 𝑾. 
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To determine the entropy thresholds, the confidence interval is used as follows: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑋̅ ± 𝑍.
𝜎

√𝑁
 (4) 

 

In this equation, 𝑋̅ is the sample mean, 𝑍 is the confidence coefficient, and 𝜎 is the sample 

standard deviation. A 95% confidence level is selected, so 𝑍 = 1.9599. 

 

For a fixed entropy threshold, the value Δ is defined as: 
 

Δ = 𝐻𝑛𝑚𝑖𝑛
− 𝐻𝑎𝑚𝑎𝑥

 

 

where 𝐻𝑛𝑚𝑖𝑛
 is the normal average traffic entropy minus the confidence interval, and 𝐻𝑎𝑚𝑎𝑥

 is 

the average entropy value during an attack plus the confidence interval. The fixed threshold is 

then determined as 𝐻𝑎𝑚𝑎𝑥
− Δ. If the entropy value falls below this static threshold, it indicates a 

potential ongoing attack. 
 

Traditionally, a fixed threshold has been used to detect DDoS attacks, but this method lacks 

flexibility. The static threshold is set based on a fixed percentage of attack traffic relative to total 
traffic (e.g., 25%, 50%, or 75%), which doesn't adapt well to changing traffic patterns or new 

types of attacks. 

 

To address this limitation, a dynamic threshold approach has been introduced. Instead of relying 
on a fixed threshold, the dynamic threshold continuously updates based on changes in the entropy 

value of incoming traffic. This allows for a more adaptive and responsive detection of network 

anomalies, including DDoS attacks. 
 

The entropy value 𝐻𝑖 of a window 𝑾 is calculated using equation (2). The average entropy value  

 

 𝐻̅𝑡 and the standard deviation 𝜎𝑡 are then computed as follows: 
 

𝐻𝑡
̅̅ ̅ =

1

𝑡
∑ 𝐻𝑖

𝑡
𝑖=1    (5) 

𝜎𝑡 =
1

𝑡
∑ (𝐻𝑖 − 𝐻𝑡

̅̅ ̅)2𝑡
𝑖=1   (6) 

 

Using these parameters, the dynamic threshold value 𝑇𝑑𝑦𝑛𝑎𝑚𝑖𝑐  is defined by the following 

formula: 

𝑇𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐻̅𝑡 + 𝐶𝑑 . 𝜎𝑡  (7) 

 

In equation (7),  𝐻̅𝑡  and 𝜎𝑡 represent the average entropy value and standard deviation at time 𝑡 , 
respectively. According to the normal distribution, 95% of entropy values fall within the 

range 𝐻̅𝑡 ± 2𝜎𝑡𝐻𝑡. Values smaller than 𝐻̅𝑡 ± 2𝜎𝑡𝐻𝑡 are less impactful on the overall results, 

making them a reliable basis for selecting 𝐶𝑑  for this system. Based on experimental results, 𝐶𝑑  is 

set to −2, which corresponds to a 95% confidence interval in equation (7). 

 

This completes the theoretical foundation for the proposed entropy-based method. These 

principles will be the basis for developing the SVM model, which will be detailed in the next 
section. 
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3.2. Support Vector Machine Module  
 

In this subsection, we detail the Support Vector Machine (SVM) algorithm, a widely used model 

for classification tasks. The SVM algorithm is effective at transforming a dataset that is not 
linearly separable into a higher-dimensional space, allowing for linear separation of data points. 

This characteristic makes SVM particularly suitable for binary classification tasks, such as 

distinguishing between normal and attack states in this project. Characteristic values are 
parameters that represent the system's status and can vary significantly between normal and 

attack events. For detecting DDoS attacks, five key characteristics, referred to as a five-tuple, are 

used: 

 
Speed of Source IP (SSIP): This measures the total number of incoming IP sources within a 

specified time period. 

𝑆𝑆𝐼𝑃 =
𝑆𝑢𝑚𝐼𝑃𝑠𝑟𝑐

𝑇
  (8) 

 
In this formula, 𝑆𝑢𝑚𝐼𝑃𝑠𝑟𝑐 represents the total number of IP sources recorded from the 

flowentries, and 𝑇 is the time interval (e.g., 3 seconds). During a DDoS attack, the SSIP value 

increases due to a surge in packets from numerous IP addresses within a short timeframe. 

 
Standard Deviation of Flow Packet (SDFP): This represents the standard deviation of the 

packet counts over a given period. 

 

𝑆𝐷𝐹𝑃 = √
1

𝑀
∑ (𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑖

− 𝑀𝑒𝑎𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠)
2𝑀

𝑖=1   (9) 

Where 

𝑀𝑒𝑎𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠 =
1

𝑀
∑ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑎𝑐𝑘𝑒𝑡𝑖

𝑀

𝑗=1

 

 

In this formula, 𝑀 is the total number of new flow entries during time period 𝑇, 𝑀𝑒𝑎𝑛𝑝𝑎𝑐𝑘𝑒𝑡𝑠 is 

the average number of incoming packets, and 𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑎𝑐𝑘𝑒𝑡𝑖
 is the packet count in the 𝑖𝑡ℎ flow 

entry. The SDFP decreases during a DDoS attack because the attacker floods the network with 

packets from different IP addresses, leading to an overloaded flow table in the switch and a 
reduction in SDFP. 

 

Standard Deviation of Flow Bytes (SDFB): This measures the variation in the number of bytes 
in packets over a given time period. 

 

𝑆𝐷𝐹𝐵 = √
1

𝑀
∑ (𝑛𝑏𝑦𝑡𝑒𝑖

− 𝑀𝑒𝑎𝑛𝑏𝑦𝑡𝑒𝑠)
2𝑀

𝑖=1   (10) 

Where 

𝑀𝑒𝑎𝑛𝑏𝑦𝑡𝑒𝑠 =
1

𝑁
∑ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑦𝑡𝑒𝑠𝑖

𝑁

𝑗=1

 

 

 In this context, 𝑀𝑒𝑎𝑛_𝑏𝑦𝑡𝑒𝑠 represents the average number of bytes during the time interval 𝑇, 

and 𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑦𝑡𝑒𝑠𝑖 is the byte count for each flow entry. During a DDoS attack, this value 
decreases significantly because attackers often reduce payload size to maximize the number of 

packets sent. Consequently, each packet contains only the header and trailer, leading to a sharp 

drop in packet size. 
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Speed of Flow Entries (SFE): This metric indicates the total number of flow entries added to the 
switch within a specific time period. 

 

𝑆𝐹𝐸 =
𝑀

𝑇
  (11) 

 
 As discussed with the Standard Deviation of Flow Packet (SDFP), during an attack, the number 

of flow entries increases as the attacker sends numerous packets from various IP addresses. This 

surge in flow entries raises suspicion of an ongoing attack. 
 

Number of Interactive Flow Entries Ratio (NIFE): This represents the ratio of interactive 

flows to the total number of flow entries. 
 

𝑁𝐼𝐹𝐸 =
2∗𝑃𝑎𝑖𝑟_𝑠𝑢𝑚

𝑀
  (12) 

 

In equation (12), 𝑃𝑎𝑖𝑟_𝑠𝑢𝑚 denotes the number of interactive flow entries. Two flows are 
considered interactive if they meet the following conditions: 

 

𝑆𝑟𝑐𝐼𝑃𝑖
= 𝐷𝑠𝑡𝐼𝑝𝑗

 

𝑆𝑟𝑐𝑝𝑜𝑟𝑡𝑖
= 𝐷𝑠𝑡𝑝𝑜𝑟𝑡𝑗

 

𝑆𝑟𝑐𝐼𝑃𝑗
= 𝐷𝑠𝑡𝐼𝑃𝑖

 

𝐷𝑠𝑡𝑝𝑜𝑟𝑡𝑗
= 𝑆𝑟𝑐_𝑝𝑜𝑟𝑡𝑖  

 

Interactive flow entries occur when two nodes communicate with each other, requiring at least 
one interactive flow entry between them. During an attack, typically only one direction is 

targeted by fake IP sources towards the victim, leading to a lack of interactive flow entries. As a 

result, this value decreases during such events. 
 

This section has introduced five key characteristics—based on source IP address, destination IP 

address, source port number, destination port number, and flow entries—that are used for 
detecting DDoS attacks. These characteristics form the basis of the SVM model proposed in [14]. 

To enhance this model, we have introduced a sixth feature: the entropy value discussed in 

subsection 3.1. The entropy value proves to be a highly sensitive metric, crucial for early 

detection of DDoS attacks. Its responsiveness to changes in network information enables rapid 
identification of abnormal behavior. During a DDoS attack, the entropy value sharply declines 

even with a small number of packets targeting the same destination within a short period. This 

heightened sensitivity highlights the significant role of the entropy value in our enhanced SVM 
model. 

 

By integrating the entropy module with our SVM model, we have developed a hybrid model 
designed for optimal DDoS attack detection. The entropy module acts as an early detection 

mechanism, quickly identifying potential anomalies, while the enhanced SVM model provides 

the necessary validation to ensure accuracy. This combination offers a robust and effective 

solution, enabling our hybrid model to excel in detecting DDoS attacks. 
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4. IMPLEMENTATION AND RESULT 
 

4.1. Preparation and Implementation 
 

The simulation was conducted on an ASUS F570zd running Ubuntu 20.04. To create a simulated 
network environment, Mininet was selected as the network simulator, and a POX controller was 

employed. POX, a Python-based SDN controller, is more advanced than its predecessor, NOX. 

To evaluate the performance of our proposed DDoS attack detection model, we run our model 

script along with Mininet, whichserved as a virtual network testbed, capturing real-time 

traffic data that was then fed to our model for analysis. The simulated topology consisted of 

64 hosts and 9 Open Switches, including 1 core Open Switch. 

  

For practical testing, we used an Aruba Switch 2930F with Open Flow protocol, controlled by 

POX. The real network topology included 1 controller, 2 switches, and 8 hosts, as illustrated in 
Figure 3. Host h6 (IP address 10.10.0.6) was designated as the attacker, while host h4 (IP address 

10.10.0.4) was the attack target. Hosts h3 (IP address 10.10.0.3) and h5 (IP address 10.10.0.5) 

generated normal traffic samples. 
 

To facilitate communication between hosts via POX, the l2_learning module was utilized and 

modified. This module analyses incoming packets to extract IP addresses and adds flow entries to 
the flow table of an Open Flow switch. Scapy, a DDoS tool, was used to generate and flood 

TCP/UDP/ICMP packets with spoofed source IP addresses to simulate both normal and attack 

traffic. Normal traffic was generated at a rate of 0.1 seconds per packet, while attack traffic 

volumes were set at 25%, 50%, and 75% of the total traffic, with rates of 0.3, 0.1, and 0.033 
seconds per packet, respectively. 

 

 
Figure 3. Topology in practical model 

 

To implement the entropy method, we followed the processes and formulas outlined in 

Subsection 3.1 and integrated them into the l2_learning module. 
 

The simulation and practical proceeded as follows: 

 
Topology Setup: The Mininet network simulator (for simulation) and POX controller were 

used to establish the network topology. Normal traffic was generated from hosts h3 and h5, 

sending packets randomly to other hosts at a rate of 10 packets per second. 
 

Detection Program: The detection program was initiated to generate normal traffic followed 

by attack traffic using Scapy. This allowed us to compare the characteristics of normal and 

attack traffic and analyse any differences. 
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SVM Model Prediction: The SVM models were used to predict the network status. The 
predicted results were compared with the actual network state to assess the accuracy of the 

SVM models in detecting DDoS attacks. 

 

The new dataset collected was specifically tailored to fit the topology used in this study, ensuring 
that the simulation and practical results accurately reflect the performance of the SVM models. 

The scenarios described above were also run using the hybrid model. 

 

4.2. Result 
 

The results of the dynamic entropy method are illustrated in Figures 4 to 6. These figures depict 
key parameters of the method: entropy, average entropy, standard deviation, and dynamic 

threshold. The observations cover three scenarios with varying percentages of attack traffic: 25%, 

50%, and 75%, as shown in Figures 4, 5, and 6, respectively. In these figures, simulation results 
are indicated by solid lines (Entropy-Sim, Ave-Sim, Std-Sim, and Threshold-Sim), while 

experimental results are shown by dashed lines (Entropy-Exp, Ave-Exp, Std-Exp, and Threshold-

Exp). 
 

 
 

Figure 4. Dynamic threshold method with 25% attack 

 

In Figure 4, for the normal traffic, the rate of packet generation is 0.1s/packet and for the attack 

traffic, that is 0.3s/packet, making the attack traffic is account for25% of the total traffic. In the 
first 100 windows, which is normal traffic generation stage, the entropy value fluctuates above 

and below the threshold and the mean. However, when attack traffic to host 10.0.0.1 on the 

102𝑛𝑑  window is conducted, the entropy value immediately drops below the threshold and the 

threshold value also decreases gradually. From the 102𝑛𝑑  to 205𝑡ℎ  windows, the entropy 

remains belowthe threshold, indicating that an attack has taken place. From the 207𝑡ℎ  to 303𝑟𝑑  
windows, the attack is stopped, and normal traffic is restored. During this process, the entropy 

value increases above the threshold, indicating that the network has returned to its normal state. 

The experimental results also show a similar change in values, although the decrease in values is 
deeper due to the small size, which results in less randomness, of the actual network model. 

 

In Figure 5 and Figure 6, when the attack traffic accounts for 50% and 75%of the total network 

traffic, the decrease in entropy, average, and threshold values is slightly deeper. In short, these 

changes are still obvious to indicate that the attack has been conducted from the 102𝑛𝑑  to 

205𝑡ℎwindows. The values of these parameters vary overtime corresponding to the different 

scenarios. It isevident that the results are consistent with the formulas presented in the previous 

section. 
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Figure 5. Dynamic threshold method with 50% attack 

 

 
 

Figure 6. Dynamic threshold method with 75% attack 

 
Figure. 7 to 12 shows the value variation of these features. The running scenario is similar to the 

dynamic entropy methods shown above. We can clearly see the change in values with and 

without an attack. In this case, attack traffic accounts for 50% of the total network traffic and 
SVM is used to perform attack traffic generation. 

 

 
 

Figure 7. SSIP value 

 

Figure 7 illustrates that the SSIP value shows a substantial increase during an attack, which 

occurs between the 99𝑡ℎ  and 197𝑡ℎ  seconds. Under normal conditions, approximately 5 to 6 new 
packets are generated every 3 seconds. During an attack, however, the packet volume sharply 

rises to 115 packets per 3 seconds in the experimental results and 30 packets per 3 seconds in the 

simulation results. Despite the differences between the simulation and real-world models, this 
value clearly distinguishes between attack and non-attack scenarios. 
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Figure 8. SDFP value 

 

The SDFP value is depicted in Figure. 8. This figure clearly illustrates the difference in the 
number of packets generated during normal and attack scenarios. In the experimental results, the 

standard deviation of the number of packets generated is around 1.4 in the normal scenario and 

drops to around 0.4 when an attack occurs. The values in the simulation follow a similar pattern 

but are lower in magnitude. 
 

Figure 9 displays the standard deviation of flow bytes (SDFB). The experiment reveals that under 

normal conditions, the standard deviation averages around 45. However, during an attack, this 
value decreases to approximately 10. The simulation results align with these observations, 

showing similar behavioural patterns. This drop in standard deviation during an attack highlights 

a significant deviation from normal network behaviour, serving as a key indicator of unusual 

activity in the network. 
 

 
 

Figure 9. SDFB value 

 

Figure 10 illustrates the NIFE value, which measures the interaction between streams. Under 

normal conditions, the average NIFE value is approximately 0.9 in simulations and 0.7 in 
experiments. However, during an attack, the NIFE value drops sharply to nearly 0 in both 

simulation and experimental settings. This drastic decrease indicates a significant reduction in 

two-way interaction between the hosts, reflecting the victim's inability to respond promptly due 
to the ongoing attack. 
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Figure 10. NIFE value 

 

The SFE value is illustrated in Figure 11, which represents the rate at which flow entries are 
created within each 3-second interval. During a DDoS attack, attackers frequently use numerous 

unique IP addresses, causing the controller to add new entries to the flow table. Consequently, a 

higher number of new IP addresses leads to an increased number of flow entries. This value 

parallels the SSIP value and effectively captures the impact of a DDoS attack on the network's 
flow entries. 

 
 

Figure 11. SFE value 
 

The entropy value in Figure. 12 as the sixth feature of the SVM is similarly modulated as in the 
entropy-based statistical models, which is notably decreased during the attack stage. 

 

 
 

Figure 12. Entropy value 
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5. EVALUATED METRICS 
 
All performance metrics are defined by [25]. Statistical results in Table I show that accuracy, 

precision, and recall improve with the complexity of the methods. 

 

The fixed threshold entropy method demonstrates relatively low accuracy, achieving 94.59% in 
simulation and 92.98% in the experiment. This is primarily due to the static threshold's inability 

to adapt to dynamic changes in the network's state. While the method is simple and provides a 

quick detection time of approximately 5.4 seconds, its accuracy is limited because entropy's 
sensitivity to information does not allow for higher accuracy levels. 

 

In contrast, the dynamic threshold entropy method performs significantly better in simulation, 

with an accuracy exceeding 97%. However, in the experiment, accuracy is just over 90%, largely 
due to the method's simplicity, which results in a lack of randomness and difficulty in precisely 

determining the network’s state. Despite this, the dynamic threshold method offers ease of 

implementation, straightforward operations, and a swift detection time of about 3.4 seconds, 
capitalizing on entropy's characteristics. It also provides high flexibility for adapting to various 

network scenarios. 

 
Table 1. PERFORMANCE METRICS FOR THE METHODS 

 

Methods 

(Simulation/ 

Experiment) 

TP 

(%) 

FP 

(%) 

TN 

(%) 

FN 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Response 

Time 

(s) 

Warning 

(%) 

Fixed 

threshold 

entropy  

93.3 6.7 96 4 94.6 93.3 96 5.4 - 

  91.7 8.3 94.5 5.5 93 91.7 92.84 5.6 - 

Dynamic 

threshold 

entropy  

96.4 3.6 98.1 1.2 98 96.4 97.56 3.5 - 

  92.2 7.8 94.5 5.1 90 92.2 93.99 3.3 - 

SVM  97.5 2.5 98.3 1.7 97.9 97.5 98.3 7.7 - 

  96.6 3.4 97.8 2.2 97.2 96.6 97.78 7.6 - 

EnhancedSVM 99.2 0.9 98.6 1.4 98.9 99.2 99.15 7.1 - 

  99 1 99.3 0.7 99.2 99 99.01 7.3 - 

Proposed 

Hybrid  
99.7 0.3 99.1 0.9 99.4 99.1 99.7 3.8 3.8 

  99.8 0.2 99.5 0.5 99.8 99.5 99.65 3.9 4.2 

 

The SVM models outperform both entropy-based statistical methods, with accuracies exceeding 
97%, and the enhanced SVM method achieving up to 99%. This demonstrates the superiority of 

machine learning approaches. However, the average response time for these methods is 7.2 

seconds, owing to the 3-second information capture period needed to gather sufficient data for 

calculations. Consequently, SVMs require more than twice this period to detect an attack. 
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The hybrid model marks a significant advancement in intrusion detection. It features a rapid 
response time of 4 seconds and achieves up to 99% accuracy, highlighting its effectiveness. The 

alert-to-outcome ratio in the simulation and experiment is 3.8% and 4.2%, respectively, 

indicating the false decision rate of the entropy module. Nevertheless, the strength of the SVM 

module enhances the hybrid model by reconfirming the entropy module’s decisions, improving 
the likelihood of a correct outcome. The entropy module’s sensitivity to anomalous information 

variance, combined with the SVM module's accuracy, reinforces the overall effectiveness of the 

hybrid model in detecting DDoS attacks. 
 

6. COMPARING THE PROPOSED METHOD WITH OTHER WORK 
 

Figure 13 presents the statistical results for accuracy, precision, and recall of the various methods. 

Figure 14 illustrates the response time for each method to successfully detect DDoS attacks. 
The static threshold method exhibited lower accuracy, with an average of approximately 93% and 

a detection time of 5.5 seconds. In contrast, the dynamic threshold method showed marginal 

improvements, achieving about 4% higher accuracy and a response time that was 2 seconds faster 
compared to the static threshold method. 

 

Entropy-based methods demonstrated less accuracy than SVM-based methods, with SVM 
achieving an average accuracy of 98%. However, SVM had a slower response time of around 7 

seconds, compared to the 3.4 seconds and 5 seconds of the two entropy-based methods. The high 

accuracy of SVM is attributed to the significant differences in feature values between normal and 

attack scenarios, making it easier for SVM to delineate the two data sets. This performance 
analysis underscores the SVM model's high precision in classification. Adding entropy as a sixth 

feature to the enhanced SVM model further enhanced accuracy in challenging classification 

cases. For instance, as shown in Figure 8, while the number of packets or bytes during an attack 
might be similar to normal traffic, the number of destination IP addresses may be abnormal. In 

such cases, the entropy value decreases quickly, aiding in earlier attack detection. 

 
The hybrid model outperformed all other methods, achieving up to 4% higher accuracy than the 

static threshold entropy method and a faster response time of around 3 seconds. The integration 

of entropy with SVM in the hybrid model combines the strengths of both methods, resulting in 

exceptional performance and outstanding results. 
 

 
 

Figure 13. Performance metrics 
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Figure 14. Response time 

 

7. CONCLUSION AND FUTURE WORK 
 

The primary objective of this research was to address the issue of DDoS attacks in software-
defined networks. We conducted a comprehensive investigation evaluating several models: the 

static entropy method, the proposed dynamic entropy threshold solution, the enhanced SVM 

classification model, and a hybrid model combining dynamic entropy with the enhanced SVM 
model. Both simulation and experimental environments were used for this evaluation. 

 

Our findings reveal that the proposed models are highly effective in accurately detecting DDoS 

attacks, with the hybrid model achieving accuracy levels of up to 99% while maintaining fast 
response times. These results are significant for the cyber security field, providing a hardware-

compatible solution that integrates seamlessly into software-defined networks. 

 
Future research could explore integrating additional machine learning and deep learning methods 

to improve the classification of diverse attack types, such as slow DDoS and Man-in-the-Middle 

attacks. Investigating mitigation strategies like load balancing and monitoring port traffic to 
identify attackers based on specific thresholds would also be beneficial. A deeper understanding 

of various DDoS attack types, combined with the exploration of different algorithms and SDN 

architectures, will help identify optimal solutions and advance the field of network security. 
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